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Abstract

The data obtained from one-way independent groups designs is typically nonnormal in form and

rarely is equally variable across treatment populations (i.e., population variances are

heterogeneous). Consequently, the classical test statistic that is used to assess statistical

significance [i.e., the analysis of variance (ANOVA) F-test] typically provides invalid results

(e.g., too many Type I errors, reduced power). For this reason, there has been considerable

interest in finding a test statistic that is appropriate under conditions of nonnormality and

variance heterogeneity. Previously recommended procedures for analyzing such data include the

James (1951) test, the Welch (1951) test applied either to the usual least squares estimators of

central tendency and variability, or the Welch test with robust estimators, i.e., trimmed means

and Winsorized variances. A new statistic proposed by Krishnamoorthy, Lu and Mathew (2007),

intended to deal with heterogeneous variances, though not nonnormality, uses a parametric

bootstrap procedure.  In their investigation of the parametric bootstrap test, the authors examined

its operating characteristics under limited conditions and did not compare it to the Welch test

based on robust estimators. Thus, we investigated how the parametric bootstrap procedure

performs, relative to previously recommended procedures, when data are nonnormal and

heterogeneous. The results indicated that the Welch test with trimmed means offers both the best

Type I error control and power when variances are unequal and at least some of the distribution

shapes are nonnormal.
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Effect of Nonnormality on Test Statistics for One-Way Independent Groups Designs

A common question in the behavioural sciences is whether treatment groups differ on an

outcome variable. For example, a researcher may be interested in determining if eating disorder

symptomatology (e.g., obsession with weight) vary across different cultural backgrounds. The

procedure that is most popular for analyzing data from one-way independent groups designs is

the analysis of variance (ANOVA) F-test. The ANOVA can be a valid and powerful test for

identifying treatment effects; but, when the validity assumptions underlying the test are violated,

the results from the test are typically unreliable and invalid. 

One mathematical validity assumption of the test (i.e., a condition that was stipulated in

order to derive the test statistic) is that the distribution of each population is normal in form.

Although this is assumed by most researchers, it is very often not the case (Micceri, 1989).

Nonnormality can have deleterious effects on the F-test, where predominantly there is a lack of

sensitivity to detect treatment effects (Wilcox, 1997). As well, there is an increased risk that null

effects will be falsely declared statistically significant (i.e., an elevated probability of

committing a Type I error), especially when sample sizes are small. 

A second mathematical restriction that was adopted when deriving the test statistic was

that the population variances be equal. It is well known that unequal variances are the norm,

rather than the exception, with behavioral science data (Erceg-Hurn & Mirosevich, 2008;

Golinski & Cribbie, 2009; Grissom, 2000; Keselman et al., 1998), with largest to smallest group

ratios greater than ten not uncommon (Grissom, 2000; Wilcox, 1987). Moreover, unequal

variances can have drastic effects on the reliability and validity of the F-test, especially when

group sample sizes are also unequal (Glass, Peckham & Sanders, 1972; Harwell, Rubenstein,

Hayes & Olds, 1992; Kohr & Games, 1974; Scheffé, 1959). When distributions are nonnormal
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and variances are unequal, the empirical probability of a Type I or Type II error for the F-test

can deviate even more substantially from the nominal levels than when either assumption is

independently violated (Glass, Peckham & Sanders, 1972; Luh & Guo, 2001).

Several procedures have been recommended for analyzing the data from one-way

independent groups designs when distributions are nonnormal and variances are unequal (e.g.,

Brunner, Dette, & Munk, 1997; Cribbie, Wilcox, Bewell & Keselman, 2007; Wilcox &

Keselman, 2003). Currently, the most recommended approaches involve utilizing the James

(1951) or Welch (1951) heteroscedastic F-tests (based on the usual least squares estimators), or

the Welch heteroscedastic F-test with trimmed means and Winsorized variances. Several studies

have demonstrated that the original James and Welch procedures are generally robust (with

respect to Type I errors and power) when group variances and sample sizes are extremely

unequal (e.g., Kohr & Games, 1974; Krisnamoorty, Lu & Mathew, 2007), and further that the

test is robust to unequal variances and nonnormal data, as long as the nonnormality is mild to

moderate (Algina, Oshima, & Lin, 1994). The Welch test with trimmed means and Winsorized

variances has also been shown to provide excellent Type I error control and power even under

extreme violations of the normality and variance equality assumptions (Keselman, Wilcox,

Othman & Fradette, 2002). 

An important condition of nonnormality that has received very little attention in the

methodological literature is the case of dissimilar distribution shapes across treatment groups.

For example, it is not uncommon for behavioural science researchers to encounter one group

with an approximately normal distribution and another group with a skewed distribution. For

example, Leentjens, Wielaert, van Harskamp and Wilmink (1998) found that scores on many

measures of nonverbal aspects of language (i.e., prosody) were normally distributed in control
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groups, but were extremely skewed in schizophrenic patients. Wilcox (2005) notes that skewed

distributions in general are not as problematic as when groups have different amounts of

skewness. Indeed, Tiku (1964) explored situations where skew differed between groups and

found that Type I and Type II errors were adversely affected when groups are skewed in

opposite directions, especially with smaller sample sizes.

The parametric bootstrap procedure proposed by Krishnamoorthy et al. (2007) is a

relatively new statistic for comparing the means of independent groups when the variances of the

groups are unequal. This test involves generating sample statistics from parametric models,

where the parameters in the model are replaced by their estimates (see below for details

regarding the parametric bootstrap procedure). This procedure was found by the authors to

provide a better balance of Type I error control and power than the original Welch (1951)

procedure, especially when sample sizes were small and the number of groups was large.

There are, however, important questions that were not explored by Krishnamoorty et al.

(2007).  For example, how well will the Krishnamoorty et al. procedure perform (with respect to

controlling Type I and II error rates) when distribution shapes are nonnormal? This question is

important because, as discussed earlier, distributions in the behavioural sciences are rarely

normal. An important point related to this issue is how to distinguish between a normally

distributed variable and nonnormally distributed variable. Although numerous test statistics have

been proposed for detecting deviations from normality (e.g., Chen & Shapiro, 1995; D’Agostino,

1971; Shapiro & Wilk, 1965), it is also important to consider that: 1) the performance of tests of

normality are greatly affected by sample size, the form of nonnormality, etc. (Seier, 2002); 2)

graphical methods (e.g, histograms, boxplots, normal quantile plots) can sometimes be as

informative as tests of normality for detecting deviations from normality (Holgersson, 2006);
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and most importantly, 3) the power of many traditional parametric tests can be severely affected

by even slight deviations from normality (Wilcox, 2005). Therefore, even though there is

subjectivity in deciding whether or not a distribution is normal, it is important that we are aware

of how various test statistics perform under different degrees of nonnormality in order to be able

to make informed recommendations regarding the appropriate test statistics to use with

nonnormally distributed variables.

A second important question is how each of the previously recommended procedures

perform, with respect to Type I errors and power, when distribution shapes are dissimilar across

treatment groups? For example, how would the available test statistics perform if one

distribution is normal in shape and one distribution is positively skewed? This question has yet

to be investigated in one-way independent groups designs.

Test Statistics

Welch’s (1951) Heteroscedastic F Test. Welch derived a heteroscedastic alternative to

the ANOVA F-test that would be robust to violations of the variance homogeneity assumption.

W 1 J á, J-1, WThe hypothesis that is tested is Ho: ì  = ... = ì (j = 1, ..., J), and is rejected if F $ F í ,

where:
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j j n  represents the number of subjects in group j, s represents the standard deviation of group j, and

á, J-1, W  WF í represents the á-level F critical value with J-1 and í  degrees of freedom.

Welch’s (1951) Heteroscedastic F Test with Trimmed Means and Winsorized Variances.

By substituting robust measures of location (e.g., trimmed mean) and scale (e.g., Winsorized

variance) for the usual mean and variance, it should be possible to obtain test statistics which are

relatively insensitive to the combined effects of variance heterogeneity and nonnormality. Many

researchers subscribe to the position that inferences pertaining to robust parameters are more

valid than inferences pertaining to the usual least squares parameters when they are dealing with

populations that are nonnormal in form (e.g., Hample, Ronchetti, Rousseeuw & Stahel, 1986;

Huber, 1981; Staudte & Sheather, 1990; Wilcox, 2005). Indeed, as Marazzi and Ruffieux (1999)

note, “the (usual) mean is a difficult parameter to estimate well: the sample mean, which is the
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natural estimate, is very nonrobust” (p. 79). Tukey (1960) suggested that outliers are a common

occurrence in distributions and others have indicated that skewed distributions frequently depict

psychological data (e.g., reaction time data).

Let ë = [ê n], where [ê n] is the largest integer #ê n and ê represents the proportion of

trimming. Then, h = n - 2ë represents the effective sample size (i.e., the sample size after

trimming). The sample trimmed mean is:

The sample Winsorized mean is:

  

where:

The sample Winsorized variance is:
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j j Wj tj W t  Let n , h , s , and 0 represent the values of n, h, s , and 0 for the jth group, and let:

o t1 tJ t  á, J-1, WtThe null hypothesis H : ì = ... = ì  is rejected if F  $F í , where:

Wilcox (1996, 1998a, 1998b) and Rosenberger and Gasko (2000) have found through simulation

that 20% symmetric trimming provides an excellent balance between Type I error control and
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power for many nonnormal distributions; in other words, too much trimming would reduce

power by substantially reducing the effective sample size, whereas not enough trimming would

not provide adequate control over the probability of Type I errors (and for some distributions

may not provide sufficient power). This issue of symmetric versus asymmetric trimming (i.e.,

trimming the same proportion of observations from each tail, or trimming a greater proportion of

observations from the longer tail, respectively) is another important topic of interest. Although

some authors have found that asymmetric trimming, and related M-estimators that remove

empirical outliers, can provide better Type I error control and/or power than symmetric trimming

for certain asymmetric distributions (e.g., Hogg, Fisher, & Randles, 1975; Keselman et al., 2002;

Wilcox, 2003), asymmetric strategies become much more conceptually and computationally

intense because they require the calculation of the optimal proportion of trimming from each tail.

In this study we focus on symmetric trimming because of its conceptual simplicity and

availability to applied researchers (i.e., the test statistics for symmetric trimming can be adopted

with popular software packages such as R and SPSS). When trimmed means are being compared

tthe null hypothesis pertains to the equality of population trimmed means, i.e., the ì s, not the

usual population means (ìs). This is an important point for the reader to remember. Some

treaders may not want to compare the ì s, however, as just noted, strong arguments can be made

for abandoning tests comparing the usual means in favor of methods that compare population

trimmed means. Indeed, a number of papers have demonstrated that one can generally achieve

robustness to nonnormality and variance heterogeneity in unbalanced independent (and

correlated groups) designs by using robust estimators with heteroscedastic test statistics (Algina,

Keselman & Penfiled, 2005; Keselman, Algina, Wilcox & Kowalchuk, 2000; Keselman,

Kowalchuk & Lix, 1998).
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James Second Order Test. James (1951) developed a heteroscedastic one-way

independent groups test. The first step in computing the James procedure is to compute the

j jstandard error, S , for each of the J groups. A weight, a , for each group is computed as:

.

A variance weighted common mean is calculated as:

and a t statistic can be calculated for each group as:

.

o 1 J áH : ì = ... = ì is rejected if J > CV  where:

and
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Parametric Bootstrap Procedure. The first step in the parametric bootstrap procedure is to

N0compute the sample test statistic T , where

1 J i NBi N0Then, after completing i = 1, ..., I bootstrap samples, reject Ho: ì  = ... = ì  if Ó (T > T )/I # á,

NBi where T represents the test statistic for the ith bootstrap sample, and:
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j n -1 j jz is a standard normal random variable and ÷ is a random chi-square variable with n - 12  

degrees of freedom.  

Method

A Monte Carlo study was conducted to determine the empirical Type I error rates and

power for the original Welch (1951) F-test, the Welch F-test with trimmed means and

Winsorized variances, the James (1951) second-order test and the parametric bootstrap

procedure. A Monte Carlo study is an effective way to assess and compare the performance of

test statistics when the assumptions underlying these test statistics are violated (Serlin, 2000).

For the parametric bootstrap procedure, 2500 bootstrap samples were generated for each

simulation. Several variables were manipulated: 1) number of groups; 2) group sample sizes; 3)

population variances; 4) population means; and 5) distribution shapes. A summary of these

conditions is presented in Table 1.

The conditions investigated represent data characteristics that are common in applied

studies, including extreme cases of nonnormality and variance heterogeneity. The number of

groups was set at 3 and 8. Group sample sizes were set to be equal (all n = 30) or unequal (n =

20, 30, 40 for 3 groups; n = 19, 22, 25, 28, 31, 34, 37, 40 for 8 groups). Population variances

jwere also set to be equal (all ó  = 1), moderately unequal (largest to smallest variance ratio of2



Parametric Bootstrap     14

4:1) or extremely unequal (largest to smallest variance ratio of 9:1). Both positive (largest n

paired with largest population variance, and smallest n paired with smallest population variance)

and negative (largest n paired with largest population variance, and smallest n paired with

smallest population variance) pairings of unequal n and variances were investigated. Population

means for the Type I error conditions were all set equal to 0, and population means for the power

j jconditions (for J =3, ì  = 0, .4, .8; for J = 8, ì  = 0, .11, .22, .33, .44, .55, .66, .77) were selected

such that the power for the ANOVA F test with equal sample sizes and variances and normal

distributions was .8. An initial check of the program with equal sample sizes and variances and

normal distributions indicated that the Type I error rates for the ANOVA F for both J = 3 and J =

8 were equal to á, and the power values for J = 3 and J = 8 were .79 and .80, respectively.

Distribution shapes were either all normal, all moderately skewed, all extremely skewed,

or a mixture of normal and nonnormal shapes. The skewed distributions were generated using

the g- and h-distribution (Hoaglin, 1985). The g- and h- distributions used in this study were

g=.5, h= 0 (moderately skewed, skewness = 1.75, kurtosis = 8.90) and g=1, h=0 (extremely

skewed, skewness = 6.18, kurtosis = 113.94). To give meaning to these values it should be noted

that for the standard normal distribution g = 0 and h = 0. When g = 0, a distribution is symmetric

and the tails of a distribution will become heavier as h increases in value. As g increases, the

distribution becomes increasingly positively skewed. According to Wilcox (1994, 1995), the

distributions used in this study are representative of the levels of skewness for dependent

variables in many scientific inquiries. 

To generate pseudo-random normal variates, we used the R generator ‘rnorm’ (R

ij ij j j ijDevelopment Core Team, 1995). If Z  is a standard normal variate, then X  = ì  + ó Z  is a

j jnormal variate with mean equal to ì  and standard deviation equal to ó . To generate data from a
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ijg- and h-distribution, standard unit normal variables (Z ) were converted to the random variable:

according to the values of g and h selected for investigation. To obtain a distribution

j ij j with standard deviation ó , each X  was multiplied by a value of ó (from Table 1). It is important

to note that this does not affect the value of the null hypothesis when g = 0 (see Wilcox, 1994).

However, when g > 0, the population mean for a g- and h- variable is:

.                               

gh ij jThus, for those conditions where g > 0, ì  was first subtracted from X  before multiplying by ó .

When working with trimmed means, the population trimmed mean for the jth group was also

jsubtracted from the variate before multiplying by ó . Lastly, it should be noted that the standard

deviation of a g- and h-distribution is not equal to one, and thus the values enumerated in

Table 1 reflect only the amount that each random variable is multiplied by and not the actual

values of the standard deviations (see Wilcox, 1994).

Empirical Type I error and power rates were recorded for all tests. The robustness of a

procedure, with respect to Type I error control, was determined using Bradley’s (1978) liberal

criterion. That is, a procedure is deemed robust with respect to Type I errors if the empirical rate

of Type I error falls within the range +/- .5 á. We use a benchmark of .025 < � < .075 (� is the

empirical rate of Type I error) to define a robust test, when the criterion of significance is set at á
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= .05. That is, for a particular case of nonnormality and/or variance heterogeneity, if the

empirical rate of Type I error is contained in this interval, we, as well as many others, consider

the procedure to be insensitive to (i.e., not substantially affected by) the assumption violation(s).

However, this criterion (i.e., the length of the interval) is not universally accepted and other

researchers/writers use other criteria to assess robustness. That is, the issue of robustness,

invariably, involves subjective decisions (e.g., How disparate do variances have to be before a

distortion will occur in the probability of committing a Type I error? How much power should

be sacrificed in order to ensure the rate of Type I error is maintained at á = .05?). However, in

our view, Bradley’s liberal criterion is acceptable in this study because we are investigating

extreme conditions of sample size and variance inequality, nonnormality and distribution shape

heterogeneity, and therefore we are not expecting empirical Type I error rates to precisely equal

the nominal significance level.   

The simulation program was written in R (R Development Core Team, 2005). Five

thousand replications of each condition were performed, resulting in a standard error of

approximately .0015 for the mean empirical power and Type I error rates. A nominal

significance level of .05 was adopted in all analyses. 

Results

The pattern of results was similar for the moderately and extremely unequal variance

conditions and therefore the results were averaged over these conditions. As expected, more

extreme variance ratios had a larger impact on the Type I error rates and power of the

procedures, but the overall recommendations, when averaging over these conditions, do not

change. Further, we do not present the results for equal sample sizes and unequal variances, with
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the rationale being that if a procedure performs satisfactorily with unequal sample sizes and

unequal variances, then it is also expected to perform satisfactorily with equal sample sizes and

unequal variances. 

Type I error Rates

Empirical Type I error rates for J = 3 and J = 8 are presented in Tables 2 and 3,

respectively. The results indicate that although the empirical Type I error rates for the Welch

(1951), James (1951) and parametric bootstrap procedures were acceptable when all

distributions were normal or when all distributions were moderately skewed, the Type I error

rates deviated considerably from the nominal level when all distribution shapes were extremely

nonnormal, or when the distribution shapes were dissimilar. For example, when there were three

groups and the first had extremely skewed data and the next two had normally distributed data,

the empirical Type I error rates for the Welch, James and parametric bootstrap procedures, even

with equal population variances, was approximately .115 (i.e., more than double the nominal .05

rate). When distribution shapes were dissimilar and population variances were unequal, Type I

error rates for the Welch, James and parametric bootstrap procedures with J = 8 exceeded .20.

On the other hand, the Welch test with trimmed means and Winsorized variances generally

provided excellent Type I error control across the conditions, with the Type I error rates straying

above .075 in only a few instances, specifically when there were 8 groups and the distribution

shapes were dissimilar. 

In order to determine how accurate the Type I error rates would be at smaller sample

j jsizes, we also ran conditions with an average sample size of 10 (for J = 3, n  = 10, 10, 10 and n  =

j j7, 10, 13; for J = 8, n  = 10, 10, 10, 10, 10, 10, 10, 10 and n  = 6, 7, 8, 9, 11, 12, 13, 14). We ran

these conditions under the most extreme pattern of nonnormality (i.e., the pattern that resulted in
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the largest deviations of the empirical Type I error rates from á for n = 30), namely the pattern

where some of the distribution shapes were normal and some were extremely positively skewed

(for J =3, two of the distributions were normal and one was positively skewed, and for J = 8 four

of the distributions were normal and four were positively skewed). The pattern of results for J =

3 was identical to that for n = 30; the Type I error rates for the Welch test with trimmed means

and Winsorized variances never strayed outside of Bradley’s liberal bounds, whereas the Type I

error rates for the Welch, James and Parametric Bootstrap procedures commonly exceeded .075.

For J = 8, the Type I error rates were more liberal for n = 10 than for n = 30. For the Welch,

James and Parametric Bootstrap procedures the Type I error rates were much more liberal, with

rates ranging from .12 - .27, whereas the Type I error rates for the Welch test with trimmed

means and Winsorized variances were moderately inflated, with rates reaching as large as .13. 

Power

Empirical Power rates for J = 3 and J = 8 are presented in Tables 4 and 5, respectively. 

Given the unsatisfactory Type I error rates for the Welch, James, and parametric bootstrap

procedures under many conditions, an investigation of power may be unnecessary due to the fact

that generally only the Welch test with trimmed means could be recommended. However, the

power results do help to highlight that the Welch, James and parametric bootstrap procedures are

only more powerful than the Welch test with trimmed means when all distribution shapes are

normal, but otherwise the Welch test on trimmed means has greater power. Therefore, not only

did we find that the Welch test with trimmed means had substantially improved Type I error

control relative to the usual Welch test and parametric bootstrap procedures, but also that it was

more powerful than the other procedures, even in conditions where the empirical Type I error

rates for the other procedures were well above .075. 
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Discussion

Given the popularity of independent groups designs in experimental research, there is

still considerable interest in finding a test statistic that is appropriate under cases of distribution

nonnormality and variance heterogeneity across the groups. This study addressed two important

questions related to reliably and validly assessing treatment effects in this design : 1) How will

the recently proposed parametric bootstrap test proposed by Krishnamoorthy et al. (2007)

perform when distributions are nonnormal? and 2) How well will previously recommended test

statistics for analyzing nonnormal data with unequal variances (i.e., the original Welch, 1951,

heteroscedastic test and the Welch heteroscedastic test with trimmed means and Winsorized

variances) perform, relative to the parametric bootstrap procedure, when distribution shapes vary

across groups? These questions have not previously been addressed. We used Monte Carlo

methods to examine these questions, varying both the variances and the shapes of distributions

across treatment groups.

The Welch (1951) F-test with trimmed means and Winsorized variances was found to be

the only test that provided acceptable Type I error control across the vast majority of conditions

examined in our study. However, Type I error rates did on occasion exceed the nominal level

when there were eight groups and distribution shapes were dissimilar; however, this only

occurred in 8 of the 27 J=8 conditions reported in Table 3.

The Welch (1951) and James (1951) F-tests with the usual means and variances and the

parametric bootstrap procedure both had Type I error rates that deviated substantially from the

nominal level when all distribution shapes were nonnormal or when the distribution shapes were

dissimilar. Type I error rates were generally more extreme when distribution shapes were

dissimilar, with maximum rates for the Welch, James and parametric bootstrap procedure
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occurring when the distributions had opposite skews. With respect to power, except for the case

where all distributions were normal in shape, the Welch (1951) F-test with trimmed means was

always more powerful than the original Welch, James or the parametric bootstrap procedure.

Thus, based on the results of our investigation, the Welch (1951) test using robust

estimators (trimmed means and Winsorized variances) is preferable to the test statistic proposed

by Krishnamoorthy et al. (2007) because it provides much better Type I error control and is more

sensitive to the presence of treatment effects in the presence of nonnormal data where variances

are unequal as well.   
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Table 1.

Summary of conditions investigated in the Monte Carlo study (all conditions are crossed).

jJ Sample Sizes ó Population Distribution Shapes
3 30 X 3 1, 1, 1 Normal X 3

20, 30, 40 1, 1.5, 2 g=.5 X 3
1, 2, 3 g=1 X 3
2, 1.5, 1 Normal X 2, g=1
3, 2, 1 Normal, g=.5, g=1

g=1, Normal X 2
g=1, g=.5, Normal
g=1(-skew), Normal, g=1(+skew) 

8 30 X 8 1 X 8 Normal X 8
19, 22, 25, ..., 40 1, 1.14, 1.28, ..., 1.98 g=.5 X 8

1, 1.28, 1.56, ..., 2.96 g=1 X 8
1.98, 1.84, 1.70, ..., 1 Normal X 4, g=1 X 4
2.96, 2.68, 2.40, ..., 1 Normal X 3, g=.5 X 2, g=1 X 3

g=1 X 4, Normal X 4
g=1 X 3, g=.5 X 2, Normal X 3
g=1 (-skew) X 4, g=1 (+skew) X 4 

Note: J represents the number of groups; ó represents the population standard deviation; ‘a X 2'
indicates that ‘a’ is replicated 2 times; g=.5 represents a moderately skewed distribution shape;
g=1 represents an extremely skewed distribution shape (h=0 for all g- and h- distribution
shapes).
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Table 2.
Type I error rates for each test statistic for J = 3.

Test Statistic
Distribution Population

tShape Variances Welch James Welch PB
normal X 3 Equal .054 .054 .054 .054

PP .053 .052 .054 .053
NP .046 .055 .057 .054

g=.5 X 3 Equal .049 .049 .054 .049
PP .053 .053 .051 .054
NP .065 .065 .052 .066

g=1 X 3 Equal .052 .052 .050 .052
PP .063 .063 .053 .063
NP .110 .110 .063 .109

normal X 2, g=1 Equal .081 .081 .052 .081
PP .092 .092 .056 .093
NP .058 .057 .054 .058

normal, g=.5, g=1 Equal .075 .075 .050 .074
PP .083 .084 .049 .084
NP .048 .048 .055 .050

g=1, normal X 2 Equal .115 .115 .053 .114
PP .075 .075 .048 .076
NP .123 .123 .067 .122

g=1, g=.5, normal Equal .101 .101 .054 .102
PP .066 .066 .051 .067
NP .127 .126 .065 .126

g=1,normal,g=1(-) Equal .123 .123 .063 .123
PP .118 .118 .057 .117
NP .126 .126 .066 .126

g=1(-),normal,g=1 Equal .129 .129 .056 .129
PP .113 .123 .053 .121
NP .121 .121 .067 .121

Note: g=.5 represents a moderately skewed distribution shape; g=1 represents an extremely
skewed distribution shape (h=0 for all g- and h- distribution shapes); PP = positively paired
sample sizes and variances; NP = negatively paired sample sizes and variances.
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Table 3.
Type I error rates for each test statistic for J = 8.

Test Statistic
Distribution Population

tShape Variances Welch James Welch PB
normal X 3 Equal .050 .049 .057 .049

PP .051 .050 .059 .049
NP .052 .051 .061 .051

g=.5 X 3 Equal .064 .063 .060 .063
PP .064 .064 .057 .063
NP .074 .073 .064 .073

g=1 X 3 Equal .096 .095 .059 .098
PP .100 .099 .061 .099
NP .143 .141 .075 .140

normal X 4, g=1 X 4 Equal .131 .130 .063 .130
PP .163 .161 .067 .161
NP .105 .105 .061 .104

normal X 3,  Equal .109 .108 .061 .108
g=.5 X 2, g=1 X 3 PP .139 .139 .069 .138

NP .088 .087 .060 .086
g=1 X 4, normal X 4 Equal .196 .194 .073 .195

PP .142 .141 .063 .141
NP .221 .221 .083 .221

g=1 X 3, g=.5 X 2, Equal .164 .163 .068 .165
normal X 3 PP .127 .127 .061 .126

NP .199 .197 .083 .198
g=1,normal,g=1(-) Equal .286 .283 .080 .283

PP .263 .261 .083 .262
NP .283 .280 .093 .280

g=1(-),normal,g=1 Equal .278 .276 .079 .277
PP .264 .263 .081 .263
NP .282 .282 .092 .280

Note: g=.5 represents a moderately skewed distribution shape; g=1 represents an extremely
skewed distribution shape (h=0 for all g- and h- distribution shapes); PP = positively paired
sample sizes and variance; NP = negatively paired sample sizes and variances.
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Table 4.
Power rates for each test statistic for J = 3.

Test Statistic
Distribution Population

tShape Variances Welch James Welch PB
normal X 3 Equal .724 .723 .644 .726

PP .360 .361 .311 .361
NP .301 .301 .257 .300

g=.5 X 3 Equal .634 .633 .662 .635
PP .213 .214 .263 .213
NP .333 .333 .338 .333

g=1 X 3 Equal .384 .383 .630 .383
PP .101 .101 .224 .103
NP .299 .299 .337 .300

normal X 2, g=1 Equal .380 .380 .550 .382
PP .144 .145 .220 .142
NP .166 .165 .228 .166

normal, g=.5, g=1 Equal .375 .375 .584 .378
PP .108 .108 .210 .107
NP .170 .170 .225 .171

g=1, normal X 2 Equal .582 .576 .673 .582
PP .352 .352 .198 .353
NP .335 .334 .249 .334

g=1, g=.5, normal Equal .581 .581 .685 .580
PP .342 .343 .355 .341
NP .367 .365 .256 .367

g=1,normal,g=1(-) Equal .484 .483 .716 .483
PP .334 .334 .418 .417
NP .329 .329 .375 .328

g=1(-),normal,g=1 Equal .105 .104 .493 .104
PP .053 .052 .216 .104
NP .081 .081 .156 .080

Note: g=.5 represents a moderately skewed distribution shape; g=1 represents an extremely
skewed distribution shape (h=0 for all g- and h- distribution shapes); PP = positively paired
sample sizes and variance; NP = negatively paired sample sizes and variances; greyed out =
Type I error rate >.075.
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Table 5.
Power rates for each test statistic for J = 8.

Test Statistic
Distribution Population

tShape Variances Welch James Welch PB
normal X 8 Equal .774 .770 .687 .770

PP .339 .337 .299 .336
NP .323 .320 .289 .320

g=.5 X 8 Equal .654 .653 .661 .651
PP .246 .244 .278 .243
NP .369 .364 .328 .365

g=1 X 8 Equal .460 .454 .667 .457
PP .155 .154 .228 .154
NP .387 .384 .371 .385

normal X 4, g=1 X 4 Equal .298 .295 .572 .297
PP .121 .120 .168 .119
NP .159 .157 .243 .158

normal X 3, Equal .293 .289 .549 .289
g=.5 X 2, g=1 X 3 PP .105 .104 .172 .103

NP .145 .143 .226 .142
g=1 X 4, normal X 4 Equal .721 .720 .759 .720

PP .473 .472 .389 .472
NP .502 .501 .435 .501

g=1 X 3, g=.5 X 2, Equal .718 .715 .747 .716 
normal X 3 PP .442 .440 .365 .440

NP .485 .484 .402 .484
g=1 X 4, g=1(-) X 4 Equal .691 .690 .826 .689

PP .515 .514 .523 .515
NP .515 .514 .489 .513

g=1(-) X 4, g=1 X 4 Equal .127 .125 .416 .124
PP .151 .151 .136 .151
NP .176 .175 .139 .174

Note: g=.5 represents a moderately skewed distribution shape; g=1 represents an extremely
skewed distribution shape (h=0 for all g- and h- distribution shapes); PP = positively paired
sample sizes and variance; NP = negatively paired sample sizes and variances; greyed out =
Type I error rate >.075.


