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Abstract Predicting exotic invaders and reducing

their impacts on the biodiversity and function of native
ecosystems require understanding of the mechanisms

that facilitate their success during key stages of

invasion. We determined whether clonal growth,
characteristic of the majority of successful invaders

of natural areas, facilitates the proliferation of Bromus
inermis (smooth brome), an exotic grass invading

prairie ecosystems across the Great Plains. By manip-

ulating the below-ground connections of proliferating
rhizomes as well as the levels of soil nitrogen along the

margins of clones invading northern fescue prairies in

Manitoba, Canada, we hypothesized that physiologi-
cal integration would most benefit ramets invading

low resource environments. Severing clonal connec-

tions reduced the mass of smooth brome shoots
invading native prairies and was exacerbated by the

immobilization of soil nutrients with glucose. Clonal

connections were equally important in the mainte-
nance of smooth brome density and the horizontal

proliferation of ramets. Our results demonstrate the

role of physiological integration in the proliferation of
a clonal exotic invader and may help explain the

success of clonal invaders in other regions. Although

integration among invading ramets suggests several

possibilities for successful management, future

research must continue to elucidate differences in
the invasiveness of native versus exotic species as well

as the persistence of clonal connections among exotic

invaders.
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Introduction

Exotic plant invasions pose a growing threat to the

endemic biodiversity and function of ecosystems
around the world (D’Antonio and Vitousek 1992;

Davis 2003; Yurkonis et al. 2005). The success of

exotic species is contingent upon their transition
between several stages of invasion (Puth and Post

2005; Theoharides and Dukes 2007). For example,

while the proliferation of exotic invaders is contingent
on their interaction with native communities (Kolar

and Lodge 2001), their establishment often depends on

propagule pressure, disturbance, and the diversity and
structure of invaded habitats (Lockwood et al. 2005;

Pokorny et al. 2005; Hierro et al. 2006). Despite the

large number of exotic species in most regional floras,
few among them have become serious invaders

and many simply contribute to local species richness

(Rosenzweig 2001). Consequently, predicting
exotic invaders and reducing their impacts on native
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communities require an understanding of the mecha-
nisms that facilitate their success at each stage of

invasion (Smith et al. 1999). Here, we determine

whether clonal growth, characteristic of themajority of
successful invaders of natural areas (Andersen 1995;

Pyšek 1997; Reichard and Hamilton 1997; Acosta

et al. 2006; Cadotte et al. 2006), facilitates the prolif-
eration of an exotic grass invading northern fescue

prairies.

Clonal plants, described as genetic individuals
comprising of potentially independent modules (Kelly

1995), dominate most regional floras. In central

Europe, clonal species comprise as much as 69% of
the native flora and over 90% of alpine and arctic

communities (Kelly 1995; Pyšek 1997). The success

of clonal species is often attributed to their capacity to
share resources among individual subunits. Translo-

cation of resources, including water, carbohydrates,

and minerals (Alpert and Mooney 1986; Lau and
Young 1988; Tissue and Nobel 1988; Stuefer and

Hutchings 1994; Alpert 1996; Wijesinghe and Hutch-

ings 1997; Kemball and Marshall 1995), enables
clonal species to exploit patchy resources (Alpert and

Mooney 1986; Wijesinghe and Hutchings 1997;

Ikegami et al. 2008), ameliorate environmental stress
(Amsberry et al. 2000; Pennings and Callaway 2000),

and reduce the impacts of competition and herbivory

(Hartnett and Bazzaz 1985; Schmid et al. 1988).
Despite the preponderance of clonal growth

among successful invaders, few experimental studies

have explored the functional role of clonality in the
course of exotic invasions (Puth and Post 2005; but

see Meyer and Schmid 1999; Maurer and Zedler

2002; Price et al. 2002). Where examined, clonal
growth most often facilitated the proliferation of

exotic species invading stressful environments,

including wetlands (Amsberry et al. 2000) but its
role in supporting invasions of other plant commu-

nities is less clear (Pennings and Callaway 2000).

We focused our experiments on examining the role
of clonal growth in exotic plants invasions of native

prairies. Using smooth brome (Bromus inermis
Leyss.), a Eurasian perennial that has successfully

invaded prairie ecosystems across the Great Plains

(Cully et al. 2003; Otfinowski et al. 2007), we
designed a field experiment to examine the impor-

tance and environmental contexts of clonal

integration among invading plants. We focused our
experiment along the margins of invading clones,

where interspecific interactions between the invader
and the native prairie community most likely con-

tribute to resource heterogeneity (Caraco and Kelly

1991) and hypothesized that physiological integration
would most benefit ramets invading low resource

environments.

Methods

Research was conducted in Riding Mountain

National Park, MB, Canada. The park occupies an

area of 2,978 km2 in Western Canada, 225 km
northwest of Winnipeg (49" 530 0400 N–97" 080 4700

W) and consists of large areas of rolling upland (550–

640 m), underlain by glacial tills (Lang 1974). The
region is characterized by mean annual precipitation

of 450–500 mm and a growing season of 168–

173 days; mean temperatures range between -18"C
in January and 18"C in July (Leeson et al. 2005). The

park lies in the Mixedwood Section of the Boreal

Forest Region (Rowe 1972) and protects areas of
rough fescue prairie, threatened in western Canada as

a result of grazing, cultivation, and invasions by

exotic species (Trottier 1986).
To examine the role of physiological integration in

the proliferation of smooth brome, we randomly

selected 20 clones invading prairies in each of two
areas of RidingMountain National Park. Prairies in the

park have been recently invaded by smooth brome,

which continues to compromise their function and
biodiversity, transforming diverse plant communities

into virtual monocultures (Otfinowski et al. 2007).

Although invading clones of smooth brome forms
dense, circular patches (5–15 m in diameter), the

genetic structure of these remains unresolved. The two

study areas were situated approximately 50 km apart;
soils at the more western Bob Hill prairie were more

xeric and lower in mineral nitrogen than the centrally

located Strathclair prairie [moisture (0–20 cm, July
2005) 7.5 ± 3.7% vs. 9.5 ± 4.2%, F1,100 = 9.2,

P = 0.0031; mineral nitrogen (0–15 cm; July 2005):
NH4

+, 5.3 ± 0.4 mg/kg vs. 9.1 ± 0.4 mg/kg, F1,38 =

37.4, P\ 0.0001; NO3
-, 0.60 ± 0.1 mg/kg vs.

2.1 ± 0.2 mg/kg, F1,38 = 40.7, P\ 0.0001].
We examined the importance and the environ-

mental contexts that favour physiological integration

among smooth brome ramets invading prairies by
manipulating belowground rhizomes and the levels of
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soil nitrogen. Based on a factorial design, we divided
each clone into three pie-shaped sections and ran-

domly assigned one of two rhizome treatments, three

nitrogen treatments, and a control to each (Fig. 1).
Rhizomes, located 5–15 cm below the soil surface

(R. Otfinowski, pers. obs.), were left intact or severed

using plastic lawn edging (0.15 9 1.6 m), installed
into narrow, semi-circular trenches along the margins

of invading clones. Severing connections is a stan-

dard method of investigating the importance of clonal
integration (Kelly 1995). Despite its potential to

traumatize plants and allow entry of pathogens (Kelly

1995), many field studies have found no effect of
severing on plants, suggesting that potential artefacts

are limited (Hartnett and Bazzaz 1983; Alpert 1991;

Evans 1992; Pennings and Callaway 2000; Peltzer
2002). We did not observe any sudden death of

ramets or increased incidence of disease following

severing.
Starting in May 2004, we broadcast glucose

(40% C) and ammonium nitrate fertilizer (34-0-0)

inside the circular treatment areas (diameter =

0.91 cm) to manipulate the levels of soil nitrogen
available to invading ramets. Annual rate of glucose

(300 gCm-2 year-1) was split among three applica-

tions (May, June, July; 2004, 2005) and corresponded
to the calculated amount of carbon required to immo-

bilize most mineral nitrogen within 10 cm of the soil

surface; application of fertilizer (11 gNm-2 year-1)
were also split (May, June, 2004, 2005) and corre-

sponded with the amount of mineral nitrogen

immobilized in the glucose treatments. Carbon
amendments to soils stimulate microbial immobili-

zation of available nitrogen (Recous and Mary

1990) and can reduce the competitiveness of exotic
invaders (Blumenthal et al. 2003; Perry et al.

2004). In separate trials, additions of glucose

(300 gCm-2 year-1) decreased soil concentrations
of nitrate more than ammonium. In 2005, soil nitrate

(0–15 cm) declined 25–59% (2.4 ± 0.2 mg/kg (con-

trol; annual mean ± 1 S.E.) vs. 1.4 ± 0.1 mg/kg,
F1,99 = 33.1, P\ 0.0001), compared with 4–9% for

ammonium (9.7 ± 0.5 vs. 9.1 ± 0.5, F1,99 = 1.5,

P = 0.2275).
Impacts of rhizome and nitrogen manipulations on

smooth brome invasion were measured following two

growing seasons. The density and mass of all ramets
were measured inside 50 9 50 cm quadrats centred

inside each treatment area. Ramets were clipped at

the soil surface, air dried (48 h, 60"C), and weighed.
We determined the encroachment of clones by

comparing the position of invading ramets at the

beginning and at the end of the experiment.

Statistical analysis

We used two-way analysis of variance (ANOVA),
blocked by individual clones, to examine the

response of smooth brome to rhizome and nitrogen

manipulations. All data were log transformed to
improve the homogeneity of variance (Zar 1999).

Data were pooled where no significant differences

were found between the two study sites. Linear
models were implemented using Data Desk 6.2 (Data

Description Inc., Ithaca NY).

Results

Severing clonal connections reduced the mass of

smooth brome shoots invading native prairies and

R-

R-

R-

R+

R+

R+

Fig. 1 Manipulation of soil nitrogen and rhizomes along the
margins smooth brome (Bromus inermis) clones invading
northern fescue prairies in Riding Mountain National Park,
MB, Canada. Each clone was divided into three sections and
each randomly assigned the following treatments: intact
rhizome (R+), severed rhizome (R-), nitrogen immobilized
(N-), nitrogen unmanipulated (C), nitrogen added (N+).
Circles represent treatment areas (diameter = 0.91 cm)
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was exacerbated by the immobilization of soil
nutrients with glucose. Reducing soil nitrogen

decreased the biomass of shoots disconnected from

parent plants, but had no effect on those with intact
rhizomes (Fig. 2a; Table 1). Clonal connections were

equally important in the maintenance of smooth

brome density, and for all levels of nitrogen, the
density of brome shoots declined following the

severing of rhizomes (Fig. 2b; Table 1). Physiolog-

ical integration remained important in the horizontal
proliferation of smooth brome clones, but its effect

was site specific. Among the two study areas, sharing

of resources with mother clones inhibited the
encroachment of ramets invading Bob Hill prairie

in the western part of the Park, an area lower in

mineral soil nitrogen (Fig. 2c–d, Table 1).

Discussion

Our observations demonstrate the importance of

physiological integration in the proliferation of
smooth brome clones invading native prairies.

Underground rhizomes, connecting ramets with

mother clones, maintained the biomass and density
of invading ramets and were, as predicted, key to the

proliferation of smooth brome into resource poor

environments. Physiological integration between
vegetatively connected ramets often facilitates the

colonization of environments where parts of the clone

experience contrasting conditions. Coastal dunes,
deserts, and wetlands are often dominated by clonal

perennials, whose vegetative connections permit the

‘‘homogenization’’ of patchy resources and the ame-
lioration of environmental stress (Alpert 1996;

Pennings and Callaway 2000; Ikegami et al. 2008).

Translocation between ramets supported the
encroachment of smooth brome into adjacent prai-

ries; however, sharing of resources with the mother

clone inhibited the proliferation of ramets invading a
nutrient-poor prairie. While integration among ramets

most often entails transport of resources towards

younger ramets (Alpert 1991), competition among
sibling ramets can reduce their growth in heteroge-

neous environments (Hellström et al. 2006). Others

have suggested that suppression of proliferation in
low nutrient environments may reduce intraramet

competition for scarce resources and facilitate the

Fig. 2 Impacts of soil nitrogen addition (N+) and immobiliza-
tion (N-) on the biomass, density, and horizontal proliferation of
smooth brome (Bromus inermis) ramets invading two northern
fescue prairies in Riding Mountain National Park, MB, Canada.
Ramets along the margins of invading clones were either left
intact (open symbols) or severed from parent clones (closed

symbols; n = 40, error bars = ±1 S.E.). Illustrations of shoot
mass (a) and density (b) represent the combined measurements
from two study areas; those of clonal proliferation represent
separate measurements from Bob Hill (c) and Strathclair (d)
prairies, located in the western and central areas of the Park,
respectively (see text for details)

Plant Ecol

123



formation of monoclonal patches (Schmid and Baz-

zaz 1987). The observed increase in the proliferation

of severed ramets invading a low-nutrient prairie
illustrates the potential of clonal invaders to rapidly

dominate nutrient enriched areas (Sutherland and

Stillman 1988). Increasing concerns about the
impacts of atmospheric nitrogen deposition (Porter

and Johnson 2007) emphasize the importance of

environmental context in the proliferation of clonal
invaders and stress their threat to low-nutrient

environments (Soukupová 1992, Brooks 2003, Porter

and Johnson 2007).
Our observations illustrate the importance of

vegetative connections in the proliferation of exotic

plants invading native prairies. Although several
previous authors have accorded greater importance

to clonal integration in resource-limited environ-
ments, its role in interspecific interactions remains

unresolved. For example, Amsberry et al. (2000) and

Pennings and Callaway (2000) reported that clonal
connections did not affect the growth of plants

penetrating dense marsh communities, and Peltzer

(2002) did not observe a significant decrease in the
growth of severed Populus tremuloides ramets invad-

ing a native prairie. In contrast, by manipulating the

composition of plant communities neighbouring
Solidago canadensis, Hartnett and Bazzaz (1985)

demonstrated the importance of physiological inte-

gration in ameliorating impacts of interspecific
interactions. It remains unresolved whether more

intense interactions between smooth brome and its

neighbours could inhibit or reverse the observed
integration (Kelly 1995; Hellström et al. 2006) and

how other factors, including intraspecific competition

between ramets (Bullock et al. 1994), the spatio-
temporal heterogeneity of resources (Gough et al.

2002), and the age and length of clonal connections

(Schmid and Bazzaz 1987; Bullock et al. 1994) affect

its importance during invasions. These questions

deserve further investigation.
The persistence of clonal connections remains key

to understanding the impact of physiological integra-

tion on the invasiveness of exotic plants. Our
observations illustrate that smooth brome ramets

remain physiologically integrated along clone edges,

a distance of at least 0.5 m from the clone margin,
and based on the observed rate of clonal advance

(*24 cm/year), those 2–3 years old remain active in

supporting the vegetative advance of invading clones.
In other herbaceous species, physiological integration

often encompasses at least 4 or 5 rooted ramets

(Noble and Marshall 1983; Headley et al. 1988;
Birch and Hutchings 1999), but its maintenance may

be contingent on the net contribution of connected
ramets to the genet’s growth (Kelly 1995). As a

result, disintegration of clonal connections is pre-

dicted whenever the growth of daughter ramets does
not compensate for the physiological demands of the

older parts of the clone (Caraco and Kelly 1991).

Conceptual models of exotic plant invasion are
characterized by several discrete steps, including

dispersal, establishment, and proliferation (Kolar and

Lodge 2001; Puth and Post 2005). Successful inva-
sion requires that an exotic species be superior to the

native species it displaces in at least one or all these

stages. Even though exotic plants often possess traits
that distinguish them from the native species they

displace (Andersen 1995; Rejmánek and Richardson

1996; Kolar and Lodge 2001; but see Thompson
et al. 1995; Acosta et al. 2006), successful invaders

represent a variety of plant families and possess a

wide range of life forms and breeding systems
(Crawley 1987). Although our results demonstrate

that clonal growth facilitates the proliferation of

Table 1 Two-way ANOVA testing the effect of soil nitrogen
addition and immobilization on the biomass, density, and
horizontal proliferation of smooth brome (Bromus inermis)
invading a two northern fescue prairies in Riding Mountain

National Park, MB, Canada. Analyses of ramet biomass and
density were combined for two study areas, while those of
clonal proliferation were separated. The F-values and their
significance levels are shown

Effect Shoot mass Shoot density Encroachement (Bob Hill) Encroachement (Strathclair)

F df P F df P F df P F df P

Sever 18.18 1.195 \0.0001 21.90 1.195 \0.0001 0.08 1.95 0.7729 0.90 1.95 0.3461

Nitrogen 37.58 2.195 \0.0001 27.52 2.195 \0.0001 3.25 2.95 0.0432 3.12 2.95 0.0488

Sever 9 nitrogen 6.57 2.195 \0.0017 1.87 2.195 0.1563 4.53 2.95 0.0132 0.65 2.95 0.5264

Ramets along the margins of invading clones were either left intact or severed from parent clones
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smooth brome invading native prairies and may help
explain the success of clonal invaders in other regions

(Andersen 1995; Pyšek 1997; Reichard and Hamilton

1997; Acosta et al. 2006; Cadotte et al. 2006), many
questions related to the success of clonal invaders

remain unanswered. For example, clonal growth

remains a common trait among native species in
many plant communities (Kelly 1995; Pyšek 1997),

and other factors, including ramet longevity, the

persistence of clonal connections, and the spatio-
temporal extent of physiological integration (Schmid

and Bazzaz 1987; Jonsdottir and Watson 1997;

Tamm et al. 2002), deserve further investigation.
To our knowledge, no studies have explored these

hypotheses in the context of differences between

exotic invaders and the native plants they displace.
The preponderence of vegetative reproduction

among successful invaders requires an understanding

of the ecological contexts and the extent of physio-
logical integration among invading species and the

extent of physiological integration among invading

ramets. Our results demonstrate that physiological
integration maintains the biomass and density of

smooth brome ramets invading native prairies and

that its importance is greatest in low resource
environments. The observed integration suggests

several methods of managing clonal invaders. For

example, applications of herbicide along the margins
of invading clones could capitalize on the transloca-

tion of resources between the mother clone and

establishing ramets and help slow or stop their
proliferation (Brej 2001), while mowing the margins

of invading clones could facilitate the potential

disintegration of connections between the damaged
ramets and the mother clone (Caraco and Kelly 1991;

Meyer and Schmid 1999; Hellström et al. 2006).

Our results suggest that due to their increased
dependence on clonal subsidy, ramets in resource

poor environments would be most vulnerable to such

manipulations.
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Rejmánek M, Richardson DM (1996) What attributes make
some plant species more invasive? Ecol 77:1655–1661

Rosenzweig ML (2001) The four questions: what does the
introduction of exotic species do to diversity?. Evol Ecol
Res 3:361–367

Rowe JS (1972) Forest regions of Canada. Canadian Forestry
Service. Department of the Environment, Ottawa

Schmid B, Bazzaz FA (1987) Clonal integration and popula-
tion structure in perennials: effects of severing rhizome
connections. Ecol 68:2016–2022

Schmid B, Puttick GM, Burges KH, Bazzaz FA (1988) Clonal
integration and effects of simulated herbivory in old-field
perennials. Oecologia 75:465–471

Smith CS, Lonsdale WM, Fortune J (1999) When to ignore
advice: invasion predictions and decision theory. Biol
Invasions 1:89–96
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