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Abstract

 Researchers can adopt one of many different measures of central tendency

and test statistics to examine the effect of a treatment variable across groups.

That is, methods for examining the effect of a treatment variable can be based on

means, trimmed means, M-estimators, medians, etc. In our paper we compared a

number of recently developed statistics with respect to their ability to control Type I

errors when data were nonnormal, heterogeneous and the design was

unbalanced. We examined: (1) the use of a preliminary test for symmetry which

determines whether data should be trimmed symmetrically or asymmetrically, (2)

the use of two different transformations to eliminate skewness, (3) the accuracy of

assessing statistical significance with a bootstrap methodology and (4) statistics

which utilized a robust measure of the typical score that empirically determined

whether data should be trimmed, and, if so, in which direction, and by what

amount. Though the fifty-six procedures we examined were remarkably robust to

extreme forms of heterogeneity and nonnormality, we recommend a number of

Welch-James heteroscedastic statistics which are preceded by the Babu

Padmanaban and Puri (1999) test for symmetry that either trimmed symmetrically

10% of the data per group or trimmed asymmetrically 20% of the data per group,

after which either Johnson's (1978) or Hall's (1992) transformation was applied to

the statistic and where significance was assessed through bootstrapping. Close

competitors to the best methods were found that did not involve a statistic

transformation.
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 Developing new methods for locating treatment effects in the one-way

independent groups design remains a very active area of study. Much of the work

centers around comparing measures of the "typical" score when group variances

are unequal and/or when data are obtained from nonnormal distributions. This has

been and continues to be an important area of work because the classical method

of analysis, e.g., the analysis of variance F-test, is known to be adversely affected

by heterogeneous group variances and/or nonnormal data. In particular, these

conditions usually result in distorted rates of Type I error and/or a loss of statistical

power to detect effects. Wilcox and Keselman (2002) discuss why this is so.

 Many treatises have appeared on the topic of substituting robust measures

of central tendency such as 20% trimmed means or M-estimators for the usual

least squares estimator, i.e., the (least squares) means. Indeed, many

investigators have demonstrated that one can achieve better control over Type I

errors when robust estimators are substituted for least squares estimators in a

heteroscedastic statistic such as Johanson's (1980) Welch-James (WJ)-type test

(See e.g., Guo & Luh, 2000; Keselman, Kowalchuk,  & Lix, 1998; Keselman, Lix, &

Kowalchuk, 1998; Lix & Keselman,Keselman, Wilcox, Taylor & Kowalchuk, 2000; 

1998; Luh & Guo, 1999; Wilcox (1995, 1997); Wilcox, Keselman  & Kowalchuk,

1998).

 development in this area was to apply a transformation to aAnother 

heteroscedastic statistic to eliminate the biasing effects of skewness. Indeed, Luh

and Guo (1999) and Guo and Luh (2000) demonstrated that better Type I error

control was possible when transformations [Hall's (1978) or Johnson's (1992)

method] were applied to the WJ statistic with trimmed means.

 Despite the advantages of using (20%) trimmed means, a heteroscedastic

statistic with 20% trimming suffers from at least two practical concerns. First,
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situations arise where the proportion of outliers exceeds the percentage of

trimming adopted, meaning that more trimming or some other measure of location,

that is relatively unaffected by a large proportion of outliers, is needed. Second, if

a distribution is highly skewed to the right, say, then at least in some situations it

seems more reasonable to trim more observations from the right tail than from

both tails. Thus, using a heteroscedastic statistic with robust estimators, with or

without transforming the statistic, may still not provide the best Type I error control.

Two solutions that we consider in this paper are using a preliminary test for

symmetry in order to determine whether data should be trimmed from both tails

(symmetric trimming) or just from one tail (asymmetric trimming) and whether an

estimator, other than the trimmed mean, that is, one that does not fix the amount

of trimming  but empirically determines the amount and direction, or evena priori

the need for trimming, can provide better Type I error control.

 The prevalent method of trimming is to remove outliers from each tail of the

distribution of scores. In addition, the recommendation is to trim 20% from each

tail (See Rosenberger & Gasko, 1983; Wilcox, 1995). However, asymmetric

trimming has been theorized to be potentially advantageous when the distributions

are known to be skewed, a situation likely to be realized with behavioral science

data (See De Wet & van Wyk, 1979; Micceri, 1989; Tiku, 1980, 1982; Wilcox,

1994, Wilcox, 1995). Indeed, if a researcher's goal is to adopt a measure of the

"typical" score, that is, a score that is representative of the bulk of the

observations, then theory certainly indicates that he/she should trim just from the

tail in which outliers are located in order to get a score that represents the bulk of

the observations; trimming symmetrically in this circumstance would eliminate

representative scores, scores similar to the bulk of observations.

 A stumbling block to adopting asymmetric versus symmetric trimming has

been the inability of researchers to determine when to adopt one form of trimming
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over the other. That is, previous work has not identified a procedure which reliably

identifies when data are positively or negatively skewed, rather than symmetric;

thus researchers have not been able to successfully adopt one method of trimming

versus the other. However, work by Hogg, Fisher and Randles 1975 , later

modified by Padmanaban and Puri 1999 , may provide a successfulBabu 

solution to this problem and accordingly enable researchers to successfully adopt

asymmetric trimming in cases where it is needed thus providing them with

measures of the typical score which more accurately corresponds to the bulk of

the observations. The by-product of correctly identifying and eliminating only the

outlying values should result in better Type I error control for heteroscedastic

statistics that adopt trimmed means.

 A concomitant issue that needs to be resolved is knowing how the 20% rule

should be applied when trimming just from one tail. That is, should 40% of the

longer tail of scores be trimmed since in total that amount is trimmed when

trimming 20% in each tail? Or, should just 20% be trimmed from the one tail of the

distribution? As well, the 20% rule is not universally recommended; others have

had success with values other than 20%. For example, Babu et al. (1999

obtained good Type I error control, for the procedures they investigated, with 15%

symmetric trimming. Indeed, as Huber (1993) argues, an estimator should have a

breakdown point of at least .1; thus, even 10% trimming might provide effective

Type I error control.

 A second approach to the problem of direction and amount of trimming

would be to adopt another robust estimator that does not  set the amount ofa priori

trimming. Wilcox and Keselman (in press) introduced a modified M-estimator

which empirically determines whether to trim symmetrically or asymmetrically and

by what amount, or whether no trimming at all is appropriate. In the context of
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correlated groups design, they showed that their estimator does indeed provide

effective Type I error control.

 A last refinement that we will examine is the use of the bootstrap for

hypothesis testing. Bootstrap methods have two practical advantages. First, theory

and empirical findings indicate that they can result in better Type I error control

than nonbootstrap methods (See Guo & Luh, 2000; Keselman, Kowalchuk,  & Lix,

1998; Keselman, Lix, & Kowalchuk, 1998; Keselman, Wilcox, Taylor & Kowalchuk,

2000; Lix & Keselman, 1998; Luh & Guo, 1999; Wilcox (1995, 1997); Wilcox,

Keselman  & Kowalchuk, 1998). Second, certain variations of the bootstrap

method do not require explicit expressions for standard errors of estimators. This

makes hypothesis testing in some settings more flexible when other robust

estimators (soon to be discussed) are used instead of trimmed means.

 Thus, the purpose of our investigation was to compare rates of Type I error

for numerous versions of the WJ heteroscedastic statistic versus two test statistics

that use the estimator introduced by Wilcox and Keselman (2002). Variations of

the WJ statistic will be based on asymmetric versus symmetric trimming, the

amount of trimming, transformations of WJ and bootstrap versus nonbootstrap

versions.

Methods

The WJ Statistic

 Methods that give improved power and better control over the probability of

a Type I error can be formulated using a general linear model perspective. Lix and

Keselman (1995) showed how the various Welch (1938, 1951) statistics that

appear in the literature for testing omnibus main and interaction effects as well as

focused hypotheses using contrasts in univariate and multivariate independent

and correlated groups designs can be formulated from this perspective, thus

allowing researchers to apply one statistical procedure to any testable model
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effect. We adopt their approach in this paper and begin by presenting, in

abbreviated form, its mathematical underpinnings.

 A general approach for testing hypotheses of mean equality using an

approximate degrees of freedom solution is developed using matrix notation. The

multivariate perspective is considered first; the univariate model is a special case

of the multivariate. Consider the general linear model:

Y X� � , (1)

where  is an N p matrix of scores on p dependent variables or p repeatedY

measurements, N is the total sample size,  is an N r design matrix consistingX

entirely of zeros and ones with rank( ) r,  is an r p matrix of nonrandomX �

parameters (i.e., population means), and  is an N p matrix of random error�

components. Let  (j 1, , r) denote the submatrix of  containing the scoresY Yj

associated with the n subjects in the jth group (cell) (For the one-way design

considered in this paper n n .). It is typically assumed that the rows of  arej Y

independently and normally distributed, with mean vector  and variance-�j

covariance matrix  [i.e., N( ,  )], where the jth row of , [ ], and� �j j j j j1 jp� � � � �

� � �j j j (j j ). Specific formulas for estimating  and , as well as an�

elaboration of  are given in Lix and Keselman (1995, see their Appendix A).Y

 The general linear hypothesis is

H : , (2)0 R 0�

where ,  is a df r matrix which controls contrasts on theR C U CT
C

independent groups effect(s), with rank( ) df r, and  is a p df  matrixC UC U

which controls contrasts on the within-subjects effect(s), with rank( ) df p,U U

' ' is the Kronecker or direct product function, and 'T' is the transpose operator.

For multivariate independent groups designs,  is an identity matrix of dimension pU

(i.e., ). The  contrast matrix has df df  rows and r p columns. In EquationI Rp C U

2, vec( ) [ ] . In other words,  is the column vector with r p� �� � �T T
1 r



Robust Testing           8

elements obtained by stacking the columns of . The  column vector is of order�T 0

df  x df  [See Lix & Keselman (1995) for illustrative examples].C U

 The generalized test statistic given by Johansen (1980) is

T ( ) ( ) ( ), (3)WJ
T T 1R R R R� � �

where  estimates , and diag[ /n  ... /n ], a block matrix with diagonal� � � � �1 1 r r

elements /n . This statistic, divided by a constant, c (i.e., T /c), approximately�r r WJ

follows an F distribution with degrees of freedom df df , and�1 UC

� � � � �2 1 1 1 1( 2)/(3A), where c 2A (6A)/( 2). The formula for the

statistic, A, is provided in Lix and Keselman (1995).

 When p 1, that is, for a univariate model, the elements of  are assumedY

to be independently and normally distributed with mean  and variance  [i.e.,� �j
2
j

N( , )]. To test the general linear hypothesis,  has the same form and function� �j
2
j C

as for the multivariate case, but now 1, [  ... ]  and diag[ /n  ...U � �� � �1 r
T 2

1 1

�2
r r/n ]. (See Lix & Keselman's 1995 Appendix A for further details of the univariate

model.) 

Robust Estimation

 In this paper we apply robust estimates of central tendency and variability to

the T statistic. That is, hWJ eteroscedastic ANOVA methods are readily extended to

the problem of comparing trimmed means. The goal is to determine whether the

effect of a treatment varies across J (j 1, , J) groups; that is, to determine

whether a  varies across groups. typical score When trimmed means are being

compared the null hypothesis pertains to the equality of population trimmed

means, i.e., the s. That is, to test the omnibus hypothesis in a one-way�t

completely randomized design, the null hypothesis would be H :�

� � �t1 t2 tJ.
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 Let Y Y Y  represent the ordered observations associated(1)j (2)j (n )jj

with the jth group. Let g [  n ], where  represents the proportion ofj j� �

observations that are to be trimmed in each tail of the distribution and [ ] is the�

greatest integer . The effective sample size for the jth group becomes�

h n 2g . The jth sample trimmed mean isj j j

�tj
i g 1

n g

(i)j
1
hj

    Y  . (4)�
j

j j

Wilcox (1995) suggests that 20% trimming should be used [See Wilcox (1995) and

the references he cites for a justification of the 20% rule.].

 The sample Winsorized mean is necessary and is computed as

�wj
i 1

n

ij
1
nj

 X , (5)�j

where

X Y   if  Y Y
Y   if  Y Y Y
Y   if  Y Y  .

ij (g 1)j ij (g 1)j

ij (g 1)j ij (n g )j

(n g )j ij (n g )j

j j

j j j

j j j j

The sample Winsorized variance, which is required to get a theoretically valid

estimate of the standard error of a trimmed mean, is then given by

� �wj
2

i 1

n

ij wj
21

n 1j
 (X ) . (6)�j

The standard error of the trimmed mean is estimated with

(n 1) /[(h (h 1)].j j jwj
2�

 Under asymmetric trimming, and assuming, without loss of generality, that

the distribution is positively skewed so that trimming takes place in the upper tail,

the jth sample trimmed mean is

�tj
i 1

n g

(i)j
1
hj

  Y ,�j j

and the jth sample Winsorized mean is
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�wj
i 1

n

ij
1
nj

 X ,�j

where
X Y   if  Y Yij ij ij (n g )jj j

                Y   if  Y Y  .(n g )j ij (n g )jj j j j

The sample Winsorized variance is again defined as (given the new definition of
�wj)

� �wj
2

i 1

n

ij wj
21

n 1j
 (X ) ,�j

and the standard error of the mean again takes its usual form (given the new

definition of  ).�wj

 Thus, with robust estimation, the trimmed group means ( s) replace the�tj

least squares group means ( s), the Winsorized group variances estimators�j

( s) replace the least squares variances ( s , and h  replaces n  and� �wj j
2 2

j j)

accordingly one computes the robust version of T , T  (See Keselman, Wilcox,WJ WJt

& Lix, 2001; For another justification of adopting robust estimates see Rocke,

Downs & Rocke, 1982).

Bootstrapping

 Now we consider how extensions of the ANOVA method just outlined might

be improved. In terms of probability coverage and controlling the probability of a

Type I error, extant investigations indicate that the most successful method, when

using a 20% trimmed mean (or some M-estimator), is some type of bootstrap

method.

 Following Westfall and Young (1993), and as enumerated by Wilcox (1997),

let C Y ; thus, the C  values are the empirical distribution of the jth group,ij ij ijtj�

centered so that the sample trimmed mean is zero. That is, the empirical

distributions are shifted so that the null hypothesis of equal trimmed means is true

in the sample. The strategy behind the bootstrap is to use the shifted empirical
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distributions to estimate an appropriate critical value. For each j, obtain a bootstrap

sample by randomly sampling with replacement n  observations from the Cj ij

values, yielding Y , , Y . Let T  be the value of Johansen's (1980) test based1 n WJt
* * *

j

on the bootstrap sample. Now we randomly sample (with replacement), B

bootstrap samples from the shifted/centered distributions each time calculating the

statistic T . The B values of T are put in ascending order, that is,WJt WJt
* *  

T T , and an estimate of an appropriate critical value is T ,WJt(1) WJt(B) WJt(a)
* **

where a (1 )B, rounded to the nearest integer. One will reject the null�

hypothesis of location equality (i.e., when T TH : ) ,0 t1 t2 tJ WJt
*
WJt(a)� � �

where T  is the value of the heteroscedastic statistic based on the originalWJt

nonbootstrapped data  Keselman et al. (2001) illustrate the use of this procedure.

for testing both omnibus and sub-effect (linear contrast) hypotheses in completely

randomized and correlated groups designs.

Transformations for the Welch-James Statistic

 Guo and Luh (2000) and Luh and Guo 1999  found that Johnson's (1978)� �
and Hall's (1992) transformations improved the performance of several

heteroscedastic test statistics when they were used with trimmed means, including

the WJ statistic, in the presence of heavy-tailed and skewed distributions.

 In our study we, accordingly, compared both approaches for removing

skewness when applied to the T  statistic. Let Y Y , Y , , Y  be aWJt ij 1j 2j n jj

random sample from the jth distribution. Let ,  and  be, respectively, the� � �tj wj
2
wj

trimmed mean, Winsorized mean and Winsorized variance of group j. Define the

Winsorized third central moment of group j as

� �3j wj
j i 1

n

ij
31

n
X .�j
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Let

� �~ n 1
h 1

,2 2
wj wj

j

j

� �
� �

� �~ n
h

,wj 3j
j

j

q ,
~

hj

2
wj

j

�

w ,
1
qtj

j

U w ,t
j 1

J

tj�

and

� �t tj
t j 1

J

tj
1
U

w  .�

Luh and Guo (2000) defined a trimmed mean statistic with Johnson's

transformation  as

T . 7
~ ~

6 h~ 3 ~
Johnson tj t tj t

wj wj
2
wj j

4
wj

2
j � �� � � �

� �

� �

From Guo and Luh 2000  we can deduce that a trimmed mean statistic with Hall's� �
(1992) transformation would be

T . 8    
~ ~ ~

6 h 27 ~ ~3 ~
Hall tj t tj t tj t

wj wj wj
2 8
wj wjj

4
wj

2 3
2

j � �� � � � � �
� � �

� ��

 Keselman et al. 2001  indicated that sample trimmed means, sample� �
Winsorized variances and trimmed sample sizes can be substituted for the usual

sample means, variances and sample sizes in the T  statistic. That is,WJ
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T w ,WJ tj
j 1

J

tj t
2� � �

which, when divided by c, is distributed as an F variable with df of J 1 and

� �� �
J 1 3 , 

1 w U
h 1

2

j 1

J
tj t

2

j

1

where

c J 1 1 .
2 J 2
J 1 h 1

1 w U� � � ��� �
2

j 1

J
tj t

2

j

 Now we can define

T w T , 9WJ tj Johnson
j 1

J
2

Johnson j
� � �

and

T w T , 10WJ tj Hall
j 1

J
2

Hall j
� � �

Then T  and T , when divided by c, are also distributed as F variatesWJ WJJohnson Hall

with no change in degrees of freedom.

A Preliminary Test for Symmetry

 A stumbling block to adopting asymmetric versus symmetric trimming has

been the inability of researchers to determine when to adopt one form of trimming

over the other. Work by Babu et al. Hogg et al. 1975  and 1999 , however, may

provide a successful solution to this problem. The details of this method are

presented in Appendix A.
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  The Modified One-Step (MOM) estimator

 For J independent groups (this estimator can also be applied to dependent

groups) consider the MOM estimator introduced by Wilcox and Keselman (in

press). In particular, these authors suggested modifying the well-known one-step

M-estimator

1.28 (MADN )(i i )     Y

n i i

j 2 1 (i)j
i i 11

n ij 2

j 1 2

�
, (11)

by removing the1.28 (MADN )(i i ), where MADNj MAD /.6745, MADj 2 1 j j

median of the values |Y M| , , |Y M|, M is the median of the jth group,ij j nj,j j j

i the number of observations where Y M 2.24(MADN ) and i the1 ij j j 2

number of observations where Y M 2.24(MADN ). Thus, the modified M-ij j j

estimator suggested by Wilcox and Keselman is

� j       . (12)�
i i 1

n i
Y

n i i
1

j 2
(i)j

j 1 2

The MOM estimate of location is just the average of the values left after all outliers

(if any) are discarded. The constant 2.24 is motivated in part by the goal of having

a reasonably small standard error when sampling from a normal distribution.

Moreover, detecting outliers with Equation 12 is a special case of a more general

outlier detection method derived by Rousseeuw and van Zomeren (1990).

 MOM estimators, like trimmed means, can be applied to test statistics to

investigate the equality of this measure ( ) of the typical score across treatment�

groups.  The null hypothesis is

H , (13)0 1 2 J� � �

where  is the population value of MOM associated with the jth group. Two�j

statistics can be used. The first was a statistic mentioned by Schrader and
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Hettsmansperger (1980), examined by He, Simpson and Portnoy (1990) and

discussed by Wilcox (1997, p. 164). The test is defined as

H (14)1
N

j 1

J

j j .
2 n ( )� � � ,

where N n  and �j j � �. j j� /J. To assess statistical significance a (percentile)

bootstrap method can be adopted. That is, to determine the critical value one

centers or shifts the empirical distribution of each group; that is, each of the

sample MOM s is substracted from the scores in their respective groups (i.e.,j

C Y MOM ). As was the case with trimmed means, the strategy is to shift theij ij j

empirical distributions with the goal of estimating the null distributioin of H which

yields an estimate of an appropriate critical value. Now one randomly samples

(with replacement), B bootstrap samples from the shifted/centered distributions

each time calculating the statistic H, which when based on a bootstrap sample, is

denoted as H . The B values of H  are put in ascending order, that is,* *

H H , and an estimate of an appropriate critical value is H , where(1) (B) (a)
* * *

a (1 )B, rounded to the nearest integer. One will reject the null hypothesis of�

location equality when H H .*
(a)

 The second method of analysis presented can be obtained in the following

manner (See Liu & Singh, 1997). Let

	 � �jj j j  (j j ). (15)

Thus, the s are the all possible pairwise comparisons among the J treatment	jj

groups. Now, if all groups have a common measure of location (i.e.,

� � � 	 	 	1 2 J 0 12 13 J 1, J), then H : 0. A bootstrap method can

be used to assess statistical significance, but for this procedure the data does not

need to be centered. In contrast to the first method, the goal is not to estimate the

null distribution of some appropriate test statistic. Rather, bootstrap samples are

obtained for the Y  values and one rejects if the zero vector is sufficiently far fromij
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the center of the bootstrap estimates of the delta values. Thus, bootstrap samples

are obtained from the Y  values rather than the C s. For each bootstrap replicationij ij

(B 599 is again recommended) one computes the robust estimators (i.e., MOM)

of location (i.e., * , j 1, , J; b 1, , B) and the corresponding estimates of� jb

	 	 � �jj b jj b jb j b ( * * * ). The strategy is to determine how deeply (0 0  0) is0

nested within the bootstrap values * , where  is a vector having length	 jj b 0

K J(J 1)/2. This assessment is made by adopting a modification of

Mahalanobis's distance statistic.

 For notational convenience, we can rewrite the K differences  as ,	 
jj 1

,  and their corresponding bootstrap values as *  (k 1, , K; b 1,
 
K kb

, B). Thus, let


 

_

*   * ,k kb
b 1

B
1
B

�

and

Z * * .
_

kb kb k k
 
 


(Note the Z s are shifted bootstrap values having mean .) Now definekb k


Skk
1

B 1 (Z Z )(Z Z ), (16)
_ _

kb k k b k

where

Z   Z  .
_

k kb
b 1

B
1
B

�

(Note: The bootstrap population mean of *  is known and is equal to .)
_

 
k k

 With this procedure, one next computes

D ( * ) ( * ) , (17)b b b
1� � � �S

where * ( * , , * ) and ( , , ). Accordingly, D  measures� �b 1b Kb 1 K b
 
 
 


how closely  is located to . If the null vector ( ) is relatively far from  one� � �b 0

rejects H . Therefore, to assess statistical significance, put the D  values in0 b
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ascending order (D D ) and let a (1 )B (rounded to the nearest(1) (B) �

integer). Reject H  if0

T D , 18(a)

where

T ( ) ( ) . (19)0 S 0� �1

It is important to note that � � � � �1 2 J 0 1 2 can be true iff H : 

� �J 1 J 0 (Therefore, it suffices to test that a set of K pairwise differences

equal zero). However, to avoid the problem of arriving at different conclusions (i.e.,

sensitivity to detect effects) based on how groups are arranged (if all MOMs are

unequal), we recommend that one test the hypothesis that all pairwise differences

equal zero.

Empirical Investigation

 Fifty-six tests for treatment group equality were compared for their rates of

Type I error under conditions of nonnormality and variance heterogeneity in an

independent groups designs with four treatments. The procedures we investigated

were:

Trimmed Means with Symmetric Trimming (No preliminary test for symmetry):

1.-3. WJ10(15)(20)-WJ with 10% (15%) (20%) trimming

4.-6. WJB10(15)(20)-10% (15%) (20%) trimming and bootstrapping

7.-9. WJJ10(15)(20)-10% (15%) (20%) trimming and Johnson's transformation

10.-12. WJJB10(15)(20)-10% (15%) (20% )trimming with Johnson's transformation

and bootstrapping

13.-15 WJH10(15)(20)-10% (15%) (20%) trimming and Hall's transformation

16.-18 WJHB10(15)(20)-10% (15%) (20%) trimming and Hall's transformation and

bootstrapping

WJ with Q Statistics Symmetric and Asymmetric Trimming: :

19.-21. WJ1010(1515)(2020)-WJ. If data is symmetric use 10% (15%) (20%)

symmetric trimming, otherwise use 10% (15%) (20%) one sided trimming.
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22.-24. WJB1010(1515)(2020)-WJ with bootstrapping. If data is symmetric use

10% (15%) (20%) symmetric trimming, otherwise use 10% (15%) (20%) one sided

trimming.

25.-27. WJJ1010(1515)(2020)-WJ with Johnson's transformation. If data is

symmetric use 10% (15%) (20%) symmetric trimming, otherwise use 10% (15%)

(20%) one sided trimming.

28.-30. WJJB1010(1515)(2020)-WJ with Johnson's transformation and

bootstrapping. If data is symmetric use 10% (15%) (20%) symmetric trimming,

otherwise use 10% (15%) (20%) one sided trimming.

31.-33. WJH1010(1515)(2020)-WJ with Hall's transformation. If data is symmetric

use 10% (15%) (20%) symmetric trimming, otherwise use 10% (15%) (20%) one

sided trimming.

34.-36. WJHB1010(1515)(2020)-WJ with Hall's transformation and bootstrapping.

If data is symmetric use 10% (15%) (20%) symmetric trimming, otherwise use 10%

(15%) (20%) one sided  trimming.

37.-39. WJ1020(1530)(2040)-WJ. If data is symmetric use 10% (15%) (20%)

symmetric trimming, otherwise use 20% (30%) (40%) one sided trimming.

40.-42. WJB1020(1530)(2040)-WJ with bootstrapping. If data is symmetric use

10% (15%) (20%) symmetric trimming, otherwise use 20% (30%) (40%) one sided

trimming.

43.-45. WJJ1020(1530)(2040)-WJ with Johnson's transformation. If data is

symmetric use 10% (15%) (20%) symmetric trimming, otherwise use 20% (30%)

(40%) one sided trimming.

46.-48. WJJB1020(1530)(2040)-WJ with Johnson's transformation and

bootstrapping. If data is symmetric use 10% (15%) (20%) symmetric trimming,

otherwise use 20% (30%) (40%) one sided  trimming.

49.-51. WJH1020(1530)(2040)-WJ with Hall's transformation. If data is symmetric

use 10% (15%) (20%) symmetric trimming, otherwise use 20% (30%) (40%) one

sided trimming.

52.-54. WJHB1020(1530)(2040)-WJ with Hall's transformation and bootstrapping.

If data is symmetric use 10% (15%) (20%) symmetric trimming, otherwise use 20%

(30%) (40%) one sided  trimming.

Modified M-Estimators:

55. MOMH

56. MOMT
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 We examined: (a) the effect of using a preliminary test to determine

whether data are symmetric or not in order to determine whether symmetric or

asymmetric trimming should be adopted (We present in Appendix A a SAS/IML

program that can be used to obtain the Q-statistics.), (b) the percentage of

symmetric (10%, 15% or 20%) and asymmetric (10%, 15%, 20%, 30% or 40%)

trimming used, (c) the utility of transforming the WJ statistic with either Johnson's

(1978) or Hall's (1992) transformation, (d) the utility of bootstrapping the data, and

(e) the use of two statistics with an estimator (MOM) that empirically determines

whether data should be symmetrically or asymmetrically trimmed and by what

amount, allowing also for the option of no trimming.

 Additionally, four other variables were manipulated in the study: (a) sample

size, (b) pairing of unequal variances and group sizes, and (c) population

distribution.

We chose to investigate an unbalanced completely randomized design

containing four groups since previous research has looked at this design (e.g., Lix

& Keselman, 1998; Wilcox, 1988). The two cases of total sample size and the

group sizes were N 70 (10, 15, 20, 25) and N 90 (15, 20, 25, 30). We

selected our values of n  from those used by Lix and Keselman (1998) in theirj

study comparing omnibus tests for treatment group equality; their choice of values

was, in part, based on having group sizes that others have found to be generally

sufficient to provide reasonably effective Type I error control (e.g., see Wilcox,

1994). The unequal variances were in a 1:1:1:36 ratio. Unequal variances and

unequal group sizes were both positively and negatively paired. For positive

(negative) pairings, the group having the fewest (greatest) number of observations

was associated with the population having the smallest (largest) variance, while

the group having the greatest (fewest) number of observations was associated
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with the population having the largest (smallest) variance. These conditions were

chosen since they typically produce conservative (liberal) results.

With respect to the effects of distributional shape on Type I error, we chose

to investigate nonnormal distributions in which the data were obtained from a

variety of skewed distributions. In addition to generating data from a �2
3

distribution, we also used the method described in Hoaglin (1985) to generate

distributions with more extreme degrees of skewness and kurtosis. These

particular types of nonnormal distributions were selected since educational and

psychological research data typically have skewed distributions (Micceri, 1989;

Wilcox, 1994). Furthermore, Sawilowsky and Blair (1992) investigated the effects

of eight nonnormal distributions, which were identified by Micceri on the

robustness of Student's t test, and they found that only distributions with the most

extreme degree of skewness (e.g., 1.64) affected the Type I error control of�1

the independent sample t statistic. Thus, since the statistics we investigated have

operating characteristics similar to those reported for the t statistic, we felt that our

approach to modeling skewed data would adequately reflect conditions in which

those statistics might not perform optimally.

For the  distribution, skewness and kurtosis values are 1.63 and� �2
3 1

�2 4.00, respectively. The other nonnormal distributions were generated from

the g and h distribution (Hoaglin, 1985). Specifically, we chose to investigate two g

and h distributions: (a) g .5 and h 0 and (b) g .5 and h .5, where g and h

are parameters that determine the third moments of a distribution. To give

meaning to these values it should be noted that for the standard normal

distribution g h 0. Thus, when g 0 a distribution is symmetric and the tails of

a distribution will become heavier as h increases in value. Values of skewness and

kurtosis corresponding to the investigated values of g and h are (a) 1.75 and�1

� � �2 1 28.9, respectively, and (b) undefined. These values of skewness
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and kurtosis for the g and h distributions are theoretical values; Wilcox (1997, p.

73) reports computer generated values, based on 100,000 observations, for these

values--namely 1.81 and 9.7 for g .5 and h 0 and 120.10 and� � �1 2 1

�2 18,393.6 for g .5 and h .5. Thus, the conditions we chose to investigate

could be described as extreme. That is, they are intended to indicate the operating

characteristics of the procedures under substantial departures from homogeneity

and normality, with the premise being that, if a procedure works under the most

extreme of conditions, it is likely to work under most conditions likely to be

encountered by researchers.

In terms of the data generation procedure, to obtain pseudo-random normal

variates, we used the SAS generator RANNOR (SAS Institute, 1989). If Z  is aij

standard unit normal variate, then Y Z  is a normal variate with meanij j j ij� �

equal to  and variance equal to . To generate pseudo-random variates having� �j j
2

a distribution with three degrees of freedom, three standard normal variates�2 

were squared and summed.

To generate data from a g- and h-distribution, standard unit normal

variables were converted to random variables via

Yij
exp (g Z ) 1

g 2
h Zij ij

2

exp ,

according to the values of g and h selected for investigation. To obtain a

distribution with standard deviation , each Y  was multiplied by a value of . It is� �j ij j

important to note that this does not affect the value of the null hypothesis when

g 0 (See Wilcox, 1994, p. 297). However, when g 0, the population mean for a

g- and h-distributed variable is

�gh
g /2(1 h)1

g(1 h)��
( 1)e

2

(See Hoaglin, 1985, p. 503). Thus, for those conditions where g 0,  was first�tj

subtracted from Y  before multiplying by . When working with MOMs,  was firstij j j� �
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subtracted from each observation (The value of  was obtained from generated�j

data from the respective distributions based on one million observations.).

Specifically, for procedures using trimmed means, we substrated  from the�tj

generated variates under every generated distribution. Correspondingly, for

procedures based on MOMs, we substracted out  for all distributions�j

investigated.

Lastly, it should be noted that the standard deviation of a g- and h-

distribution is not equal to one, and thus the values reflect only the amount that

each random variable is multiplied by and not the actual values of the standard

deviations (See Wilcox, 1994, p. 298). As Wilcox noted, the values for the

variances (standard deviations) more aptly reflect the ratio of the variances

(standard deviations) between the groups. Five thousand replications of each

condition were performed using a .05 statistical significance level. According to

Wilcox (1997) and Hall (1986), B was set at 599; that is, their results suggest that

it may be advantageous to chose B such that 1  is a multiple of (B 1) .� 1

 Results

For previous investigations, when we have evaluated Type I error rates, we

adopted Bradley's (1978) liberal criterion of robustness. According to this criterion,

in order for a test to be considered robust, its empirical rate of Type I error ( )�

must be contained in the interval 0.5 1.5 . Therefore, for the five percent� � �

level of statistical significance used in this study, a test would be considered robust

in a particular condition if its empirical rate of Type I error fell within the interval

.025 .075. Correspondingly, a test was considered to be nonrobust if, for a�

particular condition, its Type I error rate was not contained in this interval. We

have adopted this standard because we felt that it provided a reasonable standard

by which to judge robustness. That is, it has been our opinion, applied researchers



Robust Testing           23

should be comfortable working with a procedure that controls the rate of Type I

error within these bounds, if the procedure limits the rate across a wide range of

assumption violation conditions.

Type I error rates can be obtained from the first author's website at

http://www.umanitoba.ca/faculties/arts/psychology. Based on this criterion of

robustness, the procedures we investigated were remarkably robust to the cases

of heterogeneity and nonnormality. That is, out of the 672 empirical values tabled

(Tables 1-10) only 24, or approximately 3.5 percent of the values, did not fall within

the .025-.075 interval (Values not falling in this interval are in boldface in the

tables.).

Even though, in general, the procedures exhibited good Type I error control

from the Bradley (1978) liberal criterion perspective, in the interest of making

discriminations between the procedures, we went on to a second examination of

the data adopting Bradley's stringent criterion of robustness. For this criterion, a

statistic is considered robust, under a .05 significance level, if the empirical value

falls in the interval .045-.055 (Nonbolded values not falling in this interval are

underlined in the tables.). The tables as well contain information regarding the

average Type I error rate and the number of empirical values not falling in the

stringent interval for each procedure investigated; these values (excluding MOMH

and MOMT values), along with the range of values over the 12 investigated

conditions, are reproduced in summary form in Table 1.

 . Of the 12 conditions examined, MOMH valuesTests Based on MOMs

ranged from .027 to .073, with an average value of .049; nine values fell outside of

Bradley's (1978) stringent interval. MOMT values ranged from .014 to .060, with an

average value of .038; six values fell outside the interval and most occurred when

data were obtained from the g .5 and h .5 distribution. We describe our
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results predominately from Table 1; however, we, occasionally, also rely on the

detailed information contained in the ten tables not contained in the paper.

 . Empirical results for20% Symmetric and 20% (40%) Asymmetric Trimming

20% symmetric trimming conform to those reported in the literature. That is, the

WJ test is generally robust with the liberal criterion of robustness, occasionally,

however, resulting in a liberal rate of error (See Wilcox et al., 1998). Adopting a

transformation for skewness improves rates of Type I error and further

improvement is obtained when adopting bootstrap methods (See Luh & Guo,

1999). However, most of the values reported in the tables did not fall within the

bounds of the stringent criterion. In particular, the number of these deviant values

ranged from a low of 9 (WJJ20, WJH20, WJJB20) to a high of 12 (WJ20).

 Keeping the total amount of trimmed values at 40%, regardless of whether

data were trimmed symmetrically or asymmetrically, based on the preliminary test

for symmetry, resulted in liberal rates of error, except when bootstrapping methods

were adopted. Indeed, when bootstrapping was adopted for assessing statistical

significance and a transformation was/was not applied to the statistic (WJJB2040,

WJHB2040, WJB2040), rates of Type I error were well controlled; the number of

values falling outside the stringent interval were two, two and four, respectively,

with corresponding average rates of error of .048, .047 and .045.

 . Similar results were15% Symmetric and 15% (30%) Asymmetric Trimming

found to those previously reported, however, a few differences are noteworthy.

First, none of the values fell ouside the liberal criterion, though with the exception

of WJJ15 and WJH15, the number of values outside of the stringent criterion was

large, obtaining values of 8 and 9. Also noteworthy is that for 15% symmetric

trimming bootsrapping did not result in improved rates of Type I error.
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 On the other hand, bootstrapping was quite effective for contolling errors

when trimming was based on the preliminary test for symmetry and either 15% or

30% of the data were trimmed symmetrically or asymmetrically. Without

bootstrapping, rates, on occasion, reached values above .075 and the number of

values falling outside the stringent criterion ranged from 7 to 12. With

bootstrapping, no value exceeded .075, in fact no value exceeded .054, and the

number of values outside the stringent criterion was small--3 (WJB1530), 3

(WJJB1530) and 2 (WJHB1530).

 When trimming was 15%-symmetric or 15%-asymmetric, based on the

preliminary test for symmetry, again, all empirical values were contained in the

liberal interval, ranging from a low value of .025 (WJB1515) to a high value of .073

(WJH1515). However, the number of values falling outside the stringent interval

varied over the tests examined, ranging from a low of 4 values (WJJB1515) to a

high value of 9 values (WJB1515). The best two procedures were WJJB1515 (4

values outside the stringent criterion) and WJHB1515 (5 values outside the

stringent criterion).

 . Results are not10% Symmetric and 10% (20%) Asymmetric Trimming

generally dissimilar from those reported for the other two trimming rules. That is,

when adopting a 10% symmetric rule, all rates were contained in the liberal

interval, though with the 10% rule, bootstrapping and transforming the statistic for

skewness was effective in limiting the number of deviant values (WJJJB10 and

WJHB10), while the remaining methods were not nearly as successful.

 For 10% symmetric trimming or 20% asymmetric trimming, based on the

preliminary test for symmetry, empirical rates were again best controlled when

bootstrapping methods were applied. In particular, the number of deviant values

ranged from 2 to 5, with fewer deviant values occurring when a transformation for
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skewness was applied to WJ (i.e., WJJB1020 and WJHB1020). The

nonbootstrapped tests, on the other hand, frequently had rates falling outside the

stringent interval; 8 for WJ1020 and 11 for WJJ1020 and WJH1020.

 Adopting 10% symmetric or asymmetric trimming resulted in rates that

generally also fell within the liberal criterion of Bradley (1978), except for two

exceptions--.076 for WJH1010 and .023 for WJB1010. Once again, using a

transformation to eliminate skewness and adopting bootstrapping to assess

statistical significance resulted in relatively good Type I error control. That is,

WJJB1010 and WJHB1010 had, respectively, 6 and 5 values falling outside the

stringent interval, with corresponding average rates of error of .048 and .042.

 ). Our last examination of theSymmetric Trimming (10% vs 15% vs 20%

data was a comparison of the rates of Type I error across the various percentages

of symmetric trimming. Only two liberal values (.076 and .079), according to the

.025-.075 criterion, were found across the three cases of symmetric trimming and

they occurred under 20% symmetric trimming. The total number of values outside

the .045-.055 criterion for  20%, 15% and 10% symmetric trimming were 58, 41

and 45, respectively; the corresponding average Type I error rates (across the six

averages reported in the table) were .049, .047 and .050. The four procedures with

the fewest values (i.e., 4) outside the stringent interval were WJJ15, WJH15,

WJJB10 and WJHB10.

Discussion

 In our investigation we examined various test statistics that can be used to

compare treatment effects across groups in a one-way independent groups

design. Issues that we examined were whether: (1) a preliminary test for symmetry

can be used effectively to determine whether data should be trimmed

symmetrically or asymetrically when used in combination with a heteroscedastic
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statisic that compares trimmed means, (2) the amount of trimming effects error

rates of these heteroscedastic statistics, (3) transformations to these

heteroscedastic statistics improve results, (4) bootstrapping methodology provides

yet additional improvements and (5) an estimator (MOM) that empirically

determines whether one should trim, and, if so, by what amount and from which

tail(s) of the distribution, can effectively control rates of Type I error, and how

those rates compare to the other methods investigated.

 We found that the fifty-six procedures examined performed remarkably well.

Of the 672 empirical values, only 24, or approximately 3.5 percent of the values,

did not fall within the bounds of .025-.075, a criterion that many investigators have

used to assess robustness. Based on this criterion, only six procedures did not

perform well--namely MOMT, WJ2040, WJJ2040, WJH2040, WJJ1530 and

WJH1530; that is, they all had two or more values less than .025 or greater than

.075. The vast majority of these nonrobust values occurred under our most

extreme case of nonnormality--g .5 and h .5.

 On the basis of the more stringent criterion defined by Bradley (1978), five

methods demonstrated exceptionally tight Type I error control. They were

WJJB2040, WJHB2040, WJHB1530, WJJB1020 and WJHB1020. The number of

values not falling in the stringent interval was two for each procedure. In addition,

the average rate of error was .048, .047, .048, .049 and .049, respectively.

Common to these six procedures is the use of a transformation to eliminate

skewness [either Hall's (1978) or Johnson's (1992)] and the use of bootstrapping

methodology to assess statistical significance. Two close competitors were the

WJB1530 and WJJB1530 tests, each had three values outside .045-.055, with

average rates of error of .045 and .049, respectively.

 Based on our results we recommend WJJB1020 or WJHB1020; that is, the

WJ heteroscedastic statistic which trims, based on a preliminary test for symmetry,
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10% in each tail or 20% in one of the two tails and then transforms the test with a

transformation to eliminate the effects of skewness [either Hall (1978) or Johnson

(1992)] and where statistical significance is determined from bootstapping

methodology. We recommend one of these methods, over the other three tests

which also limited the number of discrepant values to two, because the other

methods can result in greater numbers of data being discarded. It is our

impression that applied researchers would prefer a method that compared

treatment performance across groups with a measure of the typical score which

was based on as much of the original data as possible--a very reasonable view. It

is also worth mentioning that relatively good results are also possible by adopting

a simpler WJ method--namely the WJ test with just bootstapping. In particular,

WJB1530 and WJB2040 resulted in 3 and 4 values outside the stringent interval

and each had an average Type I error rate of .045.

 Another noteworthy finding was that other percentages of symmetric

trimming work better in the one-way design than 20% symmetric trimming. In

particular, we found four methods involving less trimming than 20% (WJJ15,

WJH15, WJJB10 and WJHB10) that provided good Type I error control, resulting

in fewer values outside .045-.055 than identical procedures based on 20%

trimming. For two of the methods (WJJ15 and WJH15), bootstrapping

methodology is not required.

 We want to conclude by reminding the reader that we examined fifty-six test

statistics under conditions of  heterogeneity and nonnormality. Thus, weextreme

believe we have identified procedures that are truly robust to cases of

heterogeneity and nonnormality likely to be encountered by applied researchers

and therefore we are very comfortable with our recommendation. That is, we

believe we have found a very important result--namely, very good Type I error

control is possible with relatively modest amounts of trimming.
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 We demonstrate the computations involved for obtaining the test of

symmetry in Appendix A. We include this illustration, even though we provide

software in Appendix B to obtain numerical results, because we believe it is

instructive to see how Q  and Q  are obtained.2 1
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Appendix A

Test for Symmetry

 Consider the problem of comparing distributions F F F . One1 2 J

way of approaching this problem is to again consider the one-way ANOVA

problem of comparing means  from J distributions� � �1 2 J

F y F y , F y F y , , F y F y1 1 2 2 J� � �J . When the

distributions are unknown and one  assume that they are normal with equalcannot

variances, Babu et al. 1999  suggested the following procedure:

1. First, one determines if the distributions are symmetric. To do so, they applied

a procedure that uses two indices, Q  and Q , originally proposed by Hogg et al.2 1

1975 . The Q  index is first used to determine the nature of the tails of the2

distributions and then the Q  index is used to determine if the distributions are1

symmetric.

2. If the distributions are found to be symmetric then any of the WJ test statistics,

based on symmetrically trimmed means is used to test for differences between

distributions.

3. Otherwise, if the distributions are skewed, then any of the WJ statistics,

based on asymmetrically (from the left or right tail for each treatment group)

trimmed means is used to test for differences between distributions.

What we will be enumerating then are the  Type I error rates for WJ testscombined

where the preliminary test for symmetry determines whether in a particular

simulation data are trimmed symmetrically or asymmetrically.

 Let Y Y , Y ,  , Y  be a sample from an unknown distribution F .ij 1j 2j n j jj

Again, let Y Y Y  represent the ordered observations associated(1)j (2)j (n )jj

with the jth group. Let  be the proportion of the data in the sample that are of�

interest as either the proportion of data to be trimmed or the proportion of data to

be used in the calculation of several intermediate variables leading to the Q  and2

Q indices. Let1  g n 1, where x  represents the greatest integer less than n� �j j

and r g n . It is important to note that trimming  here, and the amount� j

trimmed, is just for purposes of assessing symmetry. Once the omnibus test (WJ)

is used, the amount of trimming is based on a 15% or 20% rule.

Preliminaries

 The Babu et al. (1999) procedure is based, in part, on the work of Hogg et

al. (1975). Specifically, for these authors, the hypothesis of interest was
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H : 0 against H : 0, where  is the location parameter of interest. They0 A� � �

proposed a test to detect the nature of the underlying distribution before

proceeding with (nonparametric) tests of H .0

 In particular, they d , Y  as a random sample from F y ,efined Y , Y , 1 2 m � �
and Y , Y , , Y  as a random sample from F y . Then Y , Y , ,m 1 m 2 n 1 2� �� � � � �

Y  are the ordered statistics of the combined random samples and Y  and Y� �n med

are, respectively, the median and mean of the  samples.combined

 Hogg et al.'s (1975) procedure to detect the nature of the underlying

distribution, is composed of two tests, a test of the heaviness of the tail of the

distribution using the Q  statistic and a test of symmetry using the Q  statistic.2 1

Their work was based on papers by Uthoff 1970, 1973 .� �
 Hogg et al. (1975) chose a test statistic enumerated by Uthoff (1973,

Equation 2) as a basis to define their Q  index. This index determined whether the2

tail of the underlying distribution is light or heavy. They first approximated it as
Y Y

2 Y Y n

� � � �

� �

n 1

i med� .

They then transformed this ratio into

Q2
� �
� �
U L
U L
0.05 0.05

0.5 0.5
,

where U  and L  are, respectively, the means of the upper and lower 5% of0.05 0.05

the order statistics of the combined samples and U  and L  are, respectively,0.5 0.5

the means of the upper and lower 50% of the order statistics of the combined

sample.

 Again, based on the work of Uthoff (1970, Equation 1), Hogg et al. (1975)

derived their Q  index:1

Q1
� �
� �
U MID
MID L

0.05

0.05
,

where MID is the mean of the middle 50% of the combined sample. Thus, this

index determines the symmetry of the underlying distribution.

 Babu et al. (1999) extended the use of these two indices to testing the

location parameters of more than two groups. They proposed that both indices be

calculated within the groups and weighted means of these indices be the overall

estimates of Q  and Q . They also proposed adjustments to the Q  index whereby2 1 1

the amount of data needed to calculate the index depended on the outcome of the

calculation of the Q  index.2
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Determination of Symmetry

  Prior to determining the symmetry of the distributions, the natureQ  Index2 .

of their tails is examined. The Q  index determines whether2

F y , F y , 1 2 , F y are normal-tailed, heavy-tailed or very heavy-tailed. TailJ

classification is determined in the following manner:

1. Define U  and L  as the means of the upper and lower n  order statistics,� �,j j j�

respectively, of the sample Y .j
Case 1. If �n 1, then U Y  and L Y .j j jn )j 1)j� �j

Case 2. If �n 1 thenj

U       Y 1 r Y�, i
j n g 2

n

i)j n g 1), j
1
n� j

�
i

j

j
 and

L   Y 1 r Y .�, j
i 1

g 1

i)j g)j
1
n� j

�

2. Calculate U  and L  as the mean of the upper and lower 0.05n  order0.05, j 0.05, j j

statistics of Y , respectively.j

3. Calculate U  and L  as the mean of the upper and lower 0.5n  order0.5, j 0.5, j j

statistics of Y , respectively.j

4. For each j, set Q U L U L .2, j 0.05, j 0.05, j 0.5, j 0.5, j

5. Using Q , j 1, 2, , J, from # 4 compute2, j

Q  n Q  n . (A.1)2 j 2, j j
j 1 j 1

J J� �
6. If Q 3 then F is classified as normal-tailed. If 3 Q 5 then F is2 2

classified as heavy-tailed. If Q 5 then F is classified as very heavy-tailed.2

 Q  Index1 . Once the nature of the tails of the distributions is known, the Q1

index, which determines the symmetry of the distributions, is calculated. To

calculate the Q  index one should:1

1. Based on Q , determine the number of sample points in each sample Y  to be2 j

used. Define this as n . [This is Babu et al.'s (1999) modification of Hogg et al.'sj
*

(1975) proposal for computing Q .] Specifically, if Q 3 then use all sample1 2

points in Y . If 3 Q 5 then trim the top and bottom 10% of the sample pointsj 2

and use the middle 80% in Y . If Q 5 then trim the top and bottom 20% of thej 2

sample points and use the middle 60% in Y .j
2. Let MID  to be the mean of the middle 50% of the order statistics of thej

sample points in sample Y  defined in #1. According to A. R. Padmanabanj
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personal communication, June 26, 2001 , MID  is calculated in the followingj

manner:

  Discard the top and bottom 25% of the order statistics of Y .j
  The remainder is the middle 50% of the order statistics of Y .j
 Hence, g 0.25n 1 and r g 0.25n . Therefore, MID  is given by* * * * *

j j j

MID     Y r Y Y .j
i g 1

n g

i)j
*

g ) j n g 1) j
1

0.5nj
*

�
*

j
* *

* * *
j

3.  For each j, set Q U MID MID L .1, j 0.05, j j j 0.05, j

4. Using Q , j 1, 2, 1, j , J, from # 3 compute

Q  n Q n . (A.2)1 1, j
j 1 j 1

J J

j j
* *� �

5. If Q , F is deemed to be left skewed. If Q 2, then F is considered1 1
1 1
2 2

to be symmetric. If Q 2, then F is designated as right skewed.1

Computational Example

 Suppose we want to test the null hypothesis, H : F x F x F xo 1 2 3� � � � � �
based on the following data set.

Groups Order Statistics n

1 30 32 32 34 35 35 39 40 40 41 42 48 50 52 99 15

2 35 36 40 40 41 42 43 49 56 64 10

3 48 48 51 51 51 55 55 60 

j

63 83 10

Note: The tabled values were chosen so that the data would be

classified as heavy-tailed. 

Calculating Q  (Tail thickness)2

 Notice that 0.05nj 1  for j 1, 2, 3,  Therefore, U X 99,0.05, 1 15, 1� �

U X 64,  U X 83,  and L X 30,0.05, 2 0.05, 3 0.05, 110, 2 10, 3 1,1� � � � � �

L X 35,  L X 48.  When 0.5,  the calculations for0.05, 2 0.05, 31, 2 1, 3� � � � �

U , L  and for each group are as follows.0.5, j 0.5, j Q  2, j

Group 1. n 15,  0.5n 7.5,  g 8  and r 0.5.1 1
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U  X 0.5X
1

7.5

1
7.5

40 41 99 0.5 40

52.2667

0.5, 1
i 9

15

i1 8, 1�

L  X 0.5X
1

7.5

1
7.5

30 32 39 0.5 40

34.2667

0.5,1
i 1

7

i1 8, 1�

Q 3.8333
99 30

52.2667 34.26672, 1
� �

� �

Group 2. n 10,  0.5n 5,  g 6  and r 0.2 2

U  X 0 X
1
5

1
5

42 43 64 0

50.8

0.5, 2
1 6

10

i2 5, 2�

L  X 0 X
1
5

1
5

35 36 41 0

38.4

0.5, 2
i 1

5

i2 6, 2�

Q 2.3387
64 35

50.8 38.42, 2
� �

� �

Group 3. n 10,  0.5n 5,  g 6  and r 0.3 3

U  X 0 X
1
5

1
5

55 55 83 0

63.2

0.5, 3
i 6

10

i3 5, 3�
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L  X 0 X
1
5

1
5

48 48 51 0

49.8

0.5, 3
i 1

5

i3 6, 3�

Q 2.6119
83 48

63.2 49.82, 3
� �

� �

Therefore

Q 3.0573 and
15 3.8333 10 2.3387 10 2.6119

15 10 102
� �� � � � � �

� �

F is classified as heavy-tailed.

Calculating Q1

 Since F if classified as heavy-tailed, we have to symmetrically trim 10% of

the data before calculating Q . (See the following table.)1

Groups Order Statistics Following 10% Symmetric Trimming n

1 32 32 34 35 35 39 40 40 41 42 48 50 52 13

2 36 40 40 41 42 43 49 56 8

3 48

*
j

 51 51 51 55 55 60 63 8

 Notice that 0.05n X* * *
j 0.05, 1 (13, 1)1  for j 1, 2, 3,  Therefore, U 52,

U 56,  U 63,  and L 32,0.05, 2 (8, 2) 0.05, 3 (8, 3) 0.05, 1 (1, 1)
* * * * * *X X X

L 36,  L 48.  0.05, 2 (1, 2) 0.05, 3 (1, 3)
* * * *

1, jX X Let us calculate  and Q , forMIDj

j 1, 2, 3.

Group 1. n 13,  0.25n 3.25,  g 4  and r 0.75.* * * *
1 1
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MID1
i 5

91
6.5

0.75

1
6.5

0.75 35 42

38.8846

�X X X

35 39 40 40  41

(i1) (4, 1) (10, 1)
* * *

Q 1.905
52 38.8846
38.8846 321, 1
� �
� �

Group 2. n 8,  0.25n 2.,  g 3  and r 0.* * * *
2 2

MID2
i 3

61
4

1
4

40 41 42 43

41.5

�X(i2)
*

Q 2.6364
56 41.5
41.5 361, 2
� �
� �

Group 3. n 8,  0.25n 2,  g 3  and r 0.* * * *
3 3

MID3
i 3

61
4

1
4

51 51 55 55

53

�X(i3)
*

Q 2
63 53
53 481, 3
� �
� �

Therefore

Q 2.133 and
13 1.905 8 2.6364 8 2

13 8 81
� �� � � � � �

� �

F is classified as right skewed.
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Appendix B

SAS/IML Program for Q-Statistics

*Checking for symmetry using the Q2 and Q1 indices presented in Babu,
 Padmanabhan and Puri (1999);
*This program details all the steps in obtaining the Q2 and Q1 indices;

OPTIONS NOCENTER;
PROC IML;
RESET NONAME;

*Although the Q2 and Q1 calculations differ, both share common steps;
*Hence, they are incorporated into one module QMOD with the variable
 QCHOICE being the switch that activates Q2 or Q1: 1 activates Q1 and 2
 activates Q2;

START QMOD(QCHOICE,Y,OSY,GINFO,Q) GLOBAL(NY,WOBS,BOBS,PER);
  G = INT(PER#NY);
  NYPRIME = NY - 2#G;
  NPRIME = SUM(NYPRIME);
  *Initialize group information matrix;
  IF QCHOICE = 1 THEN GINFO = J(BOBS,8,0);
  ELSE IF QCHOICE = 2 THEN GINFO = J(BOBS,9,0);
  *Initialize for first pass;
  F = 1;
  M = 0;
  DO J = 1 TO BOBS;
    SAMP = NY[J];
    SAMPPR = NYPRIME[J];
    L = M + SAMP;
    YT = Y[F:L];
    TEMP = YT;
    *Sorting group elements in ascending order;
    YT[RANK(TEMP),] = TEMP;
    FIRST = G[,J] + 1;
    LAST = SAMP - G[,J];
    FPRIME = F + FIRST - 1;
    LPRIME = F + LAST - 1;
    *Get group information;
    GINFO[J,1] = J;         *Group number;
    IF QCHOICE = 1 THEN DO;
      GINFO[J,2] = SAMPPR; *Possibly trimmed group size;
      GINFO[J,3] = FPRIME; *Starting position in possibly trimmed data
                            stream for group j;
      GINFO[J,4] = LPRIME; *Ending position in possibly trimmed data
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                            stream for group j;
    END; *if QCHOICE = 1;
    ELSE IF QCHOICE = 2 THEN DO;
      GINFO[J,2] = SAMP; *Group size;
      GINFO[J,3] = F;    *Starting position in data stream for group j;
      GINFO[J,4] = L;    *Ending position in data stream for group j;
    END; *if QCHOICE = 2;
    *Calculating the mean of the upper and lower 5% of data in group j;
    *This is common in both Q1 and Q2;
    NJP05 = (LAST-FIRST+1)#0.05;
    IF NJP05 <= 1 THEN DO;
      UP05J = YT[LAST];
      LP05J = YT[FIRST];
    END; *if NJP05 <=1;
    ELSE DO;
      A = INT(NJP05);
      FR = NJP05 - A;
      UP05 = YT[LAST-A+1:LAST];
      UP05J = (FR#YT[LAST-A] + SUM(UP05))/NJP05;
      LP05 = YT[FIRST:FIRST+A-1];
      LP05J = (SUM(LP05) + FR#YT[FIRST+A])/NJP05;
    END; **if NJP05 > 1;
    GINFO[J,5] = UP05J; *Upper 5% mean of group j;
    GINFO[J,6] = LP05J; *Lower 5% mean of group j;
    IF QCHOICE = 1 THEN DO;
      *Calculating the mean of the middle 50% of data in group j;
      *This calculation is done in Q1 only;
      NJP25 = (LAST-FIRST+1)#0.25;
      A = INT(NJP25);
      FR = NJP25 - A;
      ME = YT[FIRST+A+1:LAST-A-1];
      MIDJ = ((1-FR)#YT[FIRST+A] + SUM(ME) + (1-FR)#YT[LAST-A])/(2#NJP25);
      Q1J = (UP05J - MIDJ)/(MIDJ - LP05J);
      GINFO[J,7] = MIDJ; *Middle 50% mean of possibly trimmed group j;
      GINFO[J,8] = Q1J;  *Q1 index of group j;
    END; *if QCHOICE = 1;
    IF QCHOICE = 2 THEN DO;
      *Calculating the mean of the upper and lower 50% of data in group j;
      *This calculation is done in Q2 only;
      NJP5 = (LAST-FIRST+1)#0.5;
      A = INT(NJP5);
      FR = NJP5 - A;
      UP5 = YT[LAST-A+1:LAST];
      UP5J = (FR#YT[LAST-A] + SUM(UP5))/NJP5;
      LP5 = YT[FIRST:FIRST+A-1];
      LP5J = (SUM(LP5) + FR#YT[FIRST+A])/NJP5;
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      Q2J = (UP05J - LP05J)/(UP5J - LP5J);
      GINFO[J,7] = UP5J; *Upper 50% mean of group j;
      GINFO[J,8] = LP5J; *Lower 50% mean of group j;
      GINFO[J,9] = Q2J;  *Q2 index of group j;
    END; *if QCHOICE = 2;
    *Update for next pass;
    M = L;
    F = F + NY[J];
    IF J = 1 THEN OSY = YT;
    ELSE OSY = OSY//YT;
  END; *DO J;
  IF QCHOICE = 1 THEN Q = SUM(GINFO[1:3,8]`#NYPRIME)/NPRIME;
  ELSE IF QCHOICE = 2 THEN Q = SUM(GINFO[1:3,9]`#NYPRIME)/NPRIME;
FINISH; *QMOD;

START SHOWGRP(X, GINFO);
  X1 = X[GINFO[1,3]:GINFO[1,4]]`;
  X2 = X[GINFO[2,3]:GINFO[2,4]]`;
  X3 = X[GINFO[3,3]:GINFO[3,4]]`;
  PRINT 'GRP1:' X1[FORMAT=3.0];
  PRINT 'GRP2:' X2[FORMAT=3.0];
  PRINT 'GRP3:' X3[FORMAT=3.0];
FINISH; *SHOWGRP;

START Q2Q1AD;
  PRINT 'DETAILED OUTPUT FOR THE Q-STATISTICS';
  *Calculating Q2;
  PER = 0; *Q2 does not require trimming of data;
  QCHOICE = 2;
  CALL QMOD(QCHOICE,Y,OSY,Q2INFO,Q2);
  PRINT ,;
  PRINT 'Y IN THE VARIOUS GROUPS';
  CALL SHOWGRP(Y,Q2INFO);
  PRINT ,;
  PRINT 'ORDER STATISTICS OF Y';
  CALL SHOWGRP(OSY,Q2INFO);
  OUTQ2 = Q2INFO[,1:2]||Q2INFO[,5:9];
  C1 = {"GRP" "GRP SIZE" "UP5% MEAN" "LO5% MEAN" "UP50% MEAN"
"LO50% MEAN" "Q2J"};
  PRINT ,;
  PRINT 'INTERMEDIATE OUTPUTS FOR Q2';
  PRINT OUTQ2[COLNAME=C1 FORMAT=10.4];
  PRINT 'Q2 =' Q2[FORMAT=10.4];
  IF Q2 < 3 THEN DO;
    PER = 0;
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 PRINT 'DATA DISTRIBUTION IS NORMAL-TAILED. USE ALL DATA TO
DETERMINE Q1.';
  END; *if Q2 < 3;
  ELSE IF Q2 > 5 THEN DO;
    PER = 0.2;
  PRINT 'DATA DISTRIBUTION IS VERY HEAVY-TAILED. DO 20% SYMMETRIC
TRIMMING TO DETERMINE Q1.';
  END; *if Q2 > 5;
  ELSE DO; *if 3 <= Q2 <= 5;
    PER = 0.1;
 PRINT 'DATA DISTRIBUTION IS HEAVY-TAILED. DO 10% SYMMETRIC
TRIMMING TO DETERMINE Q1.';
  END; *if 3 <= Q2 <=5;
  *Calculating Q1;
  QCHOICE = 1;
  CALL QMOD(QCHOICE,Y,OSY,Q1INFO,Q1);
  PRINT /;
  PRINT 'ORDER STATISTICS OF POSSIBLY TRIMMED Y';
  CALL SHOWGRP(OSY,Q1INFO);
  OUTQ1 = Q1INFO[,1:2]||Q1INFO[,5:8];
  C2 = {"GRP" "GRP SIZE" "UP5% MEAN" "LO5% MEAN" "MID50% MEAN"
"Q1J"};
  PRINT ,;
  PRINT 'INTERMEDIATE OUTPUTS FOR Q1';
  PRINT OUTQ1[COLNAME=C2 FORMAT=10.4];
  PRINT 'Q1 =' Q1[FORMAT=10.4];
  IF Q1 < 0.5 THEN PRINT 'DATA DISTRIBUTION IS LEFT-SKEWED.';
  ELSE IF Q1 > 2 THEN PRINT 'DATA DISTRIBUTION IS RIGHT-SKEWED.';
  ELSE PRINT 'DATA DISTRIBUTION IS SYMMETRIC.'; *if 0.5 <= Q1 <= 2;
FINISH; *Q2Q1AD;

***INPUT DATA VECTOR;

*Data is purposely typed in the following manner to show where Groups 1-3
 entries are;

*SAS treats this as a 35x1 column vector;
Y = {42, 40, 32, 48, 32, 52, 41, 35, 30, 99, 40, 35, 34, 39,
50, 49, 35, 43, 36, 40, 56, 41, 40, 64, 42,
48, 51, 63, 51, 60, 51, 83, 55, 55, 48};

*Group sizes are entries in the following 1x3 row vector;
NY = {15 10 10};

*WOBS and BOBS are variable names carried over from past programs;
*WOBS = within subjects groups;
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WOBS = NCOL(Y);
*BOBS = between subject groups;
BOBS = NCOL(NY);
RUN Q2Q1AD;

-------------------------------------------------------------------------------------------------------------

DETAILED OUTPUT FOR THE Q-STATISTICS

Y IN THE VARIOUS GROUPS

GRP1:  42  40  32  48  32  52  41  35  30  99  40  35  34  39  50

GRP2:  49  35  43  36  40  56  41  40  64  42

GRP3:  48  51  63  51  60  51  83  55  55  48

ORDER STATISTICS OF Y

GRP1:  30  32  32  34  35  35  39  40  40  41  42  48  50  52  99

GRP2:  35  36  40  40  41  42  43  49  56  64

GRP3:  48  48  51  51  51  55  55  60  63  83

INTERMEDIATE OUTPUTS FOR Q2

GRP GRP SIZE UP5% MEAN LO5% MEAN UP50% MEAN LO50% MEAN Q2J
1 15 99 30 52.2667 34.2667 3.8333
2 10 64 35 50.8 38.4 2.3387
3 10 83 48 63.2 49.8 2.6119

Q2 3.0573

DATA DISTRIBUTION IS HEAVY-TAILED. DO 10% SYMMETRIC TRIMMING TO
DETERMINE Q1.

ORDER STATISTICS OF POSSIBLY TRIMMED Y

GRP1:  32  32  34  35  35  39  40  40  41  42  48  50  52

GRP2:  36  40  40  41  42  43  49  56
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GRP3:  48  51  51  51  55  55  60  63

INTERMEDIATE OUTPUTS FOR Q1

 

GRP GRP SIZE UP5% MEAN LO5% MEAN MID50% MEAN Q1J
1 13 52 32 38.8846 1.9050
2 8 56 36 41.5 2.6364
3 8 63 48 53 2

Q1 2.1330

DATA DISTRIBUTION IS RIGHT-SKEWED.
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Table 1. W J Summ ary Statistics 

20% Symm etric Trimming

W J20 W JJ20 W JH20 W JB20 W JJB20 W JHB20

Range .041-.079 .043-.075 .043-.076 .030-.047 .033-.047 .033-.047

Average .058 .056 .056 .040 .041 .041

# of Nonrobust

Values 
12 9 9 10 9 10

20% Symm etric and 40% Asymm etric Trimming

W J2040 W JJ2040 W JH2040 W JB2040 W JJB204

0

W JHB204

0

Range .059-.084 .051-.077 .051-.079 .040-.053 .037-.053 .037-.052

Average .071 .066 .068 .045 .048 .047

# of Nonrobust

Values 
12 11 11 4 2 2

20% Symm etric and 20% Asymm etric Trimming

W J2020 W JJ2020 W JH2020 W JB2020 W JJB202

0

W JHB202

0

Range .048-.075 .054-.071 .054-.072 .030-.051 .033-.055 .034-.054

Average .059 .060 .060 .043 .047 .046

# of Nonrobust

Values 
8 9 9 6 4 4

15% Symm etric Trimming

W J15 W JJ15 W JH15 W JB15 W JJB15 W JHB15

Range .036-.067 .047-.067 .048-.067 .025-.047 .033-.048 .032-.048

Average .051 .053 .054 .039 .042 .041

# of Nonrobust

Values 
8 4 4 9 8 8

15% Symm etric and 30% Asymm etric Trimming

W J1530 W JJ1530 W JH1530 W JB1530 W JJB153

0

W JHB153

0

Range .057-.078 .050-.079 .050-.082 .035-.049 .041-.054 .039-.054

Average .064 .063 .064 .045 .049 .048

# of Nonrobust

Values 
12 7 9 3 3 2



15% Symm etric and 15% Asymm etric Trimming

W J1515 W JJ1515 W JH1515 W JB1515 W JJB151

5

W JHB151

5

Range .043-.065 .053-.072 .053-.073 .025-.045 .037-.050 .036-.050

Average .053 .059 .060 .039 .046 .045

# of Nonrobust

Values 
7 8 8 9 4 5

10% Symm etric Trimming

W J10 W JJ10 W JH10 W JB10 W JJB10 W JHB10

Range .038-.075 .053-.072 .055-.073 .025-.048 .033-.053 .033-.053

Average .053 .059 .060 .039 .045 .043

# of Nonrobust

Values 
10 9 9 9 4 4

10% Symm etric and 20% Asymm etric Trimming

W J1020 W JJ1020 W JH1020 W JB1020 W JJB102

0

W JHB102

0

Range .047-.075 .055-.072 .056-.074 .032-.052 .039-.057 .041-.057

Average .059 .062 .063 .044 .049 .049

# of Nonrobust

Values 
8 11 12 5 2 2

10% Symm etric and 10% Asymm etric Trimming

W J1010 W JJ1010 W JH1010 W JB1010 W JJB101

0

W JHB101

0

Range .038-.075 .055-.075 .056-.076 .023-.050 .033-.058 .032-.058

Average .054 .064 .065 .039 .048 .042

# of Nonrobust

Values
10 11 12 7 6 5

Note: Nonrobust values are those outside the interval .045-.055.


