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 INTRODUCTION

 Researchers in the social sciences are often interested in comparing the

means of several treatment conditions (Y , Y  , , Y ; j 1, , J) on a specific
_ _ _

1 2 Já œ á

dependent measure. When each treatment group mean is compared with every

other group mean, the tests are designated pairwise comparisons. When

computing all pairwise comparisons the researcher must consider various issues

(the issues pertain to other classes of multiple tests as well): (a) the multiplicity

effect of examining many tests of significance, (b) the selection of an appropriate

level of significance ( ), and (c) the selection of an 'appropriate' multiple!

comparison procedure (MCP). The goals of the research should guide these

decisions. Researchers faced with these decisions have often settled on

‘traditional' choices [e.g., familywise error (FWE) control, .05, and Tukey's! œ

(1953) method, respectively]. Indeed, a recent survey of the statistical practices

of educational and psychological researchers indicates that of the many MCPs

that are available, the Tukey and Scheffe (1959) methods are most preferred

(Keselman et al., 1998).

 With respect to the selection of a MCP, the researcher must be aware that

his/her choice can often significantly affect the results of the experiment. For

example, many MCPs (e.g., those that are based on traditional test statistics) are

not appropriate (and may lead to incorrect decisions) when assumptions of the

test statistics are not met (e.g., normality, variance homogeneity). Furthermore,

several MCPs have recently been proposed that according to published results

and/or statistical theory significantly improve on the properties (e.g., power) of

existing procedures, while still maintaining the specified error rate at or below .!

 Therefore, the goal of this chapter is to describe some of the newer MCPs

within the context of one-way completely randomized designs when validity



Pairwise Comparisons            3

assumptions are satisfied, as well as when the assumptions are not satisfied.

That is, our goal is to help popularize newer procedures, procedures which

should provide researchers with more robust and/or more powerful tests of their

pairwise comparison null hypotheses.

 It is also important to note that the MCPs that are presented in our paper

were also selected for discussion, by-in-large, because researchers can, in most

cases, obtain numerical results with a statistical package, and in particular,

through the SAS (1999) system of computer programs. The SAS system (see

Westfall et al., 1999) presents a comprehensive up-to-date array of MCPs.

Accordingly, we acknowledge at the beginning of our presentation that some of

the material we present follows closely Westfall et al.'s presentation, however,

our paper focuses on MCPs for examining all possible pairwise comparisons

between treatment group means. We also present procedures that are not

available through the SAS system. In particular, we discuss a number of

procedures that we believe are either new and interesting ways of examining

pairwise comparisons (e.g., the model comparison approach of Dayton, 1998) or

have been shown to be insensitive to the usual assumptions associated with

some of the procedures discussed by Westfall et al. (e.g., MCPs based on robust

estimators).

Type I Error Control

 Researchers who test a hypothesis concerning mean differences between

two treatment groups are often faced with the task of specifying a significance

level, or decision criterion, for determining whether or not the difference is

significant. The level of significance specifies the maximum probability of

rejecting the null hypothesis when it is true (i.e., committing a Type I error). As !
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decreases researchers can be more confident that rejection of the null

hypothesis signifies a true difference between population means, although the

probability of not detecting a false null hypothesis (i.e., a Type II error) increases.

Researchers faced with the difficult, yet important, task of quantifying the relative

importance of Type I and Type II errors have traditionally selected some

accepted level of significance, for example .05.! œ

 However, determining how to control Type I errors is much less simple

when multiple tests of significance (e.g., all possible pairwise comparisons

between group means) will be computed. This is because when multiple tests of

significance are computed, how one chooses to control Type I errors can affect

whether one can conclude that effects are statistically significant or not.

Choosing among the various strategies that one can adopt to control Type I

errors could be based on how one wishes to deal with the multiplicity of testing

issue.

 The multiplicity problem in statistical inference refers to selecting the

statistically significant findings from a large set of findings (tests) to support one's

research hypotheses. Selecting the statistically significant findings from a larger

pool of results that also contain nonsignificant findings is problematic since when

multiple tests of significance are computed, the probability that at least one will

be significant by chance alone increases with the number of tests examined.

 Discussions on how to deal with multiplicity of testing have permeated

many literatures for decades and continue to this day. In one camp are those

who believe that the occurrence of any false positive must be guarded at all costs

(see Games, 1971; Miller, 1981; Ryan, 1959, 1960, 1962; Westfall & Young,

1993). That is, as promulgated by Thomas Ryan, pursuing a false lead can result

in the waste of much time and expense, and is an error of inference that
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accordingly should be stringently controlled. Those in this camp deal with the

multiplicity issue by setting  for the entire set of tests computed.!

 For example, in the pairwise multiple comparison problem, Tukey's (1953)

MCP uses a critical value wherein the probability of making at least one Type I

error in the set of pairwise comparisons tests is equal to . This type of control!

has been referred to in the literature as experimentwise or FWE control. These

respective terms come from setting a level of significance over all tests computed

in an experiment, hence experimentwise control, or setting the level of

significance over a set (family) of conceptually related tests, hence FWE control.

Multiple comparisonists seem to have settled on the familywise label. Thus, in

the remainder of the paper, when we speak about overall error control, we are

referring to FWE. As indicated, for the set of pairwise tests, Tukey's procedure

sets a FWE for the family consisting of all pairwise comparisons.

 Those in the opposing camp maintain that stringent Type I error control

results in a loss of statistical power and consequently important treatment effects

go undetected (see Rothman, 1990; Saville, 1990; Wilson, 1962). Members of

this camp typically believe the error rate should be set per comparison [the

probability of rejecting a given comparison] (hereafter referred to as the

comparisonwise error-CWE rate) and usually recommend a five percent level of

significance, allowing the overall error rate (i.e., FWE) to inflate with the number

of tests computed. In effect, those who adopt comparisonwise control ignore the

multiplicity issue.

 For example, a researcher comparing four groups (J 4) may beœ

interested in determining if there are significant pairwise mean differences

between any of the groups. If the probability of committing a Type I error is set at

! for each comparison, then the probability that at least one Type I error is

committed over all C J(J 1)/2 pairwise comparisons can be much higher thanœ 
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! !. On the other hand, if the probability of committing a Type I error is set at  for

the entire family of pairwise comparisons, then the probability of committing a

Type I error for each of the C comparisons can be much lower than . Clearly!

then, the conclusions of an experiment can be greatly affected by the level of

significance and unit of analysis over which Type I error control is imposed.

 As indicated, several different error rates have been proposed in the

multiple comparison literature. The majority of discussion in the literature has

focused on the FWE and CWE rates (e.g., Kirk, 1995; Ryan, 1959; Miller, 1981;

Toothaker, 1991; Tukey, 1953), although other error rates, such as the false

discovery rate (FDR) also have been proposed (e.g., Benjamini & Hochberg,

1995).

 The FWE rate relates to a family (containing, in general, say k elements)

of comparisons. A family of comparisons, as we indicated, refers to a set of

conceptually related comparisons, e.g., all possible pairwise comparisons, all

possible complex comparisons, trend comparisons, etc. As Miller (1981) points

out, specification of a family of comparisons, being self defined by the

researcher, can vary depending on the research paradigm. For example, in the

context of a one-way design, numerous families can be defined: A  family of all

comparisons performed on the data, a family of all pairwise comparisons, a

family of all complex comparisons. (Readers should keep in mind that if multiple

families of comparisons are defined [e.g., one for pairwise comparisons and one

for complex comparisons], then given that erroneous conclusions can be reached

within each family, the overall Type I FWE rate will be a function of the multiple

subfamilywise rates.) Researchers may find helpful the guidelines offered by

Westfall and Young (1993, p. 220) for specification of a family; they include:

  The questions asked form a natural and coherent unit. For example,ñ
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 they all result from a single experiment.

  All tests are considered simultaneously. (For example, when the resultsñ

 of a large study are summarized for publication, all tests are considered

 simultaneously. Usually, only a subset of the collection is selected for

 display, but the entire collection should constitute the “family” to avoid

 selection effects.)

  It is considered  probable that many or all members of the "family"ñ a priori

 of null hypotheses are in fact true.

Specifying family size is a very important component of multiple testing (In this

chapter family size is all possible pairwise comparisons.). As Westfall et al.

(1999, p. 10) note, differences in conclusions reached from statistical analyses

that control for multiplicity of testing (FWE) and those that do not (CWE) are

directly related to family size. That is, the larger the family size, the less likely

individual tests will be found to be statistically significant with familywise control.

Accordingly, to achieve as much sensitivity as possible to detect true differences

and yet maintain control over multiplicity effects, Westfall et al. recommend that

researchers “choose smaller, more focused families rather than broad ones, and

(to avoid cheating) that such determination must be made ...” (p. 10).a priori

 Definitions of the comparisonwise and familywise error rates appear in

many sources (e.g., Kirk, 1995; Ryan, 1959; Miller, 1981; Toothaker, 1991;

Tukey, 1953). Nonetheless, for completeness, we provide the reader with

definitions of these rates of error. The comparisonwise error rate is defined as

CWE = P(Reject H  | H  is true).! !

That is, the comparisonwise error rate is the usual probability of rejecting a null

hypothesis (H ), given that (|) the null hypothesis is true. On the other hand, the!
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familywise error rate for multiple tests of significance in which some hypotheses

(H , H ,  , H ) are true and the remaining (k m) are false is given by! ! !j j j1 2 má 

FWE P(Reject at least one of H , H ,  , H | H , H ,  , H all are true).œ á á! ! ! ! ! !j j j j j j1 2 1 2m m

This rate of error obviously will depend on which hypotheses are true and which

are false within any particular application. To deal with this ambiguity, a number

of authors (see Westfall et al., 1999) define FWE control to be the maximum

FWE rate, which occurs, when all null hypotheses are true.

 Not only does the FWE rate depend on the number of null hypotheses that

are true but as well on the distributional characteristics of the data and the

correlations among the test statistics. Because of this, an assortment of MCPs

have been developed, each intended to provide FWE control.

 Controlling the FWE rate has been recommended by many researchers

(e.g., Hancock & Klockars, 1996; Petrinovich & Hardyck, 1969; Ryan, 1959,

1962; Tukey, 1953) and is "the most commonly endorsed approach to

accomplishing Type I error control" (Seaman, Levin & Serlin, 1991, p. 577).

Keselman et al. (1998) report that approximately 85 percent of researchers

conducting pairwise comparisons adopt some form of  FWE control.

 Although many MCPs purport to control FWE, some provide 'strong'  FWE

control while others only provide 'weak' FWE control. Procedures are said to

provide strong control if FWE is maintained across all null hypotheses; that is,

under the complete null configuration  ( )  all possible partial. . .1 2 Jœ œ â œ and

null configurations (An example of a partial null hypothesis is

. . . .1 2 J 1 Jœ œ â œ Á ). Weak control, on the other hand, only provides

protection for the complete null hypothesis, that is, not for all partial null

hypotheses as well.
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 The distinction between strong and weak FWE control is important

because as Westfall et al. (1999) note, the two types of FWE control, in fact,

control different error rates. Weak control only controls the Type I error rate for

falsely rejecting the complete null hypothesis and accordingly allows the rate to

exceed, say 5%, for the composite null hypotheses. On the other hand, strong

control sets the error rate at, say 5%, for all (component) hypotheses. For

example, if CWE 1 (1 0.05)  the familywise rate is controlled in a strongœ   ß1/k

sense for testing k independent tests. Examples of MCPs that only weakly

control FWE are the Newman (1939)-Keuls (1952) and Duncan (1955)

procedures.

 . Work in the area of multiple hypothesisFalse Discovery Rate Control

testing is far from static, and one of the newer interesting contributions to this

area is an alternative conceptualization for defining errors in the multiple testing

problem; that is the FDR, presented by Benjamini and Hochberg (1995). FDR is

defined by these authors as the expected proportion of the number of erroneous

rejections to the total number of rejections.

We elaborate on the FDR within the context of pairwise comparisons.

Suppose we have J means, , ,  , , and our interest is in testing the. . .1 2 Já

family of C pairwise hypotheses, H : 0, of which m  are true. Let S0 j j 0. . œw

equal the number of correctly rejected hypotheses from the set of R rejections;

the number of falsely rejected pairs will be V. In terms of the random variable V,

the comparisonwise error rate is E(V/C), while the familywise rate is given by

P(V 1). Thus, testing each and every comparison at  guarantees that !

E(V/C) , while testing each and every comparison at /C (Bonferroni)Ÿ ! !

guarantees P(V 1) . Ÿ !



Pairwise Comparisons            10

According to Benjamini and Hochberg (1995) the proportion of errors

committed by falsely rejecting null hypotheses can be expressed through the

random variable Q V/(V S), that is, the proportion of rejected hypothesesœ 

which are erroneously rejected. (It is important to note that Q is defined to be

zero when R 0; that is, the error rate is zero when there are no rejections.)œ

FDR was defined by Benjamini and Hochberg as the mean of Q, that is

E(Q) Eœ  V
V S  œ E V

R, or

E(Q) E .œ Number of false rejections
Number of rejections 

That is, FDR is the mean of the proportion of the falsely declared pairwise tests

among all pairwise tests declared significant.

As Benjamini and Hochberg (1995) indicate, this error rate has a number

of important properties:

(a) If , then all C pairwise comparisons truly equal zero, and. . .1 2 Jœ œ â œ

therefore the FDR is equivalent to the familywise rate; that is, in the case of the

complete null being true, FDR control implies familywise control. Specifically, in

the case of the complete null hypothesis being true, S 0 and therefore V R.œ œ

So, if V 0, then Q 0, and if V 0 then Q 1 and accordinglyœ œ  œ

P(V 1) E(Q). œ

(b) When m C, the FDR is smaller than or equal to the familywise rate of0 

error. For example, when m C, the FDR is smaller than or equal to the0 

familywise rate of error because in this case, FWE P(R 1) E(V/R) E(Q).œ     œ

This indicates that if the familywise rate is controlled for a procedure, then FDR is
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as well. Moreover, if one adopts a procedure which provides strong (i.e., over all

possible mean configurations) FDR control, rather than strong familywise control,

then based on the preceding relationship, a gain in power can be expected .

(c) V/R tends to be smaller when there are fewer pairs of equal means and when

the nonequal pairs are more divergent, resulting in a greater differences in FDR

and the familywise value and thus a greater likelihood of increased power by

adopting FDR control.

In addition to these characteristics, Benjamini and Hochberg (1995)

provide a number of illustrations where FDR control seems more reasonable

than familywise or comparisonwise control. Exploratory research, for example,

would be one area of application for FDR control. That is, in new areas of inquiry

where we are merely trying to see what parameters might be important for the

phenomenon under investigation, a few errors of inference should be tolerable;

thus, one can reasonably adopt the less stringent FDR method of control which

does not completely ignore the multiple testing problem, as does comparisonwise

control, and yet, provides greater sensitivity than familywise control. Only at later

stages in the development of our conceptual formulations does one need more

stringent familywise control. Another area where FDR control might be preferred

over familywise control, suggested by Benjamini and Hochberg (1995), would be

when two treatments (say, treatments for dyslexia) are being compared in

multiple subgroups (say, kids of different ages). In studies of this sort, where an

overall decision regarding the efficacy of the treatment is not of interest but,

rather where separate recommendations would be made within each subgroup,

researchers likely should be willing to tolerate a few errors of inference and

accordingly would profit from adopting FDR rather than familywise control.

Adjusted p-values
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 As indicated, FWE control is the rate of error control that is currently

favored by social science researchers. In its typical application, researchers

compare a test statistic to a FWE critical value. Another approach for assessing

statistical significance is with adjusted p-values, p , c 1,  , C (Westfall et al.,˜c œ á

1999; Westfall & Wolfinger, 1997; Westfall & Young, 1993). As Westfall and

Young note "p  is the smallest significance level for which one still rejects a given˜c

hypothesis in a family, given a particular (familywise) controlling procedure (p.

11)." Thus, authors do not need to look up (or determine) FWE critical values and

moreover consumers of these findings can apply their own assessment of

statistical significance from the adjusted p-value rather than from the standard

(i.e., FWE) significance level of the experimenter. The latter point is consistent

with the current practice of reporting a p-value for a single test statistic rather

than stating that the ‘result was significant' at the say .05 value; that is, current

practice allows the consumer to take a p-value and apply his/her own personal

standard of significance in judging the importance of the finding. For example, if

p 0.09, the researcher/reader can conclude that the test is statistically˜c œ

significant at the FWE 0.10 level, but not at the FWE 0.05 level.œ œ

 To illustrate the calculation of an adjusted p-value consider the usual

Bonferroni procedure. In its usual application, H  is rejected if the p-value is less!c

than or equal to /C. Note that this is equivalent to rejecting any H  for which! 0c

C p  is less than or equal to . Therefore, Bonferroni adjusted p-values are:† c !

p =˜ C p  if   C p 1
1  if   C pc

c c

c
œ † † Ÿ

†  "Þ
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Adjusted p-values are provided by the SAS (1999) system for many popular

MCPs (see Westfall et al., 1999).

Power

 Just as the rate of Type I error control can be viewed from varied

perspectives when there are multiple tests of significance, the power to detect

nonnull hypotheses also can be conceptualized in many ways. Over the years

many different conceptualizations of power for (pairwise) comparisons have

appeared in the literature (e.g., all-pairs, any pair, per-pair); our presentation,

however, will be based on the work of Westfall et al. (1999, pp. 137-144).

 According to Westfall et al. (1999), when multiple tests of significance are

(to be) examined, power can be defined from four different perspectives: (1)

complete power; (2) minimal power; (3) individual power; and (4) proportional

power. The definitions they provide are:

  Complete Power--P(reject all H s that are false)ñ c

  Minimal Power--P(reject at least one H  that is false)ñ c

  Individual Power--P(reject a particular H  that is false)ñ c

  Proportional Power (average proportion of false H s that are rejected).ñ c

Complete power is the probability of detecting all nonnull hypotheses, a very

desirable outcome, though very difficult to achieve, even in very well controlled

and executed research designs. For example, as Westfall et al. note, if ten

independent tests of significance each have individually a power of 0.8 to detect

a nonnull effect, the power to detect them all equals (.8) 0.107! Minimal10 œ

power, on the other hand, is the probability of detecting at least one nonnull
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hypothesis and corresponds conceptually to the Type I FWE rate. Individual

power is the probability of detecting a particular nonnull hypothesis, with a MCP

critical value. However, it is questionable why a researcher would use a MCP

critical value if he/she were just interested in detecting one particular nonnull

difference. That is, in such a situation why control for multiplicity? Lastly,

proportional power indicates what proportion of false null hypotheses one is likely

to detect.

Types of MCPs

 MCPs can examine pairwise hypotheses either simultaneously, or

sequentially. A simultaneous MCP conducts all comparisons regardless of

whether the omnibus test, or any other comparison, is significant (or not

significant) using a constant critical value. Such procedures are frequently

referred to as simultaneous test procedures (STPs) (see Einot & Gabriel, 1975).

A sequential (stepwise) MCP considers either the significance of the omnibus

test or the significance of other comparisons (or both) in evaluating the

significance of a particular comparison; multiple critical values are used to assess

statistical significance. MCPs that require a significant omnibus test in order to

conduct pairwise comparisons have been referred to as protected tests.

 MCPs that consider the significance of other comparisons when

evaluating the significance of a particular comparison can be either step-down or

step-up procedures. Step-down procedures begin by testing the most extreme

test statistic and nonsignificance of the most extreme test statistics implies

nonsignificance for less extreme test statistics. Step-up procedures begin by

testing the least extreme test statistic and significance of least extreme test

statistics can imply significance for larger test statistics. In the equal sample sizes
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case, if a smaller pairwise difference is statistically significant, so is a larger

pairwise difference, and conversely. However, in the unequal sample size cases,

one can have a smaller pairwise difference be significant and a larger pairwise

difference non-significant if the sample sizes for the means comprising the

smaller difference are much larger than the sample sizes for the means

comprising the larger difference.

 One additional point regarding STP and stepwise procedures is important

to note. STPs allow researchers to examine simultaneous intervals around the

statistics of interest whereas stepwise procedures do not (see however, Bofinger,

Hayter & Liu, 1993).

DESIGN, NOTATION AND TEST STATISTICS

 A mathematical model that can be adopted when examining pairwise

mean differences in a one-way completely randomized design is:

Y ,ij j ijœ . %

where Y  is the score of the ith subject (i ,  , n) in the jth group ( n N), ij j jœ " á œD .

is the jth group mean, and  is the random error for the ith subject in the jth%ij

group. In the typical application of the model, it is assumed that the s are%ij

normally and independently distributed and that the treatment group variances

( s) are equal. Relevant sample estimates include52
j

. 5s œ œ œ œ  sj j ij ij j
i 1 j 1i 1

n J n
2 2Y Y /n  and  MSE (Y Y ) /J(n 1).

_ _! !!
œ œ œ

 A confidence interval for a pairwise difference  has the form. .j j w
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Y Y   c  2/n ,
_ _

j j „ sw ! 5È

where c  is selected such that FWE . In the case of all possible pairwise! œ !

comparisons, one needs a c  for the set such that they simultaneously surround!

the true differences with a specified level of significance. That is, for all j j cÁ ßw !

must satisfy

P(Y Y c  2/n Y Y c  2/n ) 1   .
_ _ _ _

j j j j j j  Ÿ  Ÿ   œ s sw w w! !5 . . 5 !È È

The interval is equivalent to

P(max  c 1   ,j,jw
lÐ  ÑÐ  Ñl

s

Y
_

j j j j. .

5

Y
_

 2/n
w wÈ Ÿ Ñ œ ! !

where max stands for maximum. Evident from this last expression is that c  is!

related to the Studentized range distribution (see Scheffe, 1959, p. 28).

Specifically, if z , z ,  , z  are standard normal independent random variates1 2 ná

and V is a random variable, independent of the zs, and is chi-square distributed

with df degrees of freedom, then

q max(J, df) j,jœ w
l  lz z
 V/df

j jwÈ

has a Studentized range distribution with parameters J and df. Another relation

that should be noted, is that it can be shown that c  satisfies!

P(q )/ c ) 1 .J, J(n 1)
È# Ÿ œ ! !
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  A hypothesis for the comparison (H : 0) can be examined withc j j. . œw

the test statistic:

t Y Y  / (2 MSE/n) .
_ _

c j j
1/2œ  w

 The preceding can also be specified from a general linear model

perspective (see Westfall et al., 1999, Chapter 5). That is, the data can be

conceived as coming from the model

Y Xœ " %,

where  is an N 1 observational vector,  is the N p design matrix,  is theY X‚ ‚ "

p 1 vector of unknown parameters and  is the N 1 vector of random errors.‚ ‚%

 The usual assumptions to the model relate to the characteristics of the

random errors. Specifically, it is assumed that the , , ,  all (a) have a% % %1 2 Ná

mean of zero, (b) have common variance, , (c) are independent random52

variables, and (d) are normally distributed. Important estimates of the model are

obtained in the following manner:

"s œ ( )  X X X Yw  w .

5 " "s œ  s s2 ( ) ( )/df,Y X Y Xw

where ( )  denotes a generalized inverse and df (N rank ) (see Westfall etñ œ  X

al., 1999, p. 87).

 One can specify estimable (see Scheffe, 1959, p. 13) functions of the

parameters, , where for this chapter, the functions would be the pairwisecw"
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comparisons, such as say , where c cw" . .œ 1 2
w œ (0 1 1 0  0), which â

would be estimated by .cw"s

 To form simultaneous intervals or obtain simultaneous tests of the

estimable functions (pairwise comparisons), one needs to know the dependence

structures of the estimable functions. As Westfall et al. (1999) point out,

simultaneous inferences rely on the joint distribution of the quantities

T ,i œ
c c
c X X c
i i

i i

w w" "s

5sÈ w ( )w

where . The joint distribution of the T5sÈc X X ci iw w( )  is the standard error (SE) of cw"s i

is a multivariate t distribution, with df (N rank ) and dispersion matrixœ  X

R D C X X CD C c c Dœ œ á w w  " "
# #( ) , where ( , , ) and  is a diagonal matrix where1 k

the ith element equals ( ) .c X X cw w 
i i

 Confidence intervals of the estimable functions have the form

c ci i
w w" "s s„  c SE( ),! 

where c is chosen such that the FWE . Bonferroni-type methods can be! œ !

used to set the simultaneous intervals such the confidence coefficient will not

exceed 1 . However, because the Bonferroni procedure is overly !

conservative, we know that these intervals will simultaneously contain the true

values more than 100(1 ) percent of the time. This approach however can be !

improved by taking the correlational structure among the estimable functions into

account, that is, by setting a simultaneous critical value via the multivariate t

distribution. That is,
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PŒº c c
c X X c
i i

i i

w w" "s

5sÈ w w ( ) ¹ Ÿ c , for all i 1!  œ  !.

As Westfall et al. (1999, p. 89) note, “The value of c  is the 1  quantile of the!  !

distribution of max  |T |, where the vector (T , , T ) has the multivariate ti i 1 kTw œ á

distribution.”

MCPs FOR NORMALLY DISTRIBUTED DATA/
HOMOGENEOUS POPULATION VARIANCES

 . Tukey (1953) proposed a STP for all pairwise comparisons in whatTukey

Toothaker described as possibly "the most frequently cited unpublished paper in

the history of statistics" (1991, p. 41). Tukey's MCP uses a critical value obtained

from the Studentized range distribution. The procedure accounts for

dependencies (correlations) among the pairwise comparisons in deriving a

simultaneous critical value. In particular, statistical significance, with FWE

control, is assessed by comparing

|t | q /  .j,j (J, J(n 1))w  #È

Tukey's procedure can be implemented in SASs (1999) general linear model

(GLM) program.

 At this juncture we can illustrate the use of adjusted p-values and refer to

various SAS programs that can be used to obtain relevant information. As

Westfall et al. (1999, p. 52) note, to find the exact significance level for Tukey's

(1953) test one must determine the value of c q /  for which! œ #(J, J(n 1))
È

(Y Y ) c  2/n 0. It can be seen that the solution is c |t |.
_ _

j j j,j  œ œsw w! !5È
Accordingly, the adjusted p-value is
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p P(q /  |t |).˜j,j (J, J(n 1)) j,jw  wœ #È

Westfall at al. (1999, p. 52) enumerate the GLM syntax, with an accompanying

numerical example, to obtain adjusted p-values for Tukey's test.

 Recall that we defined various power rates in the multiple comparison

problem: complete power, minimal power, individual power, and proportional

power. SAS software allows users to compute these values.

 To illustrate, consider the power to detect a particular pairwise difference,

that is, individual power. To detect a difference ( ) between  and  either$ . .j jw

t cj,j
Y Y
_ _

2 nw


s Î
œ j jw

5 !È
or

t c ,j,j
Y Y
_ _

2 nw


s Î
œ  j jw

5 !È

where, as indicated, c q / 2 . The individual power, therefore, is the! œ (J, J(n 1))
È

sum of the probabilities of these two events. These two probabilities can be

obtained from SASs PROBT function; that is, PROBT calculates probabilities for

the noncentral Student t distribution with J(n 1) df and noncentrality parameter

( / )$ 5 Èn/2  . Westfall et al. (1999, p. 140) provide a macro (%Individual Power)

for obtaining numerical results. These authors also provide a macro

(%SimPower) that computes complete, minimal and proportional power.

 . Fisher (1935) proposed conducting multiple t-tests on the CFisher-Hayter

pairwise comparisons following rejection of the omnibus ANOVA null hypothesis
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(See Keselman, Games & Rogan, 1979; Kirk, 1995). The pairwise null

hypotheses are assessed for statistical significance by referring t  to t ,c ( /2, )! /

where t  is the upper 100(1 ) percentile from Student's distribution with( /2, )! / !

parameter . If the ANOVA F is nonsignificant, comparisons among means are/

not conducted; that is, the pairwise hypotheses are retained as null.

 It should be noted that Fisher's (1935) Least Significant Difference (LSD)

procedure only provides Type I error protection via the level of significance

associated with the ANOVA null hypothesis, that is, the complete null hypothesis.

For other configurations of means not specified under the ANOVA null

hypothesis (e.g., ), the rate of familywise Type I error. . . .1 2 J 1 Jœ œ â œ  

can be much in excess of the level of significance (Hayter, 1986; Hochberg &

Tamhane, 1987; Keselman et al., 1991; Ryan, 1980).

 Hayter (1986) proved that the maximum FWE for all partitions of the

means, which occurs when J 1 of the means are equal and the remaining one is

very disparate from this group, is equal to P(q 2 t ). One can see(J 1, ) ( /2, ) / ! /

that for J 3 the maximum FWE will exceed the level of significance. In fact,

Hayter (1986) showed that for  and .05, FWE attains values of .1222/ !œ _ œ

and .9044 for J 4 and J 8, respectively. Thus, this usual form of the LSDœ œ

does not provide a satisfactory two stage procedure for researchers when J 3.

 Accordingly, Hayter (1986) proposed a modification to Fisher's LSD that

would provide strong control over FWE. Like the LSD procedure, no comparisons

are tested unless the omnibus test is significant. If the omnibus test is significant,

then H  is rejected if:c

|t | q  / 2.c (J 1, df) 
È
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Studentized range critical values can be obtained through SASs PROBMC (see

Westfall et al., 1999, p. 46).

 It should be noted that many authors recommend Fisher's two-stage test

for pairwise comparisons when J 3 (see Keselman, Cribbie & Holland, 1999;œ

Levin, Serlin, & Seaman, 1994). These recommendations are based on Type I

error control, power and ease of computation issues.

 PROCEDURES THAT CONTROL THE FALSE DISCOVERY RATE

 . As previously indicated, Benjamini and Hochberg (1995) proposedBH

controlling the FDR, instead of the often conservative FWE or the often liberal

CWE. For FDR control, the p -values are ordered (smallest to largest) p , , p ,c 1 Cá

and for any c C, C 1 , , 1, if p /(C c 1), reject all H  (c c).œ  á Ÿ   Ÿc c! w
w

 BH has been shown to control the FWE for several situations of

dependent tests, that is, for a wide variety of multivariate distributions that make

BH applicable to most testing situations social scientists might encounter (see

Sarkar, 1988; Sarkar & Chang, 1997). In addition, simulation studies comparing

the power of the BH procedure to several FWE controlling procedures have

shown that as the number of treatment groups increases (beyond J 4), theœ

power advantage of the procedure over the FWE controlling proceduresBH 

becomes increasingly large (Benjamini et al., 1994; Keselman et al., 1999). The

power of FWE controlling procedures is highly dependent on the family size (i.e.,

number of comparisons), decreasing rapidly with larger families (Holland &

Cheung, 2000; Miller, 1981). Therefore, control of the FDR results in more power

than FWE controlling procedures in experiments with many treatment groups, but

yet provides more control over Type I errors than CWE controlling procedures.
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 Statistical significance can be assessed once again with adjusted p-

values. For the FDR method of control, the adjusted p-values would equal

 p p˜(C) (C)œ

 p min(p , [C/(C 1)] p )˜ ˜(C 1) (C) (C 1) œ  †

 ã

 p min(p , [C/(C c)] p )˜ ˜(C c) (C c 1) (C c)   œ  †

 ã

 p min(p , Cp )˜ ˜(1) (2) (1)œ

SASs (1999) MULTTEST program can be used to obtain these adjusted p-values

(See Westfall et al, 1999, p. 35).

 . Benjamini and Hochberg (in press) also presented a modifiedBH-A

(adaptive) version of their original procedure that utilizes the data to estimate the

number of true H s. [The adaptive BH procedure has only been demonstrated,c

not proven, to control FDR, and only in the independent case.] With the original

procedure, when the number of true null hypotheses (C ) is less than the totalT

number of hypotheses, the FDR rate is controlled at a level less than that

specified ( ).!

 To compute the BH-A procedure, the p -values are ordered (smallest toc

largest) p ,  , p , and for any c C, C 1, , 1, if p (c/C), reject all H1 c'C cá œ  á Ÿ !

(c c), as in the BH procedure. If all H s are retained, testing stops. If any H  isw Ÿ c c

rejected with the criterion of the BH procedure, then testing continues by

estimating the slopes S (1 p ) / (C 1 c), where c 1, , C. Then, for anyc cœ    œ á

c C, C 1, , 1, if p (c/C ), reject all H  (c c), where C minœ  á Ÿ Ÿ œc
T T

c! w
w

[(1/S*) 1, C], [ ] is largest integer less than or equal to x and S* is the minimum x

value of S  such that S S .  If all S S , S* is set at C.c c cc 1 c 1  
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 One disadvantage of the BH-A procedure, noted by both Benjamini and

Hochberg (in press) and Holland and Cheung (2000), is that it is possible for an

H  to be rejected with p . Therefore, it is suggested, by both authors, that Hc c c !

only be rejected if: a) the hypothesis satisfies the rejection criterion of the BH-A;

and b) p . To illustrate this procedure, assume a researcher has conducted ac Ÿ !

study with J 4 and .05. The ordered p-values associated with the C 6œ œ œ!

pairwise comparisons are: p .0014, p .0044, p .0097, p .0145,1 2 3 4œ œ œ œ

p .0490, and p .1239. The first stage of the BH-A procedure would involve5 6œ œ

comparing p .1239 to (c/C) .05(6/6) .05. Since .1239 .05, the6 œ œ œ !

procedure would continue by comparing p .0490 to (c/C) .05(5/6) .0417.5 œ œ œ!

Again, since .0490 .0417, the procedure would continue by comparing

p .0145 to (c/C) .05(4/6) .0333. Since .0145 .0333, H  would be4 4œ œ œ !

rejected. Because at least one H  was rejected during the first stage, testingc

continues by estimating each of the slopes, S ( p )/(C c 1), for c 1, ,c cœ "   œ á

C. The calculated slopes for this example are: S .1664, S .1991,1 2œ œ

S .2475, S .3285, S .4755 and S .8761. Given that all S S , S*3 6 c 14 5 cœ œ œ œ  

is set at C 6. The estimated number of true nulls is then determined byœ

C min [(1/S*) 1, C] min[(1/6) 1, 6] min[1.1667, 6] 1. Therefore, theT œ  œ  œ œ

BH-A procedure would compare p .1239 to (c/C ) .05(6/1) .30. Since6
Tœ œ œ!

.1239 .30, but .1239 , H  would not be rejected and the procedure would  ! 6

continue by comparing p .0490 to (c/C ) .05(5/1) .25. Since .0490 .255
Tœ œ œ !

and .0490 , H  would be rejected; in addition, all H  would also be rejected ! 5 c'

(i.e., H , H , H , and H ).1 2 3 4

CLOSED TESTING SEQUENTIAL MCPs
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 As we indicated previously, researchers can adopt stepwise procedures

when examining all possible pairwise comparisons, and typically they provide

greater sensitivity to detect differences than do STPs, e.g., Tukey's (1953)

method, while still maintaining strong FWE control. In this section, we present

some theory and methods related to closed testing sequential MCPs that can be

obtained through the SAS system of programs.

 As Westfall et al. (1999, p. 149) note, it was in the past two decades that a

unified approach to stepwise testing has evolved. The unifying concept has been

the closure principle. MCPs based on this principle have been designated as

closed testing procedures. These methods are designated as closed testing

procedures because they address families of hypotheses that are closed under

intersection ( ). By definition, a closed family “is one for which any subset

intersection hypothesis involving members of the family of tests is also a member

of the family" (p. 150).

 To illustrate, suppose that one wants to test all possible pairwise

comparisons among four means; that is, six pairwise tests. The closed set is

formed by taking all possible intersections among the pairwise hypotheses. An

important point to remember is that a hypothesis that is formed by an intersection

of two or more hypotheses is true if and only if all of the components are true. For

example, if we intersect H :  with say H : , we obtain H :2,3 2 3 2,4 2 2,3,44. . . .œ œ

. . . . . . .2 3 2 3 24 4œ œ œ œ because if  and  then it must be the case that

. . .2 3 4œ œ . Forming all possible intersections we get fourteen hypotheses in

the closed family:

ñ œ œ The six pairwise homogeneity hypotheses-H : , H : , H :1,2 1 2 1,3 1 3 1,4. . . .

. . . . . . . .1 2,3 2 3 2,4 2 3,4 34 4 4œ œ œ œ, H : , H : , H : ,
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ñ œ œ The four three means homogeneity hypotheses-H : , H :1,2,3 1 2 3 1,2,4. . .

. . . . . . . . .1 2 1,3,4 1 3 2,3,4 2 34 4 4œ œ œ œ œ œ, H : , H : ,

ñ œ œ œ The one four means homogeneity hypothesis- H : , and1,2,3,4 1 2 3 4. . . .

ñ œ œ The three subset intersection hypotheses-H :  and ,(1,2) (3,4) 1 2 3 4 . . . .

H :  and , H :  and .(1,3) (2,4) 1 3 2 (1,4) (2,3) 1 2 34 4 . . . . . . . .œ œ œ œ

 Because of the hierarchical structure of the hypotheses, there are a

number of important implications related to the stepwise testing format.

Specifically, if H :  and  is true, then it follows that both(1,2) (3,4) 1 2 3 4 . . . .œ œ

H :  and H :  are necessarily true. That is, the truth of1,2 1 2 3,4 3 4. . . .œ œ

H  implies the truths of H  and H . These types of implications for(1,2) (3,4) 1,2 3,4

closed testing procedures are referred to as the coherence property of these

methods. Coherence states that if H  implies H , then whenever H  is retained  

so must HÞ

 The closed testing principle has led to a way of performing multiple tests

of significance such that FWE is strongly controlled with results that are coherent.

In particular, according to Marcus, Peritz, and Gabriel (1976) and as enumerated

by Westfall et al. (1999, p. 151), the following procedure guarantees coherence

and strong FWE control: First, “Test every member of the closed family by a

(suitable)  level test (  is CWE controlled not FWE controlled). Second, a! !

hypothesis can be rejected provided (1) its corresponding test was significant at

!, and (2) every other hypothesis in the family that implies it has also been

rejected by its corresponding  level test.”!

 Because closed testing procedures were not always easy to derive,

various authors derived other simplified stepwise procedures which are

computationally simpler, though at the expense of providing smaller  values!

then what theoretically could be obtained with a closed testing procedure.
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Naturally, as a consequence of having smaller  values, these simpler stepwise!

MCPs would not be as powerful as exact closed testing methods. Nonetheless,

these methods are still typically more powerful than STPs (e.g., Tukey) and

therefore are recommended and furthermore, researchers can obtain numerical

results through the SAS system.

 . One such method was introduced by Ryan (1960), Einot andREGWQ

Gabriel (1975) and Welsch (1977) and is available through SAS. One can better

understand the logic of the REGWQ procedure if we first introduce one of the

most popular stepwise strategies for examining pairwise differences between

means, the NK procedure.

 In this procedure, the means are rank ordered from smallest to largest and

the difference between the smallest and largest means is first subjected to a

statistical test, typically with a range statistic (Q), at an  level of significance. If!

this difference is not significant, testing stops and all pairwise differences are

regarded as null. If, on the other hand, this first range test is statistically

significant, one `steps-down' to examine the two J 1 subsets of ordered means,

that is, the smallest mean versus the next-to-largest mean and the largest mean

versus the next-to-smallest mean, with each tested at an  level of significance.!

At each stage of testing, only subsets of ordered means that are statistically

significant are subjected to further testing. Although the NK procedure is very

popular among applied researchers, it is becoming increasingly well known that

when J 3 it does not limit the FWE to  (See Hochberg & Tamhane, 1987, p. !

69).

 Ryan (1960) and Welsch (1977), however, have shown how to adjust the

subset levels of significance in order to provide strong FWE control. Specifically,

in order to strongly control FWE a researcher must:
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ñ œ á œ   Test all subset (p 2, , J) hypotheses at 1 (1 ) , for! !p
p
J

p 2, , J 2 and at level  for p J 1, J.œ á  œ œ ! !p

ñ Testing starts with an examination of the complete null hypothesis

. . .1 2 Jœ œ â œ  and if rejected one steps down to examine subsets of J 1

means, J 2 means, and so on.

ñ All subset hypotheses implied by a homogeneity hypothesis that has not been

rejected are accepted as null without testing.

 Westfall et al. (1999, p. 154) indicate “by using REGWQ, strong control is

conservatively ensured by testing y all subset homogeneity hypotheses,directl

and  all subset intersection hypotheses.” indirectly Additionally, a nice feature

about using a range procedure when testing homogeneity hypotheses is that

when a subset homogeneity hypothesis is rejected one can automatically reject

the equality of the smallest and largest means in the set.

 REGWQ can be implemented with the SAS GLM program. Moreover,

users can use Westfall et al.'s (1999, p. 154) macro (%SimPower) to examine

complete, minimal and proportional power. They illustrate, as well, the additional

power that researchers can obtain with REGWQ as compared to Tukey's (1953)

simultaneous method.

 We remind the reader, however, that this procedure can not be used to

construct simultaneous confidence intervals.

CLOSED TESTING PROCEDURES THAT INCORPORATE LOGICAL
DEPENDENCIES

 Westfall et al. (1999) also provide a SAS macro for computing closed

testing procedures that incorporate logical dependencies among the hypotheses.
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The macro is quite general in that it not only can be used with pairwise

comparisons but as well with any collection of linear combinations. The program

also correctly incorporates the correlational structure of the tests. The macro is

based on the work of Shaffer (1986) and Westfall (1997) and works in the

following manner:

ñ Order the pairwise |t s| from most to least significant, that is,c

|t | |t | |t | (Remember there is a corresponding order for the1 2 C    â  

associated H s, that is, H , , H .).c 1 Cá

ñ    If |t | c  reject H , where c  is the 1  quantile of the distribution of max1 ,1 1 ,1! ! !

T . If H  is not rejected, fail to reject it as well as H , , H  and stop testing. Onc c1 2 á

the other hand, if H  is rejected, continue to the next step.1

ñ   If |t | c  reject H , where c  is the maximum of all quantiles of max T .2 ,2 2 ,2 S c! ! 2

Note that the “maximum is taken over all sets of null hypotheses S  that (1)2

contain H  and (2) whose joint truth does not contradict falseness of H ” (Westfall2 1

et al., 1999, p. 169). If H  is not rejected, fail to reject it as well as H , , H  and2 3 Cá

stop testing. On the other hand, if H  is rejected, continue to the next step.2

ñ   If |t | c  reject H , where c  is the maximum of all quantiles of max T .3 ,3 3 ,3 S c! ! 3

Note that the “maximum is taken over all sets of null hypotheses S  that (1)3

contain H  and (2) whose joint truth does not contradict falseness of either H or3 1

H ” (Westfall et al., 1999, p. 169). If H  is not rejected, fail to reject it as well as2 3

H , , H  and stop testing. On the other hand, if H  is rejected, continue to the4 C 3á

next step.

ñ Repeat testing in the fashion described until testing stops, or until all pairwise

nulls have been rejected.
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Numerical computations for this closed test stepwise MCP can be obtained with

macros (%SimTests, %Estimates, %Contrasts) provided by Westfall et al. (1999,

pp. 93, 169-171).

MCPs FOR NORMALLY DISTRIBUTED DATA/
HETEROGENEOUS POPULATION VARIANCES

 The previously presented procedures assume that the population

variances are equal across treatment conditions. Given available knowledge

about the nonrobustness of MCPs with conventional test statistics (e.g., t, F), and

evidence that population variances are commonly unequal (Keselman et al.,

1998; Wilcox, 1988), researchers who persist in applying MCPs with conventional

test statistics increase the risk of Type I errors. As Olejnik and Lee (1990)

conclude, "most applied researchers are unaware of the problem [of using

conventional test statistics with heterogeneous variances] and probably are

unaware of the alternative solutions when variances differ" (p. 14).

 Although recommendations in the literature have focused on the Games-

Howell (1976), or Dunnett (1980) procedures for designs with unequal s (e.g.,52
j

see Kirk, 1995; Toothaker, 1991), sequential procedures can provide more power

than STPs while generally controlling the FWE (Hsuing & Olejnik, 1994; Kromrey

& La Rocca, 1994).

 The SAS software can once again be used to obtain numerical results. In

particular, Westfall et al. (1999, pp. 206-207) provide SAS programs for logically

constrained step-down pairwise tests when heteroscedasticity exists. The macro

uses SASs mixed-model program (PROC MIXED) which allows for a non

constant error structure across groups. As well, the program adopts the

Satterthwaite (1946) solution for error df. Westfall et al. remind the reader that
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the solution requires large data sets in order to provide approximately correct

FWE control.

 It is important to note that other non SAS solutions are possible in the

heteroscedastic case. For completeness, we note how these can be obtained.

Specifically, sequential procedures based on the usual t  statistic can be easilyc

modified for unequal s (and unequal n s) by substituting Welch's (1938)52
j j

statistic, t ( ) for t ( ),  wherew w c/ /

tw œ
Y Y 
j jwÍÍÍÌ

sj j
2

n nj

s2

j


w

w

 ,

and s  and s  represent the sample variances for the jth and j'th group,j j
2 2

w

respectively. This statistic is approximated as a t variate with critical value

t , the 100(1 /2) quantile of Student's t distribution with dfÐ  Ñ1 /2), ! /W  !

/W œ

 Ÿsj j
2

n nj

s2

j

s /nj j
2

j j
2

n 1 n 1j

s /n2 2

j


w

w

 

w w

w

2

Š ‹ Š ‹


 .

 For procedures simultaneously comparing more than two means or when

an omnibus test statistic is required (protected tests), robust alternatives to the

usual ANOVA F statistic have been suggested. Possibly the best known robust

omnibus test is that due to Welch (1951). With the Welch procedure, the omnibus

null hypothesis is rejected if F F  where:w (J 1, )  /w
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FW œ

!
!

j 1

J
j j

2

2(J 2) j j
(J 1)2

j 1

J (1 w / w )2

n 1j

œ




œ





w (Y Y) /(J 1)

1  


 
µ


D

 ,

and w n /s , Y w Y / w . The statistic is approximately distributed as an Fj j j j j
2
jœ œ

µ 
D D

variate and is referred to the critical value, F , the 100(1 ) quantileÐ   Ñ1 , J 1, ! /W  !

of the F distribution with J 1 and  df, where /W

/W œ
J 1

3

2

j 1

J


!
œ

(1 w / w )j j
n 1j





D 2  .

The Welch test has been found to be robust for largest to smallest variance ratios

less than 10:1 (Wilcox, Charlin & Thompson, 1986).

 Based on the preceding, one can use the nonpooled Welch test and its

accompanying df to obtain various stepwise MCPs. For example, Keselman et al.

(1998) verified that one can use this approach with Hochberg's (1988) step-up

Bonferroni MCP (see Westfall et al., 1999, pp. 32-33) as well as with Benjamini

and Hochberg's (1995) FDR method to conduct all possible pairwise

comparisons in the heteroscedastic case.
MCPs FOR NONNORMALLY DISTRIBUTED DATA

 An underlying assumption of all of the previously presented MCPs is that

the populations from which the data are sampled are normally distributed.

Although it may be convenient (both practically and statistically) for researchers

to assume that their samples are obtained from normally distributed populations,

this assumption may rarely be accurate (Micceri, 1989; Pearson, 1931; Wilcox,
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1990) (Tukey (1960) suggests that most populations are skewed and/or contain

outliers.). Researchers falsely assuming normally distributed data risk obtaining

biased Type I and/or Type II error rates for many patterns of nonnormality,

especially when other assumptions are also not satisfied (e.g., variance

homogeneity) (See Wilcox, 1997).

Bootstrap and Permutation Tests. The SAS system allows users to obtain both

simultaneous and stepwise pairwise comparisons of means with methods that do

not presume normally distributed data. In particular, users can use either

bootstrap or permutation methods to compute all possible pairwise comparisons.

 Bootstrapping allows users to create their own empirical distribution of the

data and hence adjusted p-values are accordingly based on the empirically

obtained distribution, not a theoretically presumed distribution. For example, the

empirical distribution, say F, is obtained by sampling, , thes with replacement

pooled sample residuals Y Y Y . That is, rather than assume that
_

% .s œ  œ sij ij ij jj

residuals are normally distributed, one uses empirically generated residuals to

estimate the true shape of the distribution. From the pooled sample residuals one

generates bootstrap data.

 First, remember that adjusted p-values are calculated as

p P(max |T | |t |). As Westfall et al. (1999, p. 229) note, in many cases, this˜c c c cœ  

is equivalent to p P(min P p ). Their PROC MULTTEST computes˜c c c cœ Ÿ

adjusted p-values in this fashion. With this in mind, bootstrapping of adjusted p-

values with their MULTTEST program is performed in the following manner:

ñ  Bootstrap data, Y , is generated by sampling with replacement from the pooledij
‡

sample of residuals.
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ñ á Based on the bootstrapped data, p , p , , p  values are obtained from the1 2 C
‡ ‡ ‡

pairwise tests.

ñ The above process is repeated many times (PROC MULTTEST allows the user

to set the number of replications.).

ñ For stepwise testing, PROC MULTTEST uses minima over appropriate

restricted subsets to obtain the adjusted p-values.

An example program for all possible pairwise comparisons is given by Westfall et

al. (1999, p. 229). As these authors note, PROC MULTTEST does not allow

users to incorporate logical constraints as does their %SimTests program

(Remember %SimTests assumes data are normally distributed.)

 As well, pairwise comparisons of means (or ranks) can be obtained

through permutation of the data with the program provided by Westfall et al.

(1999, pp. 233-234). Permutation tests also do not require that the data be

normally distributed. Instead of resampling with replacement from a pooled

sample of residuals, permutation tests take the observed data (Y ,  , Y , 11 n 1á á1

, Y ,  , Y ) and randomly redistributes them to the treatment groups, and1J n Já J

summary statistics (i.e., means or ranks) are then computed on the randomly

redistributed data. The original outcomes (all possible pairwise differences from

the original sample means) are then compared to the randomly generated values

(e.g., all possible pairwise differences in the permutation samples). That is, if,

Y Y  is the difference between the first two treatment group means based on a
_ _

1 2
* *


permutation of the data, then a permutational p-value can be computed as

p P(Y Y Y Y ). Accordingly, for pairwise comparisons, the adjusted p-
_ _ _ _

œ    1 2
* *

1 2

values are calculated as p P(min P p ), where the P  are computed from˜c c cc cœ Ÿ‡ ‡

the permutated data.
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 When users adopt this approach to combat the effects of nonnormality

they should take head of the cautionary note provided by Westfall et al. (1999, p.

234), namely, the procedure may not control the FWE when the data are

heterogeneous, particularly when group sizes are unequal. Thus, we introduce

another approach, pairwise comparisons based on robust estimators and a

heteroscedastic statistic, an approach that has been demonstrated to generally

control the FWE when data are nonnormal and heterogeneous even when group

sizes are unequal.

MCPs FOR NONNORMALLY DISTRIBUTED DATA/
HETEROGENEOUS POPULATION VARIANCES

Trimmed Means Approach

 A different type of testing procedure, based on trimmed (or censored)

means, has been discussed by Yuen and Dixon (1973) and Wilcox (1995, 1997),

and is purportedly robust to violations of normality.

 That is, it is well known that the usual group means and variances, which

are the basis for all of the previously described procedures, are greatly

influenced by the presence of extreme observations in distributions. In particular,

the standard error of the usual mean can become seriously inflated when the

underlying distribution has heavy tails. Accordingly, adopting a nonrobust

measure "can give a distorted view of how the typical individual in one group

compares to the typical individual in another, and about accurate probability

coverage, controlling the probability of a Type I error, and achieving relatively

high power" (Wilcox, 1995, p. 66).  By substituting robust measures of location

and scale for the usual mean and variance, it should be possible to obtain test
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statistics which are insensitive to the combined effects of variance heterogeneity

and nonnormality.

 While a wide range of robust estimators have been proposed in the

literature (see Gross, 1976), the trimmed mean and Winsorized variance are

intuitively appealing because of their computational simplicity and good

theoretical properties (Wilcox, 1995). The standard error of the trimmed mean is

less affected by departures from normality than the usual mean because extreme

observations, that is, observations in the tails of a distribution, are censored or

removed. Furthermore, as Gross (1976) noted, "the Winsorized variance is a

consistent estimator of the variance of the corresponding trimmed mean" (p.

410). In computing the Winsorized variance, the most extreme observations are

replaced with less extreme values in the distribution of scores.

 Trimmed means are computed by removing a percentage of observations

from each of the tails of a distribution (set of observations). Let

Y Y Y  represent the ordered observations associated with a(1) (2) (n)Ÿ Ÿ á Ÿ

group. Let g [  n], where  represents the proportion of observations that areœ # #

to be trimmed in each tail of the distribution and [ ] is notation for the largestB

integer not exceeding . Wilcox (1995) suggests that 20% trimming should beB

used. The effective sample size becomes h n 2g. Then the sample trimmedœ 

mean is

Y Y  .
œt

1
h     !

i g 1

n g
(i)

œ 



An estimate of the standard error of the trimmed mean is based on the

Winsorized mean and Winsorized sum of squares. The sample Winsorized mean 

is
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Y [(g 1)Y  Y Y (g 1)Y ],
œ  w

1
n (g 1) (g 2) (n g 1) (n g)     á  

and the sample Winsorized sum of squared deviations is

SSD (g 1)(Y Y ) (Y Y ) (Y Y )w w w w(g 1) (g 2) (n g 1)
2 2 2œ     á  

  
   

 (g 1)(Y Y ) .  


(n g) w
2



Accordingly, the squared standard error of the mean is estimated as (Staudte &

Sheather, 1990)

d œ
SSD

h (h 1)
w

 .

 To test a pairwise comparison null hypothesis compute Y  and d for the jth
t

group, label the results Y  and d . The robust pairwise test (see Keselman, Lix &
tj j

Kowalchuk, 1998) becomes

tW œ
Y Y

d   d

q q




tj tj

j j

w

wÉ ,

with estimated df

/W œ
(d   d )

d /(h 1)  d /(h 1)
j j

2

j
2 2

j j j



  

w

w w
.

When trimmed means are being compared the null hypothesis relates to the

equality of population trimmed means, instead of population means. Therefore,

instead of testing H : , a researcher would test the null hypothesis, H :0 j j 0. .œ w
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. . .tj tj tœ w, where  represents the population trimmed mean (Many researchers

subscribe to the position that inferences pertaining to robust parameters are

more valid than inferences pertaining to the usual least squares parameters

when they are dealing with populations that are nonnormal in form.).

 Yuen and Dixon (1973) and Wilcox (1995) report that for long tailed

distributions, tests based on trimmed means and Winsorized variances can be

much more powerful than tests based on the usual mean and variance.

Accordingly, when researchers feel they are dealing with nonnormal data they

can replace the usual least squares estimators of central tendency and variability

with robust estimators and apply these estimators in any of the previously

recommended MCPs.

A MODEL TESTING PROCEDURE

 The procedure to be described takes a completely different approach to

specifying differences between the treatment group means. That is, unlike

previous approaches which rely on a test statistic to reject or accept pairwise null

hypotheses, the approach to be described uses an information criterion statistic

to select a configuration of population means which most likely corresponds with

the observed data. Thus, as Dayton (1998, p. 145) notes, “model-selection

techniques are not statistical tests for which type-I error control is an issue.”

 When testing all pairwise comparisons, intransitive decisions are

extremely common with conventional MCPs (Dayton, 1998). An intransitive

decision refers to declaring a population mean ( ) not significantly different from.j

two different population means ( , ), when the latter two means are. . . .j j j jœ œw ww

declared significantly different ( ). For example, a researcher conducting. .j jw wwÁ

all pairwise comparisons (J 4) may decide not to reject any hypotheses impliedœ
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by  or , but reject  and , based on results. . . . . . . . .1 2 3 3 14 4 42œ œ œ œ œ

from a conventional MCP. Interpreting the results of this experiment can be

ambiguous, especially concerning the outcome for  ..3

 Dayton (1998) proposed a model testing approach based on Akaike's

(1974) Information Criterion (AIC). Mutually exclusive and transitive models are

each evaluated using AIC, and the model having the minimum AIC is retained as

the most probable population mean configuration, where:

AIC SS   n  (Y Y ) 2 q,œ œ  
 

w j j mjj
2D

Y  is the estimated sample mean for the jth group (given the hypothesized
_

mj

population mean configuration for the mth model), SSw is the ANOVA pooled

within group sum of squares and q is the degrees of freedom for the model. For

example, for J 4 (with ordered means) there would be 2 8 differentœ œJ 1

models to be evaluated ({1234}, {1, 234}, {12, 34}, {123, 4}, {1, 2, 34}, {12, 3, 4},

{1, 23, 4}, {1, 2, 3, 4}). To illustrate, the model {12, 3, 4} postulates a population

mean configuration where groups one and two are derived from the same

population, while groups three and four each represent independent populations.

The model having the lowest AIC value would be retained as the most probable

population model.

 Dayton showed that the AIC model-testing approach was more powerful

than Tukey's HSD (all-pairs power) for many population mean configurations,

and more importantly, eliminates intransitive decisions. One finding reported by

Dayton, as well as Huang and Dayton (1995), is that the AIC has a slight bias for

selecting more complicated models than the true model. For example, Dayton

found that for the mean pattern {12, 3, 4}, AIC selected the more complicated

pattern {1, 2, 3, 4} more than ten percent of the time, whereas AIC only rarely
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selected less complicated models (e.g., {12, 34}). This tendency can present a

special problem for the complete null case {1234}, where AIC has a tendency to

select more complicated models. Consequently, a recommendation by Huang

and Dayton (1995) is to use an omnibus test to screen for the null case, and then

assuming rejection of the null, apply the Dayton procedure.

 Dayton's (1998) model testing approach can be modified to handle

heterogeneous treatment group variances. Like the original procedure, mutually

exclusive and transitive models are each evaluated using AIC, and the model

having the minimum AIC is retained as the most probable population mean

configuration. For heterogeneous variances:

AIC = 2 {( N/2) (ln (2 ) 1) 1/2 ( n  ln (S))} 2 q,    1 D j

where S is the biased variance for the jth group, substituting the estimated group

mean (given the hypothesized mean configuration for the mth model) for the

actual group mean in the calculation of the variance. As in the original Dayton

procedure, an appropriate omnibus test can also be applied.

SUMMARY

 Selecting an appropriate MCP requires an extensive assessment of

available information regarding the testing situation. Information about the

importance of Type I errors, power, computational simplicity, and so on, are

extremely important in selecting a MCP. In addition, the selection of a proper

MCP is dependent on data conforming to validity assumptions, such as normality
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and variance homogeneity. Routinely selecting a procedure without careful

consideration of available information and alternatives can severely reduce the

reliability and validity of the results.

 Recently, several pairwise MCPs have been proposed that improve on

one or more aspects of previously recommended MCPs. In particular, stepwise

procedures that control the overall rate of Type I error in a strong sense, as well

as methods resulting from bootstrapping and permuting the data and methods

that substitute robust estimators and heteroscedastic test statistics for the usual

estimators and statistics are now available. In addition to defining these 'newer'

methods, we as well indicated statistical software that can be used to obtain

numerical results. Indeed, our guiding principle for selecting which procedures to

review was based on our belief that only procedures which can be obtained

through a statistical package are likely to be adopted by researchers.

Accordingly, we emphasized many of the procedures which are available through

the SAS system because Westfall et al. (1999) have provided many useful

programs for obtaining numerical solutions. In conclusion, by writing this chapter

we hope our summary encourages researchers to switch from older methods for

assessing pairwise multiple comparisons to the newer approaches we have

reviewed.

NUMERICAL EXAMPLE

 We present a numerical example for the previously discussed MCPs so

that the reader can check his/her facility to work with the SAS/Westfall et al.

(1999) programs and to demonstrate through example the differences between

their operating characteristics. In particular, the data (n n n 20)1 2 Jœ œ â œ œ

presented in Table 1 was randomly generated by us though they could represent
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the outcomes of a problem solving task where the five groups were given

different clues to solve the problem; the dependent measure was the time, in

seconds, that it took to solve the task. The bottom two rows of the table contain

the group means and standard deviations, respectively.

 Table 2 contains adjusted p-values and FWE ( .05) significant ( )! œ ‡

values for the 10 pairwise comparisons for the five groups. The results reported

in Table 2 conform, not surprisingly, to the properties of the MCPs that we

discussed previously. In particular, of the ten comparisons, five were found to be

statistically significant with the Tukey (1953), Hayter (1986), Bootstrap, Stepdown

Bootstrap and permutation procedures: Y Y , Y Y , Y Y , Y Y , and
_ _ _ _ _ _ _ _

1 3 1 1 24 5 5   

Y Y . In addition to these five comparisons, the REGWQ MCP found one
_ _

3 5

additional comparison (Y Y ) to be statistically significant. On the other hand,
_ _

4 5

the logically constrained approach only detected three significant pairwise

comparisons, namely Y Y , Y Y , and Y Y . That is, as Westfall et al.
_ _ _ _ _ _

1 1 24 5 5  

(1999, p. 171) note, the logically constrained tests need not be more powerful

than REGWQ. The BH MCP, on the other hand, resulted in seven statistically

significant comparisons; Y Y , Y Y , Y Y , Y Y , Y Y , Y Y
_ _ _ _ _ _ _ _ _ _ _ _

1 3 1 1 2 2 34 5 4 5 5     

and Y Y . The adaptive BH procedure (BH-A) resulted in one additionally
_ _

4 5

significant comparison-Y Y  (Numerical results were not obtained through
_ _

2 3

SAS; they were obtained through hand-calculations.). Clearly the procedures

based on the more liberal FDR found more comparisons to be statistical

significant than the FWE controlling MCPs.

 We also investigated the ten pairwise comparisons with the trimmed

means and model testing procedures; the results for the trimmed means analysis

are also reported in Table 2 (see Appendix B for the SPSS program). Numerical

results for robust estimation and testing were obtained through SPSS (Norusis,

1997). In particular, we computed the group trimmed means (Y 14.92,
_

t1 œ
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Y 16.67, Y 18.50, Y 19.08 and Y 21.08) as well as the group
_ _ _ _

t2 t3 t4 t5œ œ œ œ

Winsorized standard deviations (d 2.11, d 1.68, d 3.75, d 2.33 and1 2 3 4
" " " "
# # # #œ œ œ œ

d 4.24. These values (as well as the effective sample sizes-5
"
# œ

n n 12) were then read into an SPSS file and we then allowed SPSS1 5œ â œ œ

to calculate nonpooled t-statistics (t  and ) and their corresponding p-valuesW W/

(through the ONEWAY program). The results reported in Table 2 indicate that

with this approach six comparisons were found to be statistically significant:

Y Y , Y Y , Y Y , Y Y , Y Y  and Y Y . Clearly, other MCPs
_ _ _ _ _ _ _ _ _ _ _ _

1 2 1 3 1 1 2 24 5 4 5     

had greater power to detect more pairwise differences. However, the reader

should remember that robust estimation should result in more powerful tests

when data are nonnormal as well as heterogeneous (see Wilcox, 1997), which

was not the case with our numerical example data. Furthermore, trimmed results

were based on 12 subjects per group, not 20.

 With regard to the model testing approach we examined the 2 models ofJ 1

nonoverlapping subsets of ordered means and used the minimum AIC value to

find the best model that “is expected to result in the smallest loss of precision

relative to the true, but unknown, model (Dayton, 1998, p. 145).” From the 16

models examined, the best model is {12,34,5} (Results were obtained through

hand calculations. However, a GAUSS program will soon be available from the

Department of Measurement & Statistics, University of Maryland web-site).

Accordingly, this approach provides identical findings to the BH-A procedure,

namely, Y Y , Y Y , Y Y , Y Y , Y Y , Y Y , Y Y  and
_ _ _ _ _ _ _ _ _ _ _ _ _ _

1 3 1 1 2 3 2 2 34 5 4 5 5      

Y Y  would be judged to be different from one another.
_ _

4 5
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Appendix A
Below we include the SAS (1999) syntax for our hypothetical data set.

***DATA INPUT***;

DATA;
INPUT IV DV;
CARDS;
    1.00   17
    1.00   15

 ã

    5.00   21
    5.00   18
;

*** REGWQ MULTIPLE COMPARISON PROCEDURE***;

PROC GLM;
  CLASS IV;
  MODEL DV=IV;
  CONTRAST '1V2' IV 1 -1 0 0 0;
  CONTRAST '1V3' IV 1 0 -1 0 0;
  CONTRAST '1V4' IV 1 0 0 -1 0;
  CONTRAST '1V5' IV 1 0 0 0 -1;
  CONTRAST '2V3' IV 0 1 -1 0 0;
  CONTRAST '2V4' IV 0 1 0 -1 0;
  CONTRAST '2V5' IV 0 1 0 0 -1;
  CONTRAST '3V4' IV 0 0 1 -1 0;
  CONTRAST '3V5' IV 0 0 1 0 -1;
  CONTRAST '4V5' IV 0 0 0 1 -1;
  MEANS IV/REGWQ;
RUN;

*** TUKEY'S HSD PROCEDURE WITH ADJUSTED P-VALUES ***;

PROC GLM;
  CLASS IV;
  MODEL DV=IV;
  CONTRAST '1V2' IV 1 -1 0 0 0;
  CONTRAST '1V3' IV 1 0 -1 0 0;
  CONTRAST '1V4' IV 1 0 0 -1 0;
  CONTRAST '1V5' IV 1 0 0 0 -1;
  CONTRAST '2V3' IV 0 1 -1 0 0;
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  CONTRAST '2V4' IV 0 1 0 -1 0;
  CONTRAST '2V5' IV 0 1 0 0 -1;
  CONTRAST '3V4' IV 0 0 1 -1 0;
  CONTRAST '3V5' IV 0 0 1 0 -1;
  CONTRAST '4V5' IV 0 0 0 1 -1;
  LSMEANS IV/PDIFF ADJUST=TUKEY;
RUN;

*** BOOTSTRAP MULTIPLE COMPARISON PROCEDURE***;

PROC MULTTEST BOOTSTRAP SEED=121211 N=50000;
  CLASS IV;
  TEST MEAN(DV);
  CONTRAST '1V2' 1 -1 0 0 0;
  CONTRAST '1V3' 1 0 -1 0 0;
  CONTRAST '1V4' 1 0 0 -1 0;
  CONTRAST '1V5' 1 0 0 0 -1;
  CONTRAST '2V3' 0 1 -1 0 0;
  CONTRAST '2V4' 0 1 0 -1 0;
  CONTRAST '2V5' 0 1 0 0 -1;
  CONTRAST '3V4' 0 0 1 -1 0;
  CONTRAST '3V5' 0 0 1 0 -1;
  CONTRAST '4V5' 0 0 0 1 -1;
  ODS SELECT CONTINUOUS PVALUES;
RUN;

*** STEP-DOWN BOOTSTRAP MULTIPLE COMPARISON PROCEDURE***;

PROC MULTTEST STEPBOOT SEED=121211 N=50000;
  CLASS IV;
  TEST MEAN(DV);
  CONTRAST '1V2' 1 -1 0 0 0;
  CONTRAST '1V3' 1 0 -1 0 0;
  CONTRAST '1V4' 1 0 0 -1 0;
  CONTRAST '1V5' 1 0 0 0 -1;
  CONTRAST '2V3' 0 1 -1 0 0;
  CONTRAST '2V4' 0 1 0 -1 0;
  CONTRAST '2V5' 0 1 0 0 -1;
  CONTRAST '3V4' 0 0 1 -1 0;
  CONTRAST '3V5' 0 0 1 0 -1;
  CONTRAST '4V5' 0 0 0 1 -1;
  ODS SELECT CONTINUOUS PVALUES;
RUN;
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*** PERMUTATION RESAMPLING MULTIPLE COMPARISON
PROCEDURE***;

PROC MULTTEST PERMUTATION SEED=121211 N=50000;
  CLASS IV;
  TEST MEAN(DV);
  CONTRAST '1V2' 1 -1 0 0 0;
  CONTRAST '1V3' 1 0 -1 0 0;
  CONTRAST '1V4' 1 0 0 -1 0;
  CONTRAST '1V5' 1 0 0 0 -1;
  CONTRAST '2V3' 0 1 -1 0 0;
  CONTRAST '2V4' 0 1 0 -1 0;
  CONTRAST '2V5' 0 1 0 0 -1;
  CONTRAST '3V4' 0 0 1 -1 0;
  CONTRAST '3V5' 0 0 1 0 -1;
  CONTRAST '4V5' 0 0 0 1 -1;
  ODS SELECT PVALUES;
RUN;

*** BH MULTIPLE COMPARISON PROCEDURE WITH ADJUSTED P-
VALUES***;

DATA ONE;
INPUT TEST PVAL;
DATALINES;
1 .1406
2 .0007
3 .0002
4 .00005
5 .0469
6 .0185
7 .00005
8 .7002
9 .0065
10 .0185
;

DATA TWO;
SET ONE;
RENAME PVAL=RAW_P;
PROC MULTTEST PDATA=ONE FDR OUT=OUTP;
PROC SORT DATA=OUTP OUT=OUTP;
BY RAW_P;
PROC PRINT DATA=OUTP;
RUN;
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*** LOGICALLY CONSTRAINED MULTIPLE COMPARISON PROCEDURE***;

%MACRO CONTRASTS;
C = {1 -1 0 0 0, 1 0 -1 0 0, 1 0 0 -1 0, 1 0 0 0 -1, 0 1 -1 0 0,
     0 1 0 -1 0, 0 1 0 0 -1, 0 0 1 -1 0, 0 0 1 0 -1, 0 0 0 1 -1};
C = C`;
CLAB={"1-2", "1-3", "1-4", "1-5", "2-3", "2-4", "2-5", "3-4", "3-5", "4-5"};
%MEND;
%MACRO ESTIMATES;
MSE=10.87;
DF=95;
ESTPAR={15.0, 16.55, 18.65, 19.05, 21.55};
COV=MSE*(1/20)*I(5);
%MEND;
%SIM TESTS(SEED=121223, TYPE=LOGICAL);
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Appendix B
SPSS/SAS Program for Trimmed Means Results

Note: To obtain results we used the following procedure. We created a data set
with “raw” data that had the desired properties. That is, we made all the cases in
a given group equal to the trimmed mean, except for two that were above (in our
data set the second-to-last case) and below the mean (in our data set the last
case) by SQRT[(N 1)/2] SD; thus we had a group with n (12) cases with a †
given mean and SD (Square root of Winsorized variance). If you have large
sample sizes, you can shortcut this method by using a weighting variable to use
just one case with the mean value, with a weight of n 2. The deviation cases
would have weights of 1 (This method was suggested by David Nichols, Principal
Support Statistician and Manager of Statistical Support, SPSS Inc.).

***After computing the trimmed mean and Winsorized variance for each group,
the following data was read into an SPSS data file (via their drop down menu
system) and then was used to compute Welch (1938) nonpooled test statistics
and p-values***

IV   DV
1.00   14.917
1.00   14.917
1.00   14.917
1.00   14.917
1.00   14.917
1.00   14.917
1.00   14.917
1.00   14.917
1.00   14.917
1.00   14.917
1.00   18.680
1.00   11.153
2.00   16.667
2.00   16.667
2.00   16.667
2.00   16.667
2.00   16.667
2.00   16.667
2.00   16.667
2.00   16.667
2.00   16.667
2.00   16.667
2.00   19.653
2.00   13.681
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3.00   18.5
3.00   18.5
3.00   18.5
3.00   18.5
3.00   18.5
3.00   18.5
3.00   18.5
3.00   18.5
3.00   18.5
3.00   18.5
3.00   25.198
3.00   11.802
4.00   19.083
4.00   19.083
4.00   19.083
4.00   19.083
4.00   19.083
4.00   19.083
4.00   19.083
4.00   19.083
4.00   19.083
4.00   19.083
4.00   23.143
4.00   15.023
5.00   21.083
5.00   21.083
5.00   21.083
5.00   21.083
5.00   21.083
5.00   21.083
5.00   21.083
5.00   21.083
5.00   21.083
5.00   21.083
5.00   28.595
5.00   13.571

ONEWAY DV BY IV
   /CONTRAST 1 -1 0 0 0
   /CONTRAST 1 0 -1 0 0
   /CONTRAST 1 0 0 -1 0
   /CONTRAST 1 0 0 0 -1
   /CONTRAST 0 1 -1 0 0
   /CONTRAST 0 1 0 -1 0
   /CONTRAST 0 1 0 0 -1
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   /CONTRAST 0 0 1 -1 0
   /CONTRAST 0 0 1 0 -1
   /CONTRAST 0 0 0 1 -1.

***The following SAS program was then used to compute adjusted BH p-values
from the raw p-values generated above***

DATA THREE;
INPUT TEST PVAL;
DATALINES;
1 .0080
2 .0010
3 .0004
4 .0004
5 .0600
6 .0010
7 .0010
8 .5530
9 .0490
10 .0740
;
DATA FOUR;
SET THREE;
RENAME PVAL=RAW_P;
PROC MULTTEST PDATA=ONE FDR OUT=OUTP;
PROC SORT DATA=OUTP OUT=OUTP;
BY RAW_P;
PROC PRINT DATA=OUTP;
RUN;



Table 1. Data values and summary statistics (Means and Standard Deviations)

J1 J2 J3 J4 J5

17 17 17 20 20

15 14 14 15 23

17 15 19 18 18

13 12 15 20 26

22 18 15 14 17

14 18 19 18 14

12 16 20 18 16

15 18 18 16 32

14 16 22 21 21

16 20 16 23 23

14 15 13 15 29

15 19 16 22 21

17 16 23 18 26

11 16 22 19 22

14 19 24 19 22

13 13 20 23 17

17 18 18 23 27

15 16 25 18 18

12 19 13 18 21

17 16 24 23 18

15.00 16.55 18.65 19.05 21.55

2.47 2.11 3.79 2.82 4.64

Note: The first row following the double lines contains the means while the second row
following the double lines contains the group standard deviations.



Table 2. Adjusted p-values and FWE significant (w) Comparisons

Yj  - Yj’ Tukey Hayter REGWQ LC Boot Stepb Perm BH BH-A TM

1 vs 2 .5740 .5041 .5714 .2567 .5690 .1562 .0133

1 vs 3 .0063 w w .0535 .0063 .0048 .0065 .0018 w .0020

1 vs 4 .0017 w w .0356 .0018 .0016 .0018 .0007 w .0020

1 vs 5 <.0001 w w .0002 <.0001 <.0001 <.0001 .0003 w .0020

2 vs 3 .2676 .2111 .2658 .1209 .2695 .0586 w .0750

2 vs 4 .1251 .2111 .1238 .0744 .1240 .0264 w .0020

2 vs 5 <.0001 w w .0056 .0001 .0001 .0001 .0003 w .0020

3 vs 4 .9953 .7868 .9951 .7012 .9959 .7002 .5530

3 vs 5 .0500 w w .1693 .0494 .0332 .0490 .0130 w .0700

4 vs 5 .1251 w .1786 .1238 .0744 .1240 .0264 w .0822

Note: Tukey-Tukey (1953); Hayter-Hayter (1986); REGWQ-Ryan (1960)-Einot & Gabriel (1975)-Welsch (1977); LC-Log-
ically constrained tests (Westfall et al., 1999, pp. 168-170); Boot (Bootstrap)/Stepb(Stepwise bootstrap)/Perm
(Permutation)-Westfall et al.; BH-Benjamini & Hochberg (1995); BH-A(Adaptive)-Benjamini & Hochberg (in press);TM-
Trimmed means (and Winsorized variances) used with a nonpooled t-test and BH critical constants. Raw p-values (1 vs 2
, ... , 4 vs 5) for the SAS (1999) procedures are .1406, .0007, .0002, <.0001, .0469, .0185, <.0001, .7022, .0065 and
.0185. The corresponding values for the trimmed means tests are .008, .001, .000, .000, .060, .001, .001, .553, .049 and
.074.




