
Introduction

Natural phenomena characteristically show high levels
of structural and organizational complexity over a broad
range of spatial and temporal scales (Schroeder 1991, Fal-
coner 2013). This scale-invariant complexity limits the use
of classic Euclidean geometry in quantifying natural patterns
and processes (Kenkel and Walker 1996). The alternative ge-
ometry of fractals (Mandelbrot 1967) often provides a more
realistic and meaningful descriptor of nature, as evidenced by
the wide-ranging application of fractal methodology in ecol-
ogy (Seuront 2010, Bez and Bertrand 2011) and other disci-
plines (Falconer 2003, Brewer and Di Girolamo 2006, Sun et
al. 2006, Lopes and Betrouni 2009). 

The defining features of a fractal are self-similarity and
scale-invariance; fractals possess an infinite (and unresolv-
able) level of detail (Theiler 1990). The basic requirement of
a fractal, therefore, is that structural “irregularities” are pre-
served at all – including the finest – scales (Hall 1995). In
practice, estimating the fractal dimension of real-world ob-
jects (e.g., point patterns, curves, or surfaces) requires re-
cording the object in a Euclidean embedding space at finite
resolution (sample size); that is, one begins with a finite de-
scription of the fractal (Theiler 1990, Taylor and Taylor
1991, Hall 1995). Resolution may be limited by the image
itself (e.g., digital photograph), the capacity of recording
equipment (e.g., scanner, stylus or filter), or sampling limita-
tions (e.g., mapped tree locations, and animal movement
paths). As a consequence, the more detailed properties of
self-similar objects or processes – that is, the very features

that define a fractal – are “smoothed” or destroyed during the
recording process (Hall 1995). The process of data recording
substantially degrades detailed fractal properties, since
higher-magnification features of the original process are
smoothed to a greater or lesser extent (depending on the level
of resolution). Since higher-magnification properties are de-
stroyed, so too is self-similarity. However, provided that the
smoothing is not too severe (i.e., image resolution is high, or
sample size is large), lower-magnification features are faith-
fully preserved and can be used to estimate the fractal dimen-
sion provided the data are examined at relatively coarse
scales (Hall 1995). An ideal methodological approach pro-
vides an estimate of the dimension of the underlying fractal
set, not of the finite description of that set (Theiler 1990). 

Rigorous theoretical definitions of dimension are im-
practical for direct numerical estimation but provide the basis
for developing operational algorithms for estimating the di-
mension of finite sets (Theiler 1990). The Hausdorff dimen-
sion of a point pattern embedded in a P-dimensional Euclid-
ean space is defined by the limit function:

DH = lim   log [1/N(r)] / log r  [1] 

           
r 

The upper limit of DH, variously known as the box-count,
capacity or fractal dimension, is obtained by covering the
embedding space (e.g., two-dimensional surface) with a
fixed-size grid. For a specified grid of boxes of size (side
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length) r, the number of boxes N(r) containing at least one
point is determined. The scaling: 

N(r) ~ r -D   

defines the fractal dimension D. In empirical applications
only a finite sample size M is available so that the limit r 
0 cannot be taken. Intuitively, one could apply equation [1]
using the smallest r available, but this approach is impractical
since limit convergence is logarithmically slow (Theiler
1990). A practical alternative is to plot log N(r) versus log r,
estimating D as the negative slope of the log-log plot over a
defined range of r:

D = -[log N(r)] / [log r]  

This approach introduces a new challenge: over what range
of r should the slope (i.e., the estimate of D) be determined?
This is not an issue when sample size M , since the log-
log plot of an infinite set is linear over all r. However, in em-
pirical applications the sample size M is necessarily finite;
consequently, the range over which the log-log plot is strictly
linear is limited at both ends of the scaling range (Theiler
1990, Bernston and Stoll 1997, Halley et al. 2004). At coarse
scales (large box size r), the proportion of occupied grid
boxes rises as r increases, a consequence of the fact that finite
empirical patterns (images) are necessarily of limited spatial
extent and therefore space filling at coarse scales (Taylor and
Taylor 1991, Halley et al. 2004). Above a certain threshold
value of r all grid boxes are occupied, and the log-log plot
therefore curves as the dimension of the embedding space is
approached (Ramsey and Yuan 1990). In practice this prob-
lem is alleviated easily by excluding from consideration all
values of r that are space filling, e.g., when N(r) = (1/r)2

given a two-dimensional embedding space.

A more pernicious effect arises at finer scales (small box
size r). Here, the problem is that the number of occupied
boxes N(r) is necessarily bounded by M; that is, the number
of non-empty boxes cannot exceed the number of points
(Theiler 1990, Taylor and Taylor 1991). At a certain thresh-
old value of r the number of occupied boxes is “saturated” at
N(r) = M, giving a log-log slope of zero at the finest scales
(Liebovitch and Toth 1989). In practice the effect is more in-
sidious, however, since the log-log slope declines very
gradually with decreasing r as the saturation limit N(r) = M
is approached. The result is a concave downward log-log plot
at finer scales, and a corresponding reduction in the slope
(i.e., fractal dimension) estimate (Liebovitch and Toth 1989,
Bernston and Stoll 1997, Foroutan-pour et al. 1999, Halley
et al. 2004, Agterberg 2013). Note that the saturation limit of
zero slope (i.e., D  0 as r  0) is strictly correct since the
topological dimension of a finite point set is zero. However,
from an analytical perspective this is a trivial result, since it
is the dimension of the underlying point pattern that is of in-
terest, not the topological dimension of a finite set (Ramsey
and Yuan 1990, Pruess 1995). 

Unfortunately, no rigorous theory-based method exists
for determining the scaling range over which the log N(r)
versus log r plot is strictly linear (i.e., the range that ensures

unbiased dimension estimation). The naïve approach (as de-
fined by Gneiting et al. 2012) involves determining the log-
log plot slope over the entire scale range, but this produces
biased – generally underestimated – dimension estimates
(e.g., Pruess 1995, Gonzato et al. 1998, Gneiting et al. 2012).
To alleviate this bias, Liebovitch and Toth (1989) suggest ex-
cluding the smallest scales at which N(r) > M/5, although
they provide no theoretical justification for this recommen-
dation. More recent recommendations are often deliberately
vague (e.g., Halley et al. 2004), encouraging an empirical
“choice by eye” approach to determining the appropriate
scale range (Ramsey and Yuan 1990, Foroutan-pour et al.
1999). 

The problem of finite sample size (or equivalently, finite
image resolution) is a “serious limitation” to empirical di-
mension estimation (Theiler 1990), making “dimension cal-
culations … very much a large-numbers game” (Ramsey and
Yuan 1990). In practical applications, a finite sample re-
quires that N(r) in equation [1] be estimated as <N(r)>, the
observed number of boxes containing at least one of M
points. In general <N(r)> will underestimate N(r), although
for very large sample sizes it provides a reasonably good ap-
proximation since, for given r:

 N(r) = lim <N(r)>    
           M 

Unfortunately, this limit converges very slowly, implying
that a large sample size M is required to obtain a reasonably
reliable and accurate, empirically derived estimate of fractal
dimension (Theiler 1990). In fact, finite sample size (or
equivalently, finite resolution) is the most serious limitation
to dimension estimation, a problem that is eliminated only at
the M  limit (Pruess 1995). 

Initial research on empirical fractal dimension estima-
tion, undertaken by experimental physicists and chemists,
employed data sets containing tens of thousands of points
(e.g., Grassberger and Procaccia 1983). However, later appli-
cations in other fields (including ecology, biology, meteorol-
ogy and geology) often made do with much smaller data sets:
“indeed, very small, with numbers of observations ranging
from less than a thousand to less than two hundred … such
data sets are miniscule” (Ramsay and Yuan 1990). In ecol-
ogy and other disciplines the serious limitations of using such
“miniscule” data sets to estimate fractal dimension are not
always appreciated, or are downplayed (e.g., Kallimanis et
al. 2002). Numerous empirical studies have demonstrated
that small data sets lead to estimation problems that seriously
compromise the reliability of dimension estimates (e.g.,
Ramsey and Yuan 1990, Taylor and Taylor 1991, Pruess
1995). These estimation problems are largely alleviated us-
ing very large data sets, but currently there is no consensus
as to how ‘large’ a data set needs to be (Ramsey and Yuan
1990). 

While is it known that finite sample size strictly limits the
linearity (unbiased dimension estimation) range of a log
<N(r)> versus log r plot, the exact relationship between sam-
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ple size M and range of log-log plot linearity (in units of dec-
ades or orders of magnitude of r) has not been systematically
investigated. A rigorous theory-based approach for deter-
mining the minimal sample size required to achieve a reliable
estimate of fractal dimension (log-log slope) over a specified
scaling range is clearly needed, given that a scaling range of
two to three decades (i.e., 100 to 1000-fold range in r) is often
recommended as a minimal requirement for “proving” frac-
tal self-similarity (e.g., Malcai et al. 1997, Avnir et al. 1998,
Gonzato et al. 1998, Ciccotti and Mulargia 2002, Falconer
2003, Halley et al. 2004). Currently, the theoretical sample
sizes necessary to achieve this minimal requirement are un-
known. 

In this study, I develop a probability-based box counting
model and use it to determine the theoretical sample sizes re-
quired to achieve linearity (i.e., unbiased dimension estima-
tion) of log <N(r)> versus log r plots over a specified scale
range. The model is used to determine, for a given sample
size M and fractal dimension D, the value rm at which the
log-log plot begins to deviate from linearity as the saturation
limit <N(r)> = M is approached. Given rm, the sample size
required to obtain log-log plot linearity over a specified scale
range (in units of decades of r) is easily determined. The
model is based on box counting of fractal point patterns, but
the results are directly applicable to other operational algo-
rithms for estimating D (e.g., variograms and power spectra;
Seuront 2010) and other fractal image types (e.g., lines and
pixels). The paper also discusses briefly the merits of repre-
senting (and analyzing) fractal images as point patterns,
rather than as traced or pixelated lines or areas as commonly
practiced. 

Box-counting probability model

Continuous or complete data (M = )

Random point pattern. Consider an infinite number of ran-
dom points (uniform random distribution) embedded on the
one-dimensional unit interval [0,1]. In the box-counting
method, the unit interval is divided into r-1 equal-size seg-
ments or “boxes” of length r. Following Hamburger et al.
(1996), define N(r) = number of boxes of size r that include
at least one point. For r-1 boxes, the expectation value is:

 <N(r)> = 1/r 

The log <N(r)> versus log r plot is strictly linear over all val-
ues of r, with slope: 

[log <N(r)>] /[log r] = -1    

over the entire scale range 0 < r  1. 

Next, consider M =  random points embedded on a two-
dimensional unit square [0,1] x [0,1]. The box-counting
method divides the unit square into a grid of r-2 equal-sized
“boxes” of side length r. The expectation value is:

 <N(r)> = 1/r2 

The log <N(r)> versus log r plot has slope:

[log <N(r)>] /[log r] = -2  

over the entire scale range 0 < r  1. 

Note that these derivations are easily extended to cases of M
=  random points embedded in three or higher dimensions.

Fractal point pattern. The above derivations can be general-
ized to include any self-similar fractal set of dimension D.
The corresponding expectation value is:

 <N(r)> = 1/rD [2]

Over the entire scale range 0 < r  1, the log <N(r)> versus
log r has slope:

[log <N(r)>] /[log r] = -D [3]

For example, consider Cantor “dust” (D = log(2)/log(3) =
0.6309), a self-similar fractal set on the line (D  1) obtained
by deleting at each iteration the middle third of all remaining
portions of the unit interval [0,1]. It follows that box count
values are N(1/3) = 2, N(1/9) = 4, and so forth (Schroeder
1991). Equation [2] provides the correct expectation values,
e.g.:

 <N(1/3)> = 1/rD = [(1/3)0.6309]-1 = 2 

 <N(1/9)> = 1/rD = [(1/9)0.6309]-1 = 4 

Equation [3] gives the correct slope of the log-log plot:

[log <N(r)>] /[log r] = 
     = [log 2–log 4]/[log (1/3)–log (1/9)] = -0.6309  

Next, consider the two-dimensional Cantor set (D = log
(4)/log(3) = 1.2619), a fractal set on the unit square (D  2).
In this case N(r) = 4 at box size r = 1/3 (i.e., 3x3 grid), N(1/9)
= 16, and so forth. Equation [2] yields the correct expectation
values, e.g.:

 <N(1/3)> = 1/rD = [(1/3)1.2619]-1 = 4 

As a third example, consider the Sierpinski carpet (D =
log[8]/log[3] = 1.8928). This fractal set is obtained by divid-
ing the [0,1] x [0,1] unit square into 9 sub-squares (3 x 3
grid), removing the central sub-square. The process is then
repeated for each of the eight remaining sub-squares, and
continued iteratively (Schroeder 1991). Box-count values are
therefore N(1/3) = 8, N(1/9) = 64, and so forth. Once again,
equation [2] gives the correct expectation values, e.g.:

<N(1/9)> = 1/rD = [(1/9)1.8928]-1 = 64

Equation [2] calculates box-count expectation values
<N(r)>, where 0 < r  1, for any self-similar fractal set of
known dimension D.

Discrete or sampled data (M < )

Random point pattern. Consider now the discrete case, in
which a sample of M random points (unit random distribu-
tion) is embedded on the one-dimensional unit interval [0,1].
The expectation value for N(r) is:

 <N(r)> = p / r 
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where p = probability that a box of size r includes at least one
point. After placing the first random point on the unit inter-
val, the probability that a given box does not include that
point is simply:

 q1 = (1-r)

After placing all M points, the probability that a given box
does not include a point is:

 q = (1-r)M

Since the probability that  a box does include  a point is p =
1 – q, it follows that:

 <N(r)> = [1 – (1 – r)M] / r 

Using the same definitions as above, for M points embedded
on a two-dimensional unit square [0,1] x [0,1]:

 q = (1-r2)M

Giving:

 <N(r)> = [1 – (1 – r2)M] / r2 

These derivations are easily extended to cases of M random
points embedded in three or higher dimensions. 

Fractal point pattern. The above is generalizable to any sam-
pled self-similar fractal set of dimension D. The correspond-
ing expectation value is:

 <N(r)> = [1 – (1 – rD)M] / rD [4]

Equation [4] allows investigation of the relationship between
box size r and expected box count <N(r)> for a set of M
points of fractal dimension D. For point patterns of finite
sample size, the expected box count has a fixed upper limit
of <N(r)> = M. Thus, the log <N(r)> versus log r plot has
slope:

[log <N(r)>] /[log r] = -D  

over a limited range of r. With decreasing box size r (that is,
as the saturation limit <N(r)> = M is approached), a value rm
is reached at which the log-log plot begins to deviate from
strict linearity (i.e., when slope < D). It follows that the slope
of the log-log plot at values of r < rm is a biased estimator
(underestimate) of D. 

Methods

Equation [4] was used to obtain box count expectation
values <N(r)> as a function of r. A total of 28 simulations
were obtained, using four sample sizes (M = 103, 104, 105

and 106) for each of seven fractal dimensions (D = 0.8, 1.0,
1.2, 1.4, 1.6, 1.8 and 2.0). For each M-D combination, a log
<N(r)> versus log r plot was obtained by incrementally de-
creasing r and determining <N(r)> from equation [4]. For
each incremental change in r, the local slope (i.e., local esti-
mate of D) was computed as: 

[log <N(r)>] /[log r]

When M = , the log-log plot has local slope = -D over all
values of r. For finite sample size M, as r is incrementally

decreased the local slope at some point will begin to deviate
from D:

|[log <N(r)>] /[log r]| < D

For a given sample size M, define rm as the smallest box size
at which the absolute value of the local slope equals D. Since
estimates of D are typically expressed to the third or even
fourth decimal place (e.g., Gonzato et al. 1998, Foroutan-
pour et al. 1999, Pérez-Rodríguez et al. 2013), rm was ob-
tained by decreasing r incrementally until the local slope de-
viated from D to the third decimal place: 

[log <N(r)>] /[log r] + D = 0.001  

The value rm is the smallest scale value at which the log-log
plot is linear with slope = -D, and therefore the lower bound
of the scale range that correctly estimates D. 

Results

A representative set of log <N(r)> versus log r plots at M
= 104 for dimensions D = 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0,
and corresponding rm values, are shown in Figure 1. For a
given sample size, rm increases with D (e.g., in Figure 1 rm =
0.001 when D = 1, but rm = 0.0316 when D = 2). As expected,
rm declines with increasing sample size M for a given fractal
dimension (Figure 2). For example, at D = 1.2 the value rm =
0.021544 when M = 103, versus rm = 0.000464 when M =
105. Results from the 28 simulations revealed that M, D and
rm are related through a simple power law:

rm = [0.1 M]-1/D

or

M = 10 rm
-D  [5]

Figure 1. Theoretical log <N(r)> versus log r plots at sample
size M = 104 for D = 0.8, 1.0, 1.2, 1.4, 1.6 1.8 and 2.0 (left to
right). The filled circles indicate rm, the point at which the log-
log plot begins to deviate from slope = -D as the limit log
<N(r)> = log M = 4.0 is approached. Logarithms are base 10. 
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Using this power law relationship, rm (the smallest usable
box size for estimating D from a log-log plot) can be deter-
mined for a sample of M points at any specified fractal di-
mension D. For example, given M = 103:

D Smallest Box Size (rm) Maximum Grid Size (rm
-1 x rm

-1)

1.25 0.025119 ~ 40 x 40 boxes
1.5 0.046416 ~ 22 x 22 boxes
2.0 0.1   10 x 10 boxes

This result is not especially useful in empirical studies, i.e.,
when D is not known a priori and is to be estimated. A more
useful result is obtained by rearranging equation [5] as:

 rm
D = 10/M

Substituting rm
D into equation [4] gives:

 <N(rm)> = [1 – (1 – 10/M)M] / (10/M)

The (1 – 10/M)M term is vanishingly small (~ 4.5x10-5 for
large M), so this simplifies to:

 <N(rm)> = M/10

This relationship is independent of D and therefore very use-
ful in empirical studies. Simply stated, the log-log plot devi-
ates from linearity (slope = -D) for all box sizes that produce
a box-count <N(r)> that exceeds one-tenth the sample size M
(see Figures 1 and 2). This is a simple and straightforward
rule for determining the lower bound of r when estimating
fractal dimension from a log-log plot. 

Equation [5] can also be used to determine, for a given
fractal dimension D, the proportional increase in sample size

M necessary to achieve a decadal (order of magnitude) in-
crease in linearity of the log-log plot. A decadal increase in
linearity implies a ten-fold decline in rm:

M’ = 10 (rm/10)-D

Thus, the required proportional increase in sample size (from
M to M’) is given by the ratio:

M’/M = (rm/10)-D/(rm)-D = [rm/(rm/10)]D = 10D  [6]

This power law relationship indicates that the proportional
increase in M necessary to achieve a decadal increase in log-
log plot linearity increases exponentially with D. Thus, when
D = 1 a ten-fold increase in sample size is required, but D =
2 calls for a hundred-fold increase in sample size. 

Equation [5] can also be used to determine the sample
size M required to achieve log-log plot linearity over a single
decade (order of magnitude) of r. A finite image, when meas-
ured at the coarsest scales, has trivially the same dimension
as the space in which it is embedded (Theiler 1990). There-
fore, the largest values of r (i.e., large box sizes) should not
be used when estimating D from a log-log plot (Halley et al.
2004). Following Liebovitch and Toth (1989), an upper
value of rs = 0.25 (log rs = -0.6) is used here; this corresponds
to a 4 x 4 grid of boxes. A decade (order of magnitude) of
log-log plot linearity therefore requires that rm = 0.025 (log
rm = -1.6, or 40 x 40 box grid). For a given fractal dimension
D, substituting rm = 0.025 into equation [5] indicates how
large M must be to ensure a single decade (order of magni-
tude) of log-log plot linearity, e.g.:

D = 1 M = 10(0.025)-1.0 = 400
D = 1. 5 M = 10(0.025)-1.5 = 2,530 
D = 2.0 M = 10(0.025)-2.0 = 16,000 

Figure 2. Theoretical log <N(r)> versus log r plots for D = 1.2
at sample sizes M = 106, 105, 104 and 103 (top to bottom). The
filled circles indicate rm, the point at which the log-log plot be-
gins to deviate from slope = -D as the limit log <N(r)> = log M
is approached. Logarithms are base 10. 

Figure 3. Sample size (M) requirements for a scaling range of
one (filled circle), two (open circle) and three (filled square)
decades, as a function of fractal dimension D. Note that sample
size is on a logarithmic scale (base 10). 
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Since equation [5] is a power-law relationship, the required
sample size M increases exponentially with D. The sample
size required to achieve two (or more) decades of log-log plot
linearity is easily obtained using equation [6], e.g., 

D = 1. 5 M = 2,530(10)1.5 = 80,000 

The required sample sizes to achieve one, two and three dec-
ades of log-log plot linearity, as a function of D, are summa-
rized in Figure 3. It is notable that very large sample sizes are
required to achieve two or more decades of linearity. For ex-
ample, a space-filling fractal (D = 2) requires a sample size
of 16,000 points to achieve one decade of linearity, but two
decades requires 1.6 million points and three decades 160
million points. Required sample sizes for smaller values of
D, while less daunting, are still considerable; for example, at
D = 1.25 (the estimated fractal dimension of the west coast
of Britain, Mandelbrot 1967) well over 300,000 points are
needed to ensure three decades of linearity. 

Discussion

Fractal dimension estimates have been determined for a
great many natural patterns and processes in ecology
(Seuront 2010, Bez and Bertrand 2011) and other disciplines
(Malcai et al. 1997, Falconer 2003), but very few studies
have attempted to develop theory-based protocols for obtain-
ing reliable dimension estimates (Brewer and Di Girolamo
2006). The importance of sample size – in particular the ne-
cessity of large samples (high resolution images) for reliable
dimension estimation – is recognized and acknowledged
(Theiler 1990, Hall 1995), but specific guidelines for deter-
mining the required sample sizes are lacking (Halley et al.
2004). While empirical investigations have provided valu-
able insights into the importance of sample size, they cannot
quantify the relationship between sample size and dimension
estimate reliability (Ramsey and Yuan 1990). The present
study uses a theoretical probability-based model to determine
specific sample size requirements for reliable dimension es-
timation. The major findings are that the sample sizes re-
quired are very large – indeed, much larger than those used
in most empirical studies – and that sample size determines
the scaling range available for reliable dimension estimation.

Determining the scale range over which the slope (i.e.,
fractal dimension estimate) is calculated is a major challenge
to box count dimension estimation (Ramsey and Yuan 1990,
Halley et al. 2004). Ideally, dimension estimates should be
obtained over the broadest scale range possible, with particu-
lar emphasis given to the finest scales (Gneiting et al. 2012).
However, in empirical studies finite sample size imposes a
strict limit on the lower bound of the scaling range (Theiler
1990). Established methods for choosing this lower bound
include the “choice by eye” approach (Ramsey and Yuan
1990, Foroutan-pour et al. 1999, Halley et al. 2004, Agter-
berg 2013) and recommendations based on experience rather
than theory (Liebovitch and Toth 1989, Theiler 1990). In this
study, a probability model was developed to determine the
theoretical lower bound rm of the scaling range. The box

count corresponding to this lower bound is N(rm) = M/10,
emphasizing that the lower bound is a function of sample
size. This relation also provides an objective and easily im-
plemented “rule of thumb”: scaling values r < rm (i.e., r val-
ues with box counts N(r) > M/10) must not be used for slope
determination, as they produce biased (underestimated) di-
mension estimates. It is notable that this theoretically derived
lower bound is more conservative than the empirically de-
rived N(r) > M/5 suggested by Liebovitch and Toth (1989). 

The theoretical model developed here cannot be used to
determine the upper bound of the scaling range; in this study,
an upper bound of rs= 0.25 (as suggested by Liebovitch and
Toth 1989) was used to determine the sample size require-
ments summarized in Figure 3. It is well known that the di-
mension estimate approaches (or equals) the embedding di-
mension at large values of r (Theiler 1990, Halley et al.
2004). In practice, all values of r returning the embedding
dimension (i.e., values of r at which all boxes are filled)
should be excluded. For higher fractal dimensions this may
result in an upper bound rs < 0.25, increasing the sample size
requirements reported in this study. For example, if the upper
bound is lowered to rs = 0.125, the sample size range neces-
sary to ensure a single decade of linear scaling (assuming 1
 D  2) rises from 400 – 16,000 to 800 – 64,000. 

This study used point data to examine the relationship be-
tween sample size and the reliability of dimension estimates;
here, sample size is equal to the number of points. Examples
of fractal point patterns include strange attractors (Grassber-
ger and Procaccia 1983, Liebovitch and Toth 1989, Ramsay
and Yuan 1990) and earthquake epicenters (Ogata and Kat-
sura 1991); ecological examples include animal locations
(Hagen et al. 2001) and spatial patterns of forest trees (Cheng
and Agterberg 1995). Similarly, for time series and spatial
transect data the sample size is simply the number of discrete
measurements (e.g., Brewer and Di Girolamo 2006, Gneiting
et al. 2012). However, determining sample size for other data
types can be more problematic. Many empirical studies em-
ploy data consisting of lines, or line networks; examples in-
clude landscape features such as coastlines (Mandelbrot
1967) and geological fracture networks (Pruess 1995, Gon-
zato et al. 1998). Typically, line data are obtained by convert-
ing a map or photographic image to a digitized “line” of pix-
els. Under ideal conditions, and provided that the digitized
“line” is one pixel wide (Gonzato et al. 2000), the sample size
is equal to the total number of pixels. However, digitized
“lines” often contain segments of three or more linearly ad-
jacent pixels (Ciccotti and Mulargia 2002), indicating that
fine image details have been smoothed; this may reflect lim-
ited resolution of the original image, or loss of detail during
the digitization process (Hall 1995). In such cases, the effec-
tive sample size is somewhat less than the total number of
pixels. A conservative estimate of effective sample size M =
P/k is suggested, where P is the total number of pixels and k
is the mean length of linearly adjacent pixel segments on the
digitized “line” (see also Pruess 1995). In cases where a
“line” is created by joining discrete point observations using
linear segments (e.g., branched biological networks, Panico
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and Sterling (1995); animal movement pathways, Nams
(2006); spatial and temporal series, Gneiting et al. (2012)),
the sample size equals the number of individual points, not
the number of pixels or other elements used to denote the lin-
ear segments. In fact, such data are better analyzed as point
patterns, i.e., with the joining line segments (which are
Euclidean, not fractal) removed. Another common data type
is the “spot” image, obtained by digitally converting a high-
resolution photograph to a black-white (filled-unfilled)
pixelated image of “spots” (e.g., Pérez-Rodríguez et al.
2013). The fractal properties of the spots (black regions)
themselves, or the spot boundaries, can be examined. How-
ever, only the boundary pixels (i.e., the black to white edges)
are relevant to fractal analysis (Foroutan-pour et al. 1999,
Halley et al. 2004), so the sample size is equal to the total
number of boundary (edge) pixels. However, as with line
data a more conservative effective sample size may have to
be calculated if the edges contain segments of three or more
linearly adjacent pixels. 

It is apparent that sample size and image resolution are
strongly linked (Huang et al. 1994). Images processed for
fractal analysis often have limited resolution (e.g., digital
photographs) or contain simplified, smoothed edges (e.g.,
mapped features such as geological faults, topographic lines,
lakeshores, forest edges, etc.). Limited resolution implies
that an image is Euclidean (non-fractal) at the finest scales
(Hall 1995), which are paradoxically the scales of greatest
interest in fractal analysis (Bez and Bertrand 2011, Gneiting
et al. 2012). When detailed features are absent from an origi-
nal image, attempts to increase the sample size by increasing
image processing resolution are fruitless; the effective sam-
ple size is constrained by image resolution (Huang et al.
1994, Pruess 1995). The only way to increase the effective
sample size is to begin with a more detailed (higher resolu-
tion) image. 

Malcai et al. (1997) suggest that a minimal scaling range
of two to three decades is necessary to demonstrate fractal
self-similarity (see also Gonzato et al. 1998, Ciccotti and
Mulargia 2002, Falconer 2003, Halley et al. 2004). However,
the theoretical model developed here indicates that a 2-3 dec-
ade scaling range may be difficult if not impossible to
achieve in practice, since the required sample sizes are enor-
mous. For example, a fractal embedded in two dimensions
requires a sample size of 4,000 to 1.6 million (assuming 1 
D  2) to ensure two decades of log-log plot linearity; for
three decades, the range is 40,000 to 160 million. For fractal
surfaces (i.e., embedded in three dimensions, and assuming
2  D  3) the sample sizes are astronomical: 16,000 to
640,000 for just a single decade of scaling, rising to 1.6 – 640
million for two decades. Given these numbers, the most re-
searchers can reasonably hope for is one or two decades of
linear scaling, but even then sample sizes much larger than
those currently used in most empirical studies are required
(cf. Kallimanis et al. 2002). 

It has been suggested that natural objects have a limited
range of fractal self-similarity (e.g., Panico and Sterling

1995), and that this is reflected in the limited scaling ranges
observed in empirical studies (Avnir et al. 1998, Halley et al.
2004). However, the results presented here suggest that a
limited scaling range is more likely a sampling artifact re-
lated to the difficulty or impossibility of obtaining a suffi-
ciently large sample size to achieve more than one or two
decades of linear scaling. This study has shown that an addi-
tional decade of scaling range requires a 10D increase in sam-
pling effort, i.e., a 10 to 1000-fold increase in sample size
(assuming 1  D  3). This exponential increase in sampling
effort makes it extremely difficult, if not impossible, to
achieve more than two or three decades of linear scaling (cf.
Malcai et al. 1997). Consider, for example, the cerebral cor-
tex of the human brain, which has an estimated surface fractal
dimension D = 2.80 (Kiselev et al. 2003). Using the theory-
based equations developed here, a sample size (i.e., number
of individual point measures on the brain surface) of over
193 million would be required to achieve just two decades of
linear scaling. 

Conclusions and recommendations 

Box counting remains the most widely used computa-
tional algorithm for estimating the fractal dimension of natu-
ral patterns and processes (Falconer 2003, 2013). A number
of other algorithms for estimating D have been developed
(see Seuront 2010), but all depend on the availability of large
amounts of data at sufficient spatial or temporal resolution
(Ramsey and Yuan 1990, Bez and Bertrand 2011, Gneiting
et al. 2012). The following recommendations are specific to
the box counting approach, but the most important recom-
mendation – that researchers should strive to obtain the larg-
est sample size possible – is broadly relevant and applicable
to all estimation algorithms. 

 The formulae developed in this paper should be used to
determine minimal sample size requirements for reli-
able dimension estimation in empirical investigations.
As an absolute minimum, a sample size sufficient to
achieve a scaling range of at least one decade is
strongly recommended. For images in a two-dimen-
sional embedding space, a minimal sample size of
2,500 or greater is required for a scaling range of one
decade when D < 1.5; for higher-dimension fractals
(1.5 < D  2), a sample size of 5,000 – 15,000 or
greater is required. It must be emphasized that sample
sizes less than these minimal recommended values will
result in an unreliable, highly biased dimension esti-
mates irrespective of the computational algorithm used.

 The lower bound of the scaling range for reliable esti-
mation of the box count dimension is rm, where the box
count N(rm) = M/10. Therefore, scaling values r < rm
(i.e., N(r) > M/10) should never be used in calculating
the log-log slope (fractal dimension estimate). At the
upper end of the scaling range, as a minimum all r for
which N(r) = (1/r)2 (i.e., all boxes filled, assuming a
two-dimensional embedding dimension) should be ex-
cluded. 

150 Kenkel



 Whenever possible, point or coordinate data (i.e., topo-
logical dimension of zero) should be used to estimate
fractal dimension. Most data sets in ecology and other
disciplines can be represented as point coordinates,
rather than as lines or pixels. For example, landscape
features (e.g., coastlines, forest edges) are typically rep-
resented as “lines” (topological dimension of one), ob-
tained by tracing and digitizing a map or aerial
photograph. Image processing will necessarily smooth
the image, resulting in a “line” representation that has
both fractal and Euclidean (non-fractal) features (Hall
1995). An alternative approach involves using a stylus
to record point coordinates at regular intervals along the
entire mapped image. This point-coordinate approach,
while much more tedious, avoids smoothing the image
(provided that the interval between adjacent point coor-
dinates matches the resolution of the map or photo-
graph). There are two additional benefits: the sample
size M is clearly defined, and the box-count has a fixed
upper limit of N(r) = M. By contrast, contour lines (and
line networks) have no fixed upper box-count limit
since they have a topological dimension of one at finer
scales. Thus, the log-log plot of a linear feature scales
as D at intermediate scales, but as one-dimensional at
finer scales. The transition from D to one dimension
may be quite subtle and difficult to detect, particularly
when D is small (see examples in Gonzato et al. 1998,
Gneiting et al. 2012). Conversely, log-log plots based
on point data transition from D to zero dimension, mak-
ing deviation from log-log linearity much easier to de-
tect (see Figures 1 and 2). Conversion to
point-coordinate data can also be applied to “spot” im-
ages, by using a stylus to record point coordinates at
regular intervals along all edges of the image. Perhaps
the greatest advantage of using point coordinate data,
however, is that problems of “apparent fractality”
(Hamburger et al. 1996, Buczkowski et al. 1998, Halley
et al. 2004) and “physical cutoffs” (Ciccotti and Mular-
gia 2002) associated with “line” and “spot” data are en-
tirely avoided. 

 The sample size used to obtain a dimension estimate,
and the scaling range (upper and lower bounds) used to
determine the fractal dimension, should always be re-
ported. Also, as many box sizes as possible should be
utilized. Many studies only provide box-counts at r =
1/2k where k is a non-negative integer (Liebovitch and
Toth 1989, Gneiting et al. 2012), but additional values
of r will provide greater statistical power (Gonzato et
al. 1998). As a general rule, at least ten box count val-
ues (i.e., regression analysis data points) should be ob-
tained over the scaling range rm to rs. 

 Exercise caution when using regression analysis for di-
mension estimation. Significance tests based on R2 are
strictly invalid since box-count values are not inde-
pendent (Halley et al. 2004), although R2 remains a
useful descriptor. The log-log plot should always be ex-

amined for evidence of curvature (a concave downward
trend) over the scaling range. The most common
method for examining deviation from linearity is the
analysis of residuals, but tests on residuals lack statisti-
cal power unless the number of regression data points is
large (Gonzato et al. 1998). A more powerful explora-
tory approach is to include a quadratic term in the re-
gression equation of the log-log plot. A statistically
significant quadratic (non-linear) term indicates curva-
ture. If curvature is detected, one or two data points
(from one or both ends of log-log plot) are removed
and the regression equation is fitted again; this process
is repeated until the quadratic term is no longer signifi-
cant. Note that it is unlikely that a log-log plot will be
concave downward if the sample size is sufficiently
large and rm is used as the lower bound of the scaling
range. 

Perusal of the contemporary literature indicates that ap-
plications of fractal geometry in ecology and other disci-
plines are severely compromised by the lack of a sufficiently
rigorous approach to obtaining reliable dimension estimates.
Specifically, sample sizes are often wholly inadequate, and
the methodologies used to obtain dimension estimates lack a
theoretical framework. This study provides statistically rig-
orous guidelines for determining required sample sizes in
empirical studies, as well as a rigorous theory-based meth-
odological approach to obtaining unbiased box count dimen-
sion estimates from log-log plots. 
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