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Abstract

Nonnormality and covariance heterogeneity between groups affects the validity of

the traditional repeated measures methods of analysis, particularly when group sizes are

unequal. A nonpooled Welch (1947, 1951)-type statistic (WJ) and the Huynh (1978)

Improved General Approximation (IGA) test generally have been found to be effective in

controlling rates of Type I error in unbalanced nonspherical repeated measures designs

even though data are nonnormal in form and covariance matrices are heterogeneous.

However, under some conditions of departure from multisample sphericity and

multivariate normality their rates of Type I error have been found to be elevated. Westfall

and Young's (1993) results suggest that Type I error control could be improved by

combining bootstrap methods with methods based on trimmed means. Accordingly, in

our investigation we examined four methods for testing for main and interaction effects

in a between- by within-subjects repeated measures design: (a) the IGA and WJ tests with

least squares estimators based on theoretically determined critical values, (b) the IGA and

WJ tests with least squares estimators based on empirically determined critical values, (c)

the IGA and WJ tests with robust estimators based on theoretically determined critical

values, and (d) the IGA and WJ tests with robust estimators based on empirically

determined critical values. We found that the IGA tests were always robust to assumption

violations whether based on least squares or robust estimators or whether critical values

were obtained through theoretical or empirical methods. The WJ procedure, however,

occasionally resulted in liberal rates of error when based on least squares estimators but

always proved robust when applied with robust estimators. Neither approach particularly

benefited from adopting bootstrapped critical values. Recommendations are provided to

researchers regarding when each approach is best.
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Testing Treatment Effects in Repeated Measures Designs:

Trimmed Means and Bootstrapping

Traditional tests for mean equality typically are invalid when data are nonnormal

in form and heterogeneity exists between groups of subjects, particularly when group

sizes are unequal (the design is unbalanced). In particular, rates of Type I error usually

are inflated or depressed and the power to detect treatment effects can be substantially

reduced from theoretical values. This finding holds in independent and correlated groups

designs; furthermore, it applies to univariate and multivariate designs (see Coombs,

Algina, & Oltman, 1996; Lix & Keselman, 1998; Wilcox, 1998).

A number of researchers have shown that the deleterious effects of variance

heterogeneity generally can be overcome by adopting Welch (1947, 1951)-type statistics

(see Coombs et al., 1996; Lix & Keselman, 1995), that is, statistics that do not pool

across heterogeneous sources of variability and where error degrees of freedom (df) are

estimated from the sample data. The deleterious effects of nonnormality can also

generally be overcome by adopting robust measures of central tendency and variability,

that is, by using trimmed means and Winsorized variances rather than the usual least

squares estimators (see Lix & Keselman, 1998; Wilcox, 1997b, 1998). Within the context

of independent groups designs, a number of papers have demonstrated that one can

indeed generally achieve robustness to nonnormality and variance heterogeneity in

unbalanced designs by using robust estimators with nonpooled statistics (see Keselman,

Kowalchuk & Lix, 1998; Lix & Keselman, 1998)

Within the context of correlated groups designs, Keselman, Carriere and Lix

(1993) have shown how Johansen's (1980) nonpooled multivariate statistic can be used to

test for treatment effects in between- by within-subjects repeated measures designs.

Furthermore, they have demonstrated through Monte Carlo methods that this Welch-

James (1951, 1954)-type statistic (WJ) is generally robust to nonnormality and

covariance heterogeneity in nonspherical unbalanced repeated measures designs. Another
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generally robust approach to analyzing treatment effects in repeated measures designs is

the Huynh (1978) Improved General Approximation (IGA) test. The IGA procedure uses

the traditional univariate F tests for assessing treatment effects, however, df are adjusted

to take into account possible violations of multisample sphericity. Algina and Keselman

(1998) and Keselman, Algina, Kowalchuk and Wolfinger (1999, in press) have shown

that the IGA approach, as well as the WJ approach, are generally robust to the combined

effects of nonnormality and covariance heterogeneity in nonspherical unbalanced

repeated measures designs.

Even though it has been demonstrated that the IGA and WJ procedures are

generally robust to the combined effects of nonnormality and covariance heterogeneity,

under some conditions of departure from multisample sphericity and multivariate

normality, their rates of Type I error have been found to be inflated (see Algina &

Keselman, 1997; Keselman et al., 1993; Keselman, Kowalchuk & Boik, in press). For

example, Keselman, Kowalchuk and Boik reported values of 9.68% and 8.46% for the

IGA and WJ procedures, respectively, when they were used to test the repeated measures

interaction effect. Further improvement in Type I error control should be possible by

applying these procedures with robust estimators, that is, with trimmed means and

Winsorized variances and covariances and by obtaining critical values through bootstrap

methods. Such improvement has been demonstrated with statistics for independent group

designs (see Wilcox, Keselman, & Kowalchuk, 1998). Lix, Keselman and Algina (1997)

provide limited verification of the utility of using trimmed means in the analysis of

repeated measures designs, however, in their study statistical significance was assessed

with theoretically determined rather than empirically determined critical values.

Accordingly, the purpose of our paper is to determine whether the IGA and WJ

procedures rates' of Type I error can be better controlled when data are nonnormal and

covariance matrices across groups are unequal in unbalanced nonspherical repeated

measures designs when they are used with trimmed means and Winsorized variances and
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covariances and when critical values are obtained through a bootstrapping method.

Determining whether the IGA and WJ procedures provide valid tests of repeated

measures hypotheses when used in conjunction with robust estimators is important

because when data are nonnormal it can be argued that testing hypotheses about robust

parameters (e.g., trimmed population means) with robust estimators is a more justifiable

approach for comparing the typical performance of treatment groups than is the use of

traditional statistics based on least squares estimators (see e.g., Wilcox, 1998).

Test Statistics

The simplest of the higher-order repeated measures designs involves a single

between-subjects factor and a single within-subjects factor, in which subjects (i 1,  œ á

, n , n N) are selected randomly for each level of the between-subjects factor (j 1, j jD œ œ

á œ , J) and observed and measured under all levels of the within-subjects factor (k 1, 

á  , K). In this design, the repeated measures data are modeled by assuming that the

random vectors Y Y Y are normal, independent and identicallyYij 2œ á(     )34" 34 345
w

distributed within each level j, with common mean vector  and where we allow.j

D Dj jÁ w , j j .Á w

IGA. Huynh (1978) developed tests of the within-subjects main and interaction

effects that are designed to be used when multisample sphericity is violated. The test

statistic for the within-subjects main effect is and the critical value isFK K K S/Jœ MS /MS  ‚

bF[ ; h', h]; the test statistic for the within-subjects interaction effect is!

FJK JK K S/Jœ MS /MS  ‚ and the critical value is cF[ ; h'', h]. The parameters of the critical!

values are defined in terms of the  and the n . These parameters adjust the criticalDj j

values to take into account the effect of violating multisample sphericity on F  and F .K JK

If multisample sphericity holds,
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bF[ ; h', h] F [ ; (K 1), (N J)(K 1)] and! !œ   

cF[ ; h'', h] F [ ; (J 1)(K 1), (N J)(K 1)]. (1)! !œ    

Estimates of the parameters (c, b, h, h and h ), and the correction due to Lecoutrew ww

(1991), are presented in Algina (1994) and Keselman and Algina (1996). A SAS/IML

(SAS Institute, 1989) program is also available for computing this test in any repeated

measures design (see Algina, 1997).

WJ. Since the effects of testing mean equality in repeated measures designs with

heterogeneous data is similar to the results reported for independent groups designs, one

solution to the problem parallels those found in the context of completely randomized

designs. The Johansen (1980) approach, a multivariate extension of the Welch (1951) and

James (1951) procedures for completely randomized designs, involves the computation

of a statistic that does not pool across heterogeneous sources of variation and estimates

error df from sample data. (This is in contrast to the Huynh (1978) approach which, by

use of the conventional univariate F statistics, does pool across heterogeneous sources of

variance. The Huynh approach adjusts the critical value to take account of the pooling.)

Suppose that we wish to test the hypothesis:

H :   = (2)0 C 0.

where  = ( ,  , ) ,  = (  ,  , ) , j = 1, , J, and  is a full rank contrast. . . .1 J j j1 jK
w w w wá á á. . C

matrix of dimension r JK. Then an approximate df multivariate Welch (Welch, 1947,‚

1951)-James (James, 1951, 1954)-type statistic according to Johansen (1980) and

Keselman et al. (1993) is

T  = ( ) ( ) ( ) , (3)WJ C Y C S C C Y w w "
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where  = ( ,  , ) , with E ( ) = , and the sample covariance matrix of  is  =Y Y Y Y Y S    
á

w w
1 J

w .

diag( /n ,  , /n ), where  is the sample variance-covariance matrix of the j-thS S S1 1 J J já

grouping factor. T /c is distributed, approximately, as an F variable with df f = r, and fWJ 1 2

= r(r + 2)/(3A), and c is given by r 2A 6A /(r 2), with  

A =   [tr { ( ) } { tr ( ( ) )} ] / (n 1) .  (4)1
2

j 1

J
j j j!

œ

w w " # w w " #S C CS C C Q S C CS C C Q 

The matrix  is a block diagonal matrix of dimension JK JK, corresponding to the j-thQj ‚

group.  The (s,t)-th block of =  if s = t = j and is  otherwise.  In order to obtainQ I 0j K K‚

the main and interaction tests with the WJ procedure let be a [(K 1) K] contrastCK 1
w  ‚

matrix and let be similarly defined. A test of the main effect can be obtained byCJ 1

letting , where is the (j 1) unit vector and denotes the KroneckerC 1 C 1œ Œ ‚ ŒJ K 1 J  

product. The contrast matrix for a test of the interaction effect is . LixC C Cœ ŒJ 1 K 1 

and Keselman (1995) present a SAS/IML (SAS Institute, 1989) program that can be used

to compute the WJ test for any repeated measures design that does not contain

quantitative covariates nor has missing values.

Robust Estimation

While a wide range of robust estimators have been proposed in the literature (see

Gross, 1976), the trimmed mean and Winsorized (co)variance are intuitively appealing

because of their computational simplicity and good theoretical properties (Wilcox, 1995a,

1998). The standard error of the trimmed mean is less affected by departures from

normality than the usual mean because extreme observations, that is, observations in the

tails of a distribution, are censored or removed.  Furthermore, as Gross (1976) noted, “the

Winsorized variance is a consistent estimator of the variance of the corresponding

trimmed mean" (p. 410). In computing the Winsorized (co)variance, the most extreme

observations are replaced with less extreme values in the distribution of scores.
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The first step in computing robust estimators within the context of repeated

measures designs is to Winsorize the observations. For our  design, WinsorizationJ K‚

must be performed for every level of the two factors. That is, for fixed  and , Winsorizej k

the observations , 1,  , n  and repeat this process for Y345 3 œ á 4 j 1,  , J and k 1, œ á œ  

á œ , K Let [ n ] be the desired amount of trimming where [  n ] is the greatest. g4 # #j 4

integer less than or equal to n ; we shall set .2.  The Winsorized values are given # #4 œ 2

by

X   if  
  if  

  if   .

ijk g jk ijk g jk

ijk g jk ijk g

g g

œ ] ] Ÿ ]

œ ] ]  ]  ]

œ ] ]  ]

( 1) ( 1)

( 1) (n )

(n ) i (n )

4 4

4 4

4 4

 

  45

 45 45  45

4

4 4

Now, for every j there is a K K Winsorized covariance matrix that must be‚

estimated. The estimated Winsorized covariance between the th and th levels of them l

within-subjects factor is, for fixed j, estimated with

s476 œ
1

n   14 
 (Y Y )(Y Y ), (5)

_ _!
3œ"

8

347 Þ47 346 Þ46

4

 

where Y Y /n , is the Winsorized sample mean for the th level of the between-
_
Þ47 347 4

3
œ ! j

subjects factor and the th level of the within-subjects factor. For fixed , letm j

S S4 476 4[ [
œ ‚(s ). That is,  estimates the K K Winsorized covariance matrix for the thj

level of factor J.

In our study we applied the robust estimators to the IGA and WJ procedures. For

example, with the WJ procedure hypotheses about the repeated measures main and

interaction effects can now be expressed as
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H : , (6)! >C 0. œ

where  is a vector of population  means. Let .> trimmed

S S S[ œ   â  diag[(n 1) /[h (h 1)]   (n 1) /[h (h 1)]] be a block diagonal1 1 1 1 J J J[ [J

matrix, where h .   For each  and , let Y  be the trimmed mean based on
_

4 >45œ 8  14 42 j k

Y  ,   , Y .  That is,145 8 45á
4

Y (7)
_
>45 œ

"
8  14 42       Y ,!

3œ1 "

8 1

3 4
4

4 4

( ) k

where Y(1) (2) ( )45 45 8 45 4Ÿ Ÿ á ŸY Y  are the n  values in the th treatment group written
4

jk

in ascending order.

Accordingly, the WJ statistic is

T  = ( ) ( ) ( ) , (8)WJ> C Y C S C C Y 
> [ >

w w "

where  = ( ,  , )  and A is now defined asY Y Y>
  

á
w w
>

w
11 JKt

A  [tr { ( ) } +{ tr ( ( ) )} ] / (h 1) . (9)œ 1
2

1
!
j

j
œ

N
w w " # w w " #

4 4S C CS C C Q S C CS C C Q[ [ [ [

Bootstrapping

Rather than approximate the null distribution of IGA  and T  with an F> >WJ

distribution, a percentile-t bootstrap estimate of the critical value can be used instead.

That is, Westfall and Young's (1993) results suggest that Type I error control could be

improved by combining bootstrap methods with methods based on trimmed means. The

asymptotic results provided by Hall and Padmanabhan (1992) support this conjecture and

the results of Wilcox (1997a) provide empirical support. Additional asymptotic results

supporting the use of the percentile-  bootstrap stem from general conditions where it ist

second-order accurate, as opposed to only first-order accurate as is obtained with
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standard asymptotic methods (see, e.g., Hall, 1986). Roughly, this means that when the

goal is to have the probability of a Type I error equal alpha, its error in achieving this

goal goes to zero at the rate 1/n, in contrast to standard asymptotic methods where the

error goes to zero at the rate of 1/(n) "
# Þ

For a fixed value of  randomly sample, with replacement, n  rows of4 4

observations from the matrix

Ô ×
Õ Ø

Y  ,  , Y

Y  ,  , Y

1 1 1

1

4 4O

8 4 8 O

á

ã
á

Þ

4 4j

Label the results

Ô ×
Õ Ø

Y  ,  , Y

Y  ,  , Y
.

‡ ‡
4 4O

‡ ‡
8 4 8 O

1 1 1

1

á

ã
á

4 4j

Next, set C Y Y . That is, shift the bootstrap samples so that, in effect, the345 >45
‡
345œ 



bootstrap samples are obtained from a distribution for which the null hypothesis of equal

trimmed means is true. Next compute T  (or IGA ), the value of the statistic T  (or‡
> > >WJ

*
WJ

IGA ) (based on the C  values). Repeat this process  times yielding T , 1 ,  , .> 345
‡
,B B, œ á

Let T T be the  values written in ascending order and set‡ ‡ ‡
F(1) (2) ( )Ÿ X Ÿ á Ÿ B

[ (1 ) ]. Then an estimate of an appropriate critical value is T . That is, reject7 œ  ! B ‡
(m)

the null hypothesis if T  (or IGA ) T . ) We set  at 599 (See Hall, 1986; Wilcox,WJ (m)> >
‡ B

1997a). Results from Hall (1986) suggest that it may be advantageous to chose  suchB

that 1  is a multiple of ( 1) .  ! B -1 (For more details about the percentile-t bootstrap

method, see Efron & Tibshirani, 1993.)

Methods of the Simulation
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The IGA and WJ approaches for testing repeated measures main and interaction

effect hypotheses were examined for balanced and unbalanced designs containing one

between-subjects and one within-subjects factor; there were three and four/eight levels of

these factors, respectively. Specifically, we computed the IGA and WJ tests of the main

and interaction effects in our J K repeated measures design with both least squares and‚

robust estimators and obtained critical values from the F distribution or through our

percentile-t bootstrap method. Thus, we examined four methods for testing main and

interaction effects: (a) the IGA and WJ tests with least squares estimators based on

theoretically determined critical values, (b) the IGA and WJ tests with least squares

estimators based on empirically determined critical values, (c) the IGA and WJ tests with

robust estimators based on theoretically determined critical values, and (d) the IGA and

WJ tests with robust estimators based on empirically determined critical values.

Combinations of five factors were investigated which included: (a) equal and

unequal covariance structures, (b) equal and unequal group sizes, (c) pairings of

covariance matrices and group sizes, (d) the value of the sphericity parameter, and (e)

normal and nonnormal data.

Equal as well as unequal between-subjects covariance matrices were investigated.

When unequal, the matrices were multiples of one another, namely , andD D1 23œ "

D D D D D D3 2 1 2 3 2
5 9
3 5 5œ œ œ or , and . These degrees and type of covariance"

heterogeneity were selected because Keselman and Keselman (1990) found that, of the

conditions they investigated, they resulted in the greatest discrepancies between the

empirical and nominal rates of Type I error and, therefore, were conditions under which

the effects of covariance heterogeneity could readily be examined.

The test statistics were investigated when the number of observations across

groups were equal or unequal. Total sample size was based on the recommendations

provided by Wilcox (1995b), Keselman et al. (1993), and Algina and Keselman (1997).
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First, Wilcox recommends that groups should contain at least 20 observations when data

are to be trimmed. Second, according to Keselman et al. and Algina and Keselman, in

order to obtain a robust WJ test, the ratio of the smallest group size [n ] to the numberÐ738Ñ

of repeated measurements minus one [(K 1)] should be approximately 2 (4 or 5) to one

when testing the main effect, depending on whether data are normally (nonnormally)

distributed or 3 or 4 (7 or 8) to one, for the test of the interaction. Based on these

recommendations we initially chose to investigate the following cases: (a) (20, 20, 20),

(16, 20, 24) and (12, 20, 28) (N 60) for K and (b) (35, 35, 35), (28, 35, 42), andœ œ %

(21, 35, 49) (N 105) for K 8. Note that for each value of N, both a moderate andœ œ

substantial degree of group size inequality were investigated. The moderately unbalanced

group sizes had a coefficient of sample size variation (C) equal to .16, while for the¶

more disparate cases C .33, where C is defined as ( (n n) /J) / n , and n  is the¶ q q qDj
2

j

"
#

average group size. For these initial sample sizes, it is important to note, the above

recommendations were not quite satisfied. However, we decided to start at this point and

increase sample size if trimming and/or bootstrapping did not improve the Type I error

rates for the WJ test, which according to recommendations, could be liberal for these

sample sizes when data are nonnormal.

Six pairings of covariance matrices and group sizes were investigated: (a) equal

n ; equal , (b) equal n ; unequal , (c/c ) unequal n ; unequal  (positively paired),j j j j j jD D Dw

and (d/d ) unequal n ; unequal  (negatively paired). The c /d  condition refers to thew w w
j jD

more disparate unequal group sizes case while the c/d condition designates the less

disparate unequal group sizes case. A positive pairing results when the largest group size

is associated with the covariance matrix containing the largest element values whereas a

negative pairing results when the largest group size is associated with the covariance

matrix with the smallest element values.
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Another issue considered in the current investigation was nonsphericity. In our

investigation the sphericity index was set at 0.75 or 0.57. When 1.0, sphericity is% %œ œ

satisfied and for the J K design the lower bound of 1/(K 1). The covariance‚ œ %

matrices for each value of  investigated are contained in Table 1.%

Rates of Type I error were collected when the simulated data were obtained from

multivariate normal or multivariate nonnormal distributions. The algorithm for

generating the multivariate normal data can be found in Keselman et al (1993). The

nonnormal distribution was a multivariate lognormal distribution with marginal

distributions based on Y exp(X ) (i 1, , n ) where X  is distributed as N(0,ijk ijk j ijkœ œ á

.25); this distribution has skewness ( ) and kurtosis ( ) values of 1.75 and 5.90,# #1 2

respectively. The procedure for generating the multivariate lognormal data is based on

Johnson, Ramberg, and Wang (1982) and is presented in Algina and Oshima (1994). This

particular type of nonnormal distribution was selected since applied data, particularly in

the behavioral sciences, typically have skewed distributions (Micceri, 1989; Wilcox,

1994b). Furthermore, Sawilowsky and Blair (1992) found in their Monte Carlo

investigation of the two independent sample t test that only distributions with extreme

degrees of skewness (e.g., 1.64) affected Type I error control. In addition, Algina#1 œ

and Oshima (1995) found that tests for mean equality are affected when distributions are

lognormal and homogeneity assumptions are not satisfied. Thus, we felt that our

approach to modeling skewed data would adequately reflect conditions in which the tests

might not perform optimally.

Type I error rates were estimated with 3,000 replications per investigated

condition.

Results

To evaluate the particular conditions under which a test was insensitive to

assumption violations, Bradley's (1978) liberal criterion of robustness was employed.

According to this criterion, in order for a test to be considered robust, its empirical rate
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of Type I error ( ) must be contained in the interval 0.5 1.5 . Therefore, for! ! ! !s sŸ Ÿ

the five percent level of significance used in this study, a test was considered robust in a

particular condition if its empirical rate of Type I error fell within the interval

.025 .075. Correspondingly, a test was considered to be nonrobust if, for aŸ Ÿs!

particular condition, its Type I error rate was not contained in this interval.  In the tables,

bolded entries are used to denote these latter values. We chose this criterion since we feel

that it provides a reasonable standard by which to judge robustness. That is, in our

opinion, applied researchers should be comfortable working with a procedure that

controls the rate of Type I error within these bounds, if the procedure limits the rate

across a wide range of assumption violation conditions. Nonetheless, there is no one

universal standard by which tests are judged to be robust, so different interpretations of

the results are possible.

Our initial analysis of the data indicated that rates (percentages) of Type I error

were generally well controlled when the observational vectors were obtained from

normal distributions. That is, all main effect IGA and WJ rates of error, based on least

squares or robust estimators, with either nonbootstrapped or bootstrapped critical values,

were close to theoretical expectation regardless of type of pairing of group sizes and

covariance matrices (conditions a-d'), value of epsilon ( .75 and .57), or ratio of% œ

unequal covariance matrices (1:3:5 or 1:5:9) investigated. The interaction rates, with the

exception of three liberal WJ values (7.57%, 7.77%, 7.80%), based on least squares

estimates and nonbootstrapped critical values, were also well controlled. The liberal WJ

values occurred in condition d', that is, the case involving the most disparate of the

unequal group sizes negatively paired with unequal covariance matrices; it is important to

remember that the smallest of the group sizes in condition d' does not conform to the size

recommendations previously stipulated. Based on these initial analyses we decided to

table only the results when observational vectors were obtained from lognormal

distributions. (Nontabled values can be obtained upon request.)
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Lognormal Data

K 4œ . Rates of Type I error for the test of the repeated measures main and

interaction effect for nonnormal data when there were four levels of the repeated

measures variable are presented in Tables 2 and 3, respectively. One can see that there

were only five liberal values in total from both tables, all associated with the WJ test

based on least squares estimators. These liberal values occurred when .57. Thus,% œ

when there are four levels of the repeated measures variable, one can generally obtain a

robust test of the repeated measures effects with either of the four investigated

procedures. Specifically, the IGA procedure based on least squares or robust estimators

always provided a valid test of the repeated measures main and interaction effect

hypotheses. On the other hand, the WJ test based on least squares estimators was

occasionally liberal, though well behaved when based on robust estimators. It is also

important to note that, for the test of the repeated measures interaction effect, rates of

Type I error were frequently (24 cases out of 96) conservative when critical values were

obtained via bootstrapping.

K 8œ . Rates of Type I error for the test of the repeated measures main and

interaction effect when there were eight levels of the repeated measures variable for

nonnormal data are presented in Tables 4 and 5, respectively. Once again the rates for the

IGA tests were well controlled regardless of whether the tests were based on least squares

or robust estimators or whether critical values were obtained via the bootstrap or not. The

rates of Type I error for the WJ procedure were well controlled when the procedure was

based on robust estimators and often not well controlled when based on least squares

estimators. Interestingly, for the test of the main effect, bootstrapping was effective in

providing a robust WJ test, while for the test of the interaction effect, bootstrapping

resulted in conservative WJ rates of Type I error in every case but two.
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Discussion

The Wech-James multivariate test, due to Johansen (1980) and presented by

Keselman et al. (1993), was compared to Huynh's (1978) IGA test. Both procedures have

been found to be generally robust to violations of multisample sphericity and covariance

heterogeneity in unbalanced designs when data are nonnormal in form (see Keselman et

al., 1993; Keselman et. al., in press, 1999; Keselman, Kowalchuk & Boik, in press).

However, particularly for the WJ test, conditions do arise where rates of Type I error can

be liberal, particularly if sample sizes are not as large as those prescribed by Keselman et

al. (1993) and Algina and Keselman (1997). Algina and Keselman (1998) nonetheless

recommended the WJ procedure over the IGA test, when sample sizes conform to the

recommended guidelines, since they found that the WJ test can be substantially more

powerful to detect nonnull effects.

The performance of these tests, and WJ in particular, may be improved if they are

based on robust rather than least squares estimators and/or if critical values used for

assessing statistical significance are obtained through a bootstrap method. Thus, we

computed empirical rates of Type I error for the WJ and IGA procedures, when the

procedures were based on either least squares or robust estimators (i.e., trimmed means

and Winsorized variances and covariances) and when critical values used for assessing

statistical significance were obtained through bootstrap or usual methods. The empirical

rates of error were compiled when data were either normal/lognormal, covariance

matrices were either equal/unequal, group sizes were either equal/unequal, sphericity was

either moderately/severely violated, covariance matrices were either moderately/severely

unequal, and when these conditions occurred in various combinations.

We found that when data were obtained from normally distributed populations

both procedures were generally able to provide very effective Type I error control when

they were based on least squares estimators of central tendency and variability. Utilizing
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robust estimators or obtaining critical values through a bootstrap method did not

generally result in substantially different rates of Type I error.

When data were nonnormal in shape (i.e., lognormal), the IGA procedure based

on least squares estimators and its usual critical value continued to effectively control its

rates of Type I error while the rates for the WJ test, also based on least squares estimators

and its usual critical value, often were liberal (i.e., 7.50%). On the other hand, both

procedures when based on robust estimators and their usual critical values resulted in

well behaved rates of Type I error over the conditions examined in our investigation.

Obtaining critical values through a bootstrap method did not offer any additional

improvement in Type I error control. In fact, rates of Type I error were frequently very

conservative (i.e., 2.5%) when the bootstrap was employed.

Based on our findings and those reported elsewhere we offer the following

recommendations. When one is interested in testing main and interaction effect

hypotheses pertaining to the usual population means we then recommend that researchers

adopt the Welch-James procedure as long as sample sizes meet the prescriptions set forth

by Keselman et al. (1993) and Algina and Keselman (1998). When sample sizes meet

these prescriptions the WJ procedure will typically provide a robust test of the null

hypothesis under most conditions of nonsphericity, covariance heterogeneity,

nonnormality, and, as well, will typically be more powerful to detect treatment effects

than the IGA test due to Huynh (1978). We make this recommendation even though in

our study, rates of Type I error for WJ were often liberal. However, the reader should

remember that our sample sizes did not meet the prescribed recommended sizes; we used

smaller than recommended sizes because we wanted to see if these smaller sizes would

nonetheless provide robust tests when robust estimators were adopted. When sample

sizes are smaller than those prescribed, the IGA test involving least squares estimators

should be adopted because it is very robust to assumption violations. For completeness

we note that Wilcox, Keselman, Muska and Cribbie (in press) have found that the Huynh
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and Feldt (1976) univariate corrected df statistic as well as the usual multivariate test

statistic based on least squares estimators do not provide adequate Type I error protection

under conditions similar to those investigated in our study.

It is important to note, that although the results from Monte Carlo investigations

are, as always, limited to the conditions examined, our recommendations follow, and are

generalizable, not only from the conditions we examined, but as well, from findings

previously reported. With regard to the conditions we varied, we believe they sufficiently

probed the effects of the examined variables and as well permit generalizations across a

broad range of conditions likely to be encountered by behavioural science researchers.

Specifically, our cases of covariance heterogeneity, nonsphericity and sample size

equality/inequality cover a range of values that we believe are sufficiently broad that they

should include most data sets that conceivably could be obtained in behavioural science

research. That is, covariance matrices whose elemental values differ by a factor of 3:1

and 5:1 or 5:1 and 9:1 were disparate enough to sufficiently represent the effects of

covariance heterogeneity for any likely real data set. Likewise, our cases of nonsphericity

( .75 and .57) were sufficiently broad over the range of values that sphericity can% œ

assume. With regard to sample size, we chose our cases according to the results reported

by Keselman et al. (1998). According to their survey of statistical practices of

behavioural science researchers, unbalanced designs are more prevelant than balanced

designs and typical sample size is 60 subjects for between by within repeated measures

designs. Another point to consider, with regard to sample size, is that it was not necessary

to compare the tests based on robust estimators (i.e., WJ with robust estimators) to their

least squares counterparts (WJ-LS) for larger sample size cases because published

findings indicate that the WJ-LS procedure will be prone to inflated rates of Type I error

in large designs (i.e., K 8) unless sample sizes are very large ( (Algina &œ e.g., > 300) 

Keselman, 1997). Accordingly, because these sizes are typically not available to

researchers (see Keselman et al., 1998), we sought a solution that would be viable with
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typical sizes. Finally, with respect to the possible effects of nonnormaility on rates of

Type I error, our choice of distribution was based on the results reported by Sawilowsky

and Blair (1992) who indicated that it is the  of skewness that affects rates of Typedegree

I error for tests of mean equality and that in their investigation when skewness equalled

1.64 the tests were adversely affected. This conclusion generalizes to repeated measures

designs (see e.g., Keselman & Lix, 1997).

When researchers feel that they are dealing with populations that are nonnormal

in form [Tukey (1960) suggests that most populations are skewed and/or contain outliers]

and thus subscribe to the position that inferences pertaining to robust parameters are

more valid than inferences pertaining to the  least squares parameters, then eitherusual

the IGA or WJ procedures, based on robust estimators, can be adopted. Our results

certainly suggest that these procedures will provide valid tests of the repeated measures

main and interaction effect hypotheses (of trimmed population means) when data are

non-normal, nonspherical, and heterogeneous.

Finally, it should be noted that although we have not compared the WJ test with

trimmed means and Winsorized variances with the WJ test based on least squares

estimators with regard to power, theory and prior work indicates that this was not

necessary. That is, theory tells us that procedures based on sample means result in poor

power because the standard error of the mean is inflated when distributions have heavy

tails; however, this is less of a problem when working with trimmed means (see Tukey,

1960; Wilcox, 1995b). This phenomenon is illustrated in a number of sources. For

example, Wilcox (1994b, 1995b) has presented results indicating that in the two sample

and one-way problem, tests (i.e.,  and ) based on the usual least squares estimators loset F

power when data contain outliers and/or are heavy tailed. Specifically, in the two sample

problem, Wilcox (1994b) compared the Welch (1938) and Yuen (1974) procedures and

found that when data were obtained from contaminated normal distributions

(distributions that have thicker tails compared to the normal) the power of Welch's test
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was considerably diminished compared to its sensitivity to detect nonnull effects when

data were normally distributed and, as well, was less sensitive than Yuen's test. Indeed,

the power of Welch's test to detect nonnull effects went from .931 when distributions

were normally distributed to .278 and .162 for the two contaminated normal distributions

that were investigated; the corresponding power values for Yuen's test were .890, .784,

and .602, respectively. Wilcox (1995b) presented similar results for four independent

groups.
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Footnotes

"Þ Other than the first two authors, the order of authorship was determined alphabetically.

The research reported in this paper was supported by the National Science and

Engineering Research Council of Canada and the Social Sciences and Humanities

Research Council of Canada.

2. , A choice for the amount of trimming, must be made. Efficiency (achieving a#

relatively small standard error) is one approach to this problem. If is too small,# 

efficiency can be poor when sampling from a heavy-tailed distribution. If is too large,# 

efficiency is poor when sampling from a normal distribution. A good compromise is

# œ .2 because efficiency is good when sampling from a normal distribution and little

power is lost as compared with using means ( 0) (e.g., Rosenberger & Gasko, 1983;# œ

Wilcox, 1997b). In terms of computing confidence intervals and controlling Type I error

probabilities, theory tells us that problems associated with means decrease as the amount

of trimming increases (Wilcox, 1994a, 1994b). The improvement can be substantial as #

increases from 0 to .2, but for .2 the benefits of trimming are less dramatic versus# 

using .2. Huber (1993) argues that in practice, using .1 is “dangerous,” meaning# #œ 

we run the risk of relatively high standard errors, and thus low power. Of course,

situations arise where .2 yields a smaller standard error versus .2, but the# # œ

improvement is typically small. In contrast, using .2 offers a substantial# œ

improvement over .1 or 0 in many cases. For these reasons, .2 is assumed henceforth# œ

when referring to the trimmed mean.
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Table 1. Empirical Main Effect Rates of Type I Error (NormalData; K=4; N=60)

Cond Test Gj=1:3:5 Gj=1:5:9

LS RE LS RE

~B B ~B B ~B B ~B B

Epsilon=.75

a IGA  5.47 5.23 4.33 4.77 5.10 5.20 4.90 5.50

WJ 5.10 4.97 3.10 4.23 5.10 4.83 3.97 5.23

b IGA 5.03 4.90 4.67 5.20 4.90 4.90 4.57 4.90

WJ 4.80 4.67 3.63 4.60 4.93 4.57 3.33 3.87

c IGA 4.37 4.40 4.10 4.67 5.43 5.60 5.13 5.40

WJ 4.27 4.37 3.97 4.73 4.97 4.90 3.60 4.47

d IGA 5.13 4.77 4.63 4.97 5.03 4.60 5.07 5.53

WJ 4.83 4.53 4.27 4.60 5.47 4.57 3.90 4.40

c’ IGA 5.33 5.30 4.23 4.70 4.70 4.73 4.00 4.47

WJ 4.97 5.00 3.77 4.73 4.63 4.33 3.47 4.20

d’ IGA 5.20 4.80 5.40 5.70 5.30 4.77 5.47 5.27

WJ 5.40 4.47 4.07 3.70 5.30 4.07 3.97 3.77

Epsilon=.57

a IGA 4.77 4.93 4.93 5.00 4.67 4.87 5.03 5.47

WJ 4.43 4.30 4.07 4.67 4.33 4.30 4.03 4.50

b IGA 5.33 5.17 5.03 5.50 5.60 5.67 4.93 5.47

WJ 4.77 4.73 4.80 5.50 5.57 5.17 3.77 4.20

c IGA 4.97 5.03 4.60 5.03 4.33 4.43 4.87 5.10

WJ 3.93 4.03 3.93 4.47 5.03 4.87 3.80 4.63

d IGA 5.40 5.30 4.50 4.67 5.50 5.33 5.67 5.73

WJ 4.47 4.23 4.10 4.00 4.83 4.33 4.17 4.37

c’ IGA 5.50 5.60 5.40 5.43 5.10 5.10 5.23 5.87

WJ 4.40 4.43 3.87 4.43 4.63 4.27 4.03 4.60

d’ IGA 5.13 4.93 5.33 5.20 5.27 5.03 5.20 5.03

WJ 5.20 4.27 3.57 3.70 5.07 3.77 3.67 3.07

Note:L(Least)S(Squares)/R(Robust)E(estimation); ~B-No bootstrapping/B-bootstrapping. See
the Methods Section for a description of conditions a, b, c, c’, d, and d’.



Table 2. Empirical Interaction Effect Rates of Type I Error (Normal Data; K=4; N=60)

Cond Test Gj=1:3:5 Gj=1:5:9

LS RE LS RE

~B B ~B B ~B B ~B B

Epsilon=.75

a IGA 5.33 5.40 5.13 5.43 4.60 4.37 4.00 4.47

WJ 5.33 4.57 3.87 3.83 5.80 4.40 3.97 3.60

b IGA 4.27 4.20 4.53 4.90 5.07 5.10 4.10 4.50

WJ 5.97 4.77 4.63 4.17 5.40 3.70 3.37 2.70

c IGA 4.80 4.77 4.07 4.53 4.93 4.90 5.20 5.47

WJ 4.40 3.23 3.40 3.00 4.73 3.50 3.57 3.20

d IGA 5.07 4.80 4.57 5.00 5.13 4.97 4.90 5.47

WJ 5.73 3.10 4.10 2.63 5.57 2.83 4.33 2.57

c’ IGA 4.17 4.30 4.00 4.47 4.67 4.97 3.80 4.47

WJ 4.67 3.63 3.27 3.17 4.80 3.33 4.10 3.73

d’ IGA 5.27 4.90 5.00 5.07 4.90 4.37 4.87 4.83

WJ 6.10 3.03 4.53 2.17 5.70 2.33 4.97 1.40

Epsilon=.57

a IGA 4.83 4.73 4.93 5.00 4.87 5.03 4.50 5.13

WJ 5.10 4.00 3.97 3.43 4.57 3.53 3.73 3.10

b IGA 5.30 4.93 5.20 5.47 5.37 5.10 5.57 5.83

WJ 5.27 3.73 4.33 3.33 5.17 3.23 4.37 2.90

c IGA 4.23 4.23 3.90 4.33 4.53 4.63 4.83 5.20

WJ 5.30 4.10 4.00 3.17 5.43 3.93 4.73 3.77

d IGA 4.67 4.43 4.80 4.77 5.03 4.63 4.77 4.93

WJ 5.13 2.90 5.00 2.77 5.57 3.10 5.00 2.60

c’ IGA 4.40 4.43 4.93 5.13 5.10 5.53 4.97 5.90

WJ 5.23 3.83 3.87 2.90 5.40 4.20 4.67 3.53

d’ IGA 5.23 4.77 5.13 4.93 5.00 4.20 5.50 5.33

WJ 5.47 2.10 4.80 1.87 6.43 2.20 5.30 2.03

Note:L(Least)S(Squares)/R(Robust)E(estimation); ~B-No bootstrapping/B-bootstrapping. See
the Methods Section for a description of conditions a, b, c, c’, d, and d’.



Table 2. Empirical Main Effect Rates of Type I Error (Lognormal Data; K=4; N=60)

Cond Test Gj=1:3:5 Gj=1:5:9

LS RE LS RE

~B B ~B B ~B B ~B B

Epsilon=.75

a IGA 5.17 5.23 4.37 4.90 5.27 5.23 4.80 5.67

WJ 5.43 4.37 3.43 4.53 5.20 4.33 3.97 5.00

b IGA 5.20 5.03 4.40 5.17 4.77 4.67 4.60 5.10

WJ 4.77 3.90 3.57 4.37 4.97 3.80 3.27 3.90

c IGA 4.70 4.17 3.80 4.73 4.97 4.80 4.70 5.63

WJ 4.73 3.83 3.63 4.47 5.03 4.40 3.63 4.60

d IGA 5.00 4.67 3.97 4.57 5.33 5.20 4.97 5.63

WJ 5.37 4.00 3.70 4.37 5.73 3.60 3.40 4.10

c’ IGA 4.57 4.33 3.73 4.37 4.30 4.07 3.50 4.17

WJ 5.13 4.40 3.10 4.47 4.87 3.83 3.20 4.20

d’ IGA 5.53 5.10 4.90 5.37 6.00 5.37 5.23 5.43

WJ 6.13 4.40 3.40 3.53 5.93 3.83 3.37 3.40

Epsilon=.57

a IGA 5.63 5.10 4.43 5.07 5.00 4.60 4.40 5.00

WJ 6.63 5.20 4.40 4.67 6.20 4.53 3.87 4.20

b IGA 5.67 5.33 5.10 5.37 6.50 6.20 4.87 5.60

WJ 6.67 4.83 4.87 4.90 7.77 5.40 3.83 4.37

c IGA 5.97 5.57 4.67 5.10 5.53 5.23 4.77 5.03

WJ 6.87 4.73 3.80 4.27 6.73 4.80 3.80 4.07

d IGA 6.43 5.83 4.63 4.90 6.37 5.80 5.67 5.60

WJ 7.10 5.07 3.57 3.53 7.73 5.37 3.80 3.67

c’ IGA 5.77 5.63 5.23 5.43 5.00 4.70 5.23 5.77

WJ 6.60 5.13 4.13 4.57 5.67 4.03 3.93 4.47

d’ IGA 6.87 6.03 5.23 5.17 5.97 5.37 5.03 4.67

WJ 7.23 4.70 3.87 3.57 7.47 4.70 3.13 2.37

Note:L(Least)S(Squares)/R(Robust)E(estimation); ~B-No bootstrapping/B-bootstrapping. See
the Methods Section for a description of conditions a, b, c, c’, d, and d’.



Table 3. Empirical Interaction Effect Rates of Type I Error (Lognormal Data; K=4; N=60)

Cond Test Gj=1:3:5 Gj=1:5:9

LS RE LS RE

~B B ~B B ~B B ~B B

Epsilon=.75

a IGA 4.50 4.37 4.20 4.97 3.80 3.47 3.13 3.80

WJ 4.77 2.53 3.23 3.23 4.83 2.40 3.07 3.10

b IGA 4.70 4.50 4.00 4.90 4.10 4.00 3.57 4.03

WJ 5.50 2.73 4.00 3.80 5.47 2.37 2.93 2.43

c IGA 4.37 4.20 3.73 4.43 4.17 4.07 4.37 5.10

WJ 4.17 2.27 2.73 2.37 5.00 2.50 3.07 2.60

d IGA 4.07 3.73 4.13 4.80 4.73 4.33 4.07 4.80

WJ 5.30 2.00 3.33 2.00 6.10 1.93 3.47 2.40

c’ IGA 3.73 4.00 3.67 4.37 3.73 3.87 3.50 4.20

WJ 4.37 2.23 3.00 2.73 4.40 1.97 3.20 2.73

d’ IGA 4.53 4.13 4.30 5.03 4.50 3.97 4.00 4.27

WJ 6.20 1.83 4.30 1.70 6.50 1.73 4.40 1.53

Epsilon=.57

a IGA 3.93 3.70 4.00 4.57 3.97 3.67 3.87 4.83

WJ 4.37 2.17 3.17 2.63 4.00 1.93 3.33 2.57

b IGA 5.17 5.10 4.73 5.60 5.03 4.80 5.20 5.40

WJ 6.60 3.43 4.40 2.97 7.17 2.93 4.27 2.67

c IGA 4.37 4.03 3.50 4.53 4.37 4.27 4.50 4.87

WJ 5.90 2.77 3.40 2.70 6.60 2.80 4.43 3.17

d IGA 4.50 4.07 4.17 4.60 5.30 4.97 4.53 5.07

WJ 6.60 2.37 4.17 2.27 8.00 3.20 5.33 2.57

c’ IGA 4.30 4.13 4.13 4.93 4.57 4.60 4.73 5.83

WJ 5.10 2.17 3.37 2.40 5.57 2.23 4.00 3.10

d’ IGA 5.47 4.77 4.40 4.77 5.23 4.63 4.70 5.07

WJ 7.60 2.53 4.50 1.87 9.23 2.37 5.33 1.63

Note:L(Least)S(Squares)/R(Robust)E(estimation); ~B-No bootstrapping/B-bootstrapping. See
the Methods Section for a description of conditions a, b, c, c’, d, and d’.



Table 3. Empirical Main Effect Rates of Type I Error (Normal Data; K=8; N=105)

Cond Test Gj=1:3:5 Gj=1:5:9

LS RE LS RE

~B B ~B B ~B B ~B B

Epsilon=.75

a IGA 4.90 4.50 5.07 5.37 5.27 5.07 5.10 5.27

WJ 5.23 5.33 3.93 4.90 5.13 5.27 4.10 5.40

b IGA 5.50 5.47 5.63 5.63 5.33 4.90 4.87 5.10

WJ 5.83 5.27 3.73 4.47 5.13 4.50 3.83 4.43

c IGA 4.53 4.50 4.83 4.73 5.37 5.23 5.07 5.23

WJ 4.80 4.47 3.47 4.40 4.50 4.20 3.87 4.73

d IGA 5.40 5.23 5.20 5.00 4.73 4.57 5.17 5.30

WJ 5.60 4.47 3.63 4.20 4.53 3.70 3.77 3.83

c’ IGA 4.87 4.57 4.27 4.40 5.60 5.33 4.67 4.97

WJ 4.70 4.47 3.37 4.47 5.43 5.33 3.93 4.83

d’ IGA 4.60 4.20 3.87 4.73 5.13 4.20 4.23 4.47

WJ 5.23 3.13 4.70 3.63 4.43 3.03 3.37 2.73

Epsilon=.57

a IGA 5.20 5.13 5.57 5.47 4.93 4.87 5.20 5.27

WJ 4.90 4.67 3.30 4.47 4.63 4.57 3.43 4.23

b IGA 4.77 4.47 4.93 5.17 4.80 4.53 4.00 4.20

WJ 5.00 4.50 3.77 4.53 4.90 4.07 3.53 4.17

c IGA 5.17 5.13 4.60 4.80 5.60 5.47 5.07 4.77

WJ 5.43 5.07 4.30 5.23 5.47 5.03 3.90 4.73

d IGA 4.67 4.63 4.27 4.60 5.10 4.97 4.83 4.80

WJ 5.13 4.43 3.63 4.10 5.30 4.17 3.60 3.97

c’ IGA 4.37 4.20 4.20 4.60 4.83 4.60 5.07 5.10

WJ 4.53 4.60 3.90 4.60 4.80 4.53 3.57 4.60

d’ IGA 4.57 4.27 4.63 4.60 5.77 5.37 4.43 4.50

WJ 5.57 3.53 4.10 3.87 5.67 3.53 4.30 3.77

Note:L(Least)S(Squares)/R(Robust)E(estimation); ~B-No bootstrapping/B-bootstrapping. See
the Methods Section for a description of conditions a, b, c, c’, d, and d’.



Table 4. Empirical Interaction Effect Rates of Type I Error (Normal Data; K=8; N=105)

Cond Test Gj=1:3:5 Gj=1:5:9

LS RE LS RE

~B B ~B B ~B B ~B B

Epsilon=.75

a IGA 5.30 5.17 4.77 5.17 4.17 3.83 4.23 4.30

WJ 5.07 3.13 3.20 3.00 5.07 3.53 3.17 2.70

b IGA 4.83 4.43 4.17 4.23 5.43 5.10 4.43 4.80

WJ 5.43 3.33 3.33 2.50 6.30 3.23 3.70 2.43

c IGA 4.67 4.37 3.87 4.10 5.40 4.90 4.23 4.57

WJ 5.10 3.33 3.07 2.73 5.07 3.23 3.20 2.47

d IGA 5.17 4.87 4.63 4.83 4.83 4.77 4.13 4.33

WJ 6.70 2.87 3.97 2.10 5.93 2.33 3.57 1.67

c’ IGA 4.90 4.67 4.47 4.77 5.50 5.27 4.97 5.20

WJ 5.40 3.50 3.43 2.73 5.47 3.93 3.43 2.77

d’ IGA 4.30 4.00 4.00 4.23 4.60 4.07 3.67 3.87

WJ 7.57 1.47 5.53 1.43 7.17 1.23 5.03 0.53

Epsilon=.57

a IGA 4.73 4.43 4.73 4.93 5.20 4.97 5.00 5.40

WJ 4.80 2.93 3.53 2.80 5.50 3.40 3.20 3.10

b IGA 4.27 4.00 4.27 4.57 5.00 5.13 4.40 4.97

WJ 5.70 3.40 3.73 2.50 5.60 2.83 3.40 1.97

c IGA 4.77 4.53 4.73 5.23 4.37 4.20 4.73 5.13

WJ 5.27 3.40 3.20 2.53 5.30 3.17 3.60 2.67

d IGA 4.83 4.60 4.60 4.97 5.40 5.03 5.27 5.27

WJ 6.67 2.70 3.73 1.97 6.57 2.60 4.10 1.87

c’ IGA 4.80 4.77 4.23 4.50 4.87 4.97 4.03 4.23

WJ 5.83 3.50 4.00 3.10 4.73 3.10 3.40 2.57

d’ IGA 4.80 4.57 4.97 5.33 4.67 4.47 4.20 4.47

WJ 7.77 1.60 5.20 0.97 7.80 1.57 5.57 1.10

Note:L(Least)S(Squares)/R(Robust)E(estimation); ~B-No bootstrapping/B-bootstrapping. See
the Methods Section for a description of conditions a, b, c, c’, d, and d’.



Table 4. Empirical Main Effect Rates of Type I Error (Lognormal Data; K=8; N=105)

Cond Test Gj=1:3:5 Gj=1:5:9

LS RE LS RE

~B B ~B B ~B B ~B B

Epsilon=.75

a IGA 5.17 4.83 5.13 5.40 4.43 4.10 4.97 5.37

WJ 7.23 5.10 3.90 5.03 5.77 4.23 3.70 4.83

b IGA 5.37 5.07 5.30 5.70 4.70 4.57 4.77 5.30

WJ 7.47 4.67 3.90 4.57 6.03 4.10 3.73 4.20

c IGA 4.67 4.27 4.37 4.73 5.17 5.33 5.00 5.50

WJ 6.07 4.40 3.30 4.13 6.67 4.37 3.60 4.77

d IGA 4.60 4.27 4.40 4.73 3.93 3.60 4.70 5.37

WJ 6.20 3.13 3.27 3.57 6.03 3.20 3.27 3.53

c’ IGA 4.37 4.07 3.93 4.07 5.03 4.90 4.83 5.10

WJ 5.83 4.10 3.23 4.27 5.97 4.47 3.87 4.70

d’ IGA 3.73 3.23 4.37 4.43 4.00 3.63 3.40 3.87

WJ 6.30 3.03 3.57 3.23 7.20 2.43 3.23 2.67

Epsilon=.57

a IGA 4.63 4.37 5.03 5.37 4.47 4.27 4.53 4.93

WJ 7.00 4.47 3.50 4.23 7.90 5.00 3.47 4.07

b IGA 4.70 4.33 4.70 4.90 4.80 4.57 3.77 4.33

WJ 7.20 4.27 3.73 4.50 7.97 4.07 3.90 4.47

c IGA 4.80 4.77 4.47 4.87 5.23 5.07 4.53 5.10

WJ 7.93 4.90 4.03 4.60 7.63 4.77 3.87 4.67

d IGA 4.53 4.20 4.23 4.77 5.80 5.40 4.90 5.17

WJ 9.03 4.90 3.87 3.93 9.00 4.50 4.23 4.10

c’ IGA 4.60 4.60 4.23 4.67 4.40 4.50 5.03 5.47

WJ 7.67 4.83 3.83 4.70 6.93 4.53 4.10 4.87

d’ IGA 4.63 4.53 4.13 4.53 4.67 4.37 4.07 4.43

WJ 10.00 3.77 3.97 3.17 9.20 3.90 4.17 3.10

Note:L(Least)S(Squares)/R(Robust)E(estimation); ~B-No bootstrapping/B-bootstrapping.



Table 5. Empirical Interaction Effect Rates of Type I Error (Lognormal Data; K=8; N=105)

Cond Test Gj=1:3:5 Gj=1:5:9

LS RE LS RE

~B B ~B B ~B B ~B B

Epsilon=.75

a IGA 4.63 4.40 4.47 5.03 3.13 3.10 3.43 4.10

WJ 4.93 1.63 2.53 2.50 4.77 1.40 2.43 2.27

b IGA 3.80 3.77 4.17 4.77 4.03 4.07 3.73 4.53

WJ 6.83 1.50 2.77 2.20 7.00 1.93 2.97 1.90

c IGA 3.63 3.47 3.80 4.50 4.67 4.40 4.33 4.83

WJ 5.63 1.47 2.33 2.17 6.47 1.87 2.83 2.13

d IGA 3.87 3.47 4.27 4.90 4.17 3.97 3.53 4.10

WJ 7.17 1.90 3.30 1.67 8.33 1.70 3.03 1.13

c’ IGA 4.00 3.87 3.93 4.60 4.67 4.43 4.27 4.90

WJ 5.27 1.50 2.53 2.17 5.67 1.97 2.70 2.03

d’ IGA 3.70 3.30 3.17 4.03 3.53 3.27 3.03 3.50

WJ 9.13 1.07 4.83 1.40 9.33 0.90 4.73 0.73

Epsilon=.57

a IGA 4.27 4.13 4.07 4.57 4.10 4.13 4.47 5.17

WJ 4.47 1.20 2.47 2.33 5.10 1.33 2.93 2.50

b IGA 3.83 3.73 4.03 4.50 4.37 4.10 4.53 5.07

WJ 7.07 1.93 2.90 2.03 8.13 1.67 2.93 1.67

c IGA 4.43 4.47 4.47 5.13 4.00 3.90 4.43 4.93

WJ 5.93 1.67 2.97 2.47 7.40 1.93 3.17 2.20

d IGA 3.27 3.10 4.07 4.77 5.10 4.87 4.63 5.13

WJ 8.37 2.33 3.23 1.70 11.60 2.47 3.97 1.77

c’ IGA 4.43 4.43 3.97 4.73 4.50 4.50 3.50 3.90

WJ 5.50 1.30 2.97 2.33 5.57 1.73 2.63 1.90

d’ IGA 3.93 3.60 4.27 4.87 3.80 3.43 3.90 4.53

WJ 12.23 1.37 4.90 1.10 13.77 1.43 5.77 1.10

Note:L(Least)S(Squares)/R(Robust)E(estimation); ~B-No bootstrapping/B-bootstrapping.




