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Abstract

Boik (1997) presented an empirical Bayes (EB) approach to the analysis of

repeated measurements. The EB approach is a blend of the conventional univariate and

multivariate approaches. Specifically, in the EB approach, the underlying covariance

matrix is estimated by a weighted sum of the univariate and multivariate estimators. In

addition to demonstrating that his approach controls test size and frequently is more

powerful than either the -adjusted univariate or multivariate approaches, Boik showed%

how conventional multivariate software can be used to conduct EB analyses. Our

investigation examined the Type I error properties of the EB approach when its

derivational assumptions were not satisfied as well as when other factors known to affect

the conventional tests of significance were varied. For comparative purposes we also

investigated the procedures presented by Huynh (1978) and Keselman, Carriere and Lix

(1993), procedures designed for non spherical data and covariance heterogeneity, as well

as an adjusted univariate and multivariate test statistic. Our results indicate that when the

response variable is normally distributed and group sizes are equal the EB approach was

robust to violations of its derivational assumptions and therefore is recommended due to

the power findings reported by Boik (1997). However, we also found that the EB

approach, as well as the adjusted univariate and multivariate procedures, were prone to

depressed or elevated rates of Type I error when data were nonnormally distributed and

covariance matrices and group sizes were either positively or negatively paired with one

another. On the other hand, the Huynh and Keselman et al. procedures were generally

robust to these same pairings of covariance matrices and group sizes.
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An Examination of the Robustness of the Empirical Bayes and Other Approaches

for Testing Main and Interaction Effects in Repeated Measures Designs

 The effects (e.g., main and interaction) that can be tested in repeated measures

designs are typically based on the usual Gaussian linear model which can be written as

Y XB Rœ   , (1)

where  is an  matrix of observations from  subjects, each observed on Y N t N t‚

occasions,  is an  matrix that codes for between-subjects effects where rankX N p‚

( ) ,  is a  matrix of unknown regression coefficients, and  is an X B Rœ Ÿ ‚ ‚r p p t N t

matrix of random errors. The rows of  are assumed to be  as ( , ), where  is aR 0iid at D D

t t‚  positive definite covariance matrix.

Inferences about the linear functions of the regression coefficients are generally

of interest.  The linear functions of interest often can be represented as follows:

G œ L BC,w (2)

where  is a  contrast matrix with rank s for the between-subjects variable and  isL Cp s‚

a  orthonormalized contrast matrix for the repeated measures variable, wheret q‚

q tŸ  1.

To test H :  versus H : , one first estimates 0 0 a 0G G G G Gœ Á  via

G Gs sœ L X X X YCw w  w( ) , where under model (1) the distribution of  is

vec( ) [vec( ), ( )  ] [We use the notation ( ) to represent anyG G Ds µ Œ ña;=
w w  C C L X X Lw  

generalized inverse.]. Note that inferences about depend on  throughG D 

F Dœ C C.w (3)

The various approaches to the analysis of repeated measurements differ according

to how they model . The multivariate model places no constraints on other than thatF F 

it must be positive definite. For this model the uniformly minimum variance unbiased

estimator (UMVUE) of isF 

Fs œMV
-m 1E, (4)

where [ ( ) ] and .E C Y I X X X X YC œ  ´ w w w  w
N m N r



Empirical Bayes     4

In the univariate approach, on the other hand, is assumed to be spherical.  ThatF   

is,

F 5œ #
;I (5)

and the UMVUE is

F 5s œ s#
;I , (6)

where trace( )/( ).5s œ# E 7;

The adjusted df ( -adjusted) univariate approach to the analysis of repeated%

measurements can be described as a hybrid between the conventional univariate and

multivariate approaches. Specifically, the univariate approach requires that the

underlying covariance matrix satisfy sphericity whereas the multivariate approach

imposes no constraints on the covariance matrix. -adjusted The approach uses the usual%

F test with adjusted df. The approximation is based on Box's (1954) finding that the usual

univariate  test statistic is approximately distributed as an ( , ) random variable,F F qs mq% %

where

% œ
[trace ( )]
 trace ( )

F
F

2

; 2  , (7)

when sphericity is not satisfied. The -adjusted approach presumes that departures from%

sphericity are expected, but they are not expected to be extreme. The univariate estimator

of the covariance matrix is retained and the sampling distribution of the statistic is

adjusted for moderate departures from sphericity.

The Empirical Bayes Approach 

An alternative univariate-multivariate hybrid, namely an empirical Bayes (EB)

approach, was introduced by Boik (1997). The EB approach does not require sphericity
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for any specific covariance matrix. Rather, the EB approach requires that the average

covariance matrix (averaged over all experiments) satisfies sphericity. This assumption is

called second-stage sphericity. In the EB approach, the covariance matrix is estimated as

a linear combination of the conventional univariate and multivariate estimators.

The EB approach to the analysis of repeated measurements requires that the data

be sampled from a multivariate normal distribution and that the covariance matrix be

sampled from a spherical inverted Wishart distribution. The approach uses a two-stage

model. In the first stage a model similar to (1) is assumed except that only  functionsYC

are modeled.  Conditional on  and , the first stage model is@ F

YC X Uœ @ , (8)

where  and . From Equation (1) it follows that the rows of  are @ œ œBC U RC U iid

a;( ,  and 0  F @ F). In the second-stage, prior distributions on are assumed. Specifically,

it is assumed that they are independently distributed, @ is uniformly distributed over a

:;-dimensional space, and that F follows a spherical inverted Wishart distribution. That

is,

F 
;

1 1µ W f( , ), (9)7 I

It follows from equation (9) that

E( ) , where . (10)F 5œ œ#I; #5
7

0;"

That is, in the two-stage model, sphericity is satisfied on average though not on any

particular experimental outcome. The hyperparameter  quantifies the prior belief about0

sphericity and it satisfies 1 . Small values of  reflect a belief that the;   0  _ f

departure from sphericity will be large while large values of  reflect a belief that0

departures from sphericty will be small.

Conventional multivariate software can be used to obtain EB analyses.

Specifically, let   and  represent the hypothesis and error matrices given byH Q, ,
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H [L X X L,
w w w  "œ ( ) ( ) ] ( ) (11)G G G G0 0 s s

and

Q I Eb œ 7 ; , (12)

respectively. The eigenvalues of  have the same joint distribution as theQ H"
, ,

eigenvalues of  and  and  have independent Wishart distributions, namely,E H H E"
m m m m

H I E Im mµ = µ 7 0W W; ; ; ;( , )       ( , ).

To obtain an  Bayes solution, one first estimates the hyperparameters empirical f

and  from the observed data [see formulas (26), (29) and (31) in Boik, 1997]. Denote7

these estimators by  and  (our  is /c in Boik). Thus applied researchers can makefs s s s7 7 7

inferences about G Q I Eby treating   + as the error matrix with  degrees ofs
, ;œ 7 0s s7

freedom and using  as the hypothesis matrix with degrees of freedom with any of theH, =

conventional multivariate statistics.

Boik demonstrated, through Monte Carlo methods, that the EB approach

adequately controls Type I error rate and that it is more powerful than both the -adjusted%

and multivariate procedures for many non-null mean configurations. Nonetheless,

additional research is necessary to determine how robust the EB procedure is to

violations of its derivational assumptions. That is, as indicated, the EB approach requires

that the data be sampled from a multivariate normal distribution and that the covariance

matrix be sampled from a spherical inverted Wishart distribution. Our investigation,

therefore will examine the operating characteristics of the EB approach when the two

assumptions are violated separately and jointly. Accordingly, this article examines the

robustness of the EB approach.

Test Statistics

In addition to examining the EB approach to the analysis of repeated

measurements we investigated, for comparative purposes, five other procedures; these
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included Huynh's (1978) Improved General Approximation (IGA) test, the adjusted df

univariate test proposed by Quintana and Maxwell (1994), the nonpolar multivariate

Welch-James (WJ) test (see Johansen, 1980 and Keselman, Carriere & Lix, 1993) and

conventional multivariate tests. These procedures were selected for comparative purposes

because they are either popular alternatives to the conventional univariate test

(multivariate test, -adjusted test) or, based on prior literature, likely to be robust in cases%

were the EB approach may not (IGA, WJ).

The IGA test is a univariate test that adjusts the df of the usual F test to account

for violations of multisample sphericity (see Algina, 1997, Algina & Oshima, 1994,

1995; Keselman & Algina, 1996; Huynh, 1978). WJ, on the other hand, is a multivariate

statistic that does not require sphericity and allows for heterogeneity of the between-

subjects covariance matrices by using a non pooled estimate of error and a sample

estimate of df (see Keselman & Algina, 1996; Keselman, et al., 1993). The IGA and WJ

tests have been shown to be relatively insensitive to violations of mutisample sphericity

and nonnormality even in unbalanced designs (see Algina & Keselman, 1997; Keselman,

Algina, Kowalchuk & Wolfinger, 1997, 1999). The -adjusted df univariate test that we%

examined was proposed by Quintana and Maxwell (1994). With this test the adjustment

is based on the adjustments due to Greenhouse and Geisser (1959) and Huynh and Feldt

(1976),  and , respectively. Specifically, their sample estimate of the unknown% %s µ

sphericity parameter is ( ), where
_
% % %œ s µ"

#

%s œ
[trace ( )]

 trace ( )
F

F

s

s
MV

2

MV;
2  , (13)

and ( ) is given in (4) andFsMV

%µ œ min , 1 . (14)” •( 1)  2
(  )

7 ; s
; 7; s

%
%
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Finally, we computed Hotelling's (1931) T  when examining the repeated measures main2

effect and the (a) the Hotelling (1951)-Lawley (1938) (HL) trace criterion, (b) the Pillai

(1955)-Bartlett (1939) (P) trace statistic, and (c) Wilk's (1932) (W) likelihood ratio, when

examining the interaction effect. These multivariate tests were computed in two ways,

that is, they were based on either their conventional formulations or on the EB estimate

of the covariance matrix.

Methods of the Simulation

The various approaches to the analysis of repeated measurements were examined

in a between-subjects by within-subjects repeated measures design. There were three

levels of the grouping variable and four levels of the within-subjects variable. Seven

variables were examined in our simulation study.

The first two variables examined relate to one of the assumptions required for the

EB approach. That is, as indicated, the EB approach requires that the covariance matrix

be sampled from a spherical inverted Wishart distribution. The following sampling

schema was used in order to simulate second-stage sphericity. Random positive definite

covariance matrices were generated in the following manner. Let  be an  randomZ f t‚

matrix in which the entries are (0, 1) variables and let a V  be the matrix square root of

C C   wD , that is, a fixed nonsingular matrix of size q q‚ , where  is a covariance matrixD

with known epsilon and  is as previously defined has anC . Then F œ (V Z ZV)w w 1 

inverted Wishart distribution. If C C I, Z  (V Z ZV)w w wD Fœ 52 1and  is Gaussian, then œ 

follows a spherical inverted Wishart distribution (See Boik, 1997). The inverted Wishart

assumption can be violated in two ways. If and is Gaussian, thenC C I,  Z wD Á 52

F œ (V Z ZV) Zw w 1follows a non-spherical inverted Wishart distribution. If  is not

Gaussian, then does not follow an inverted Wishart distribution.F œ (V Z ZV)w w 1

To examine we varied the value of sphericity ( ) of the populationC C I, wD Á 52 %

covariance matrix ( ). Specifically, we estimated Type I error rates for the proceduresD
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when 1.00, .75 and .40. Thus, when 1.00 our sampling schema conforms to the% %œ œ

requirements of second-stage sphercity. Having .75 and .40 will enable us to% œ

examine the operating characteristics of the EB approach when, on average, sphericity is

not satisfied. The element values of the .75 and .40 covariance matrices (i.e., ) can beD

found in Keselman and Keselman (1990).

To investigate the second manner in which second-stage sphericity can be

violated, we generated positive definite covariance matrices that do not follow an

inverted Wishart distribution by obtaining  from nonnormal continuous distributions. InZ

particular, we obtained  from either a  distribution (df 3) or from a lognormalZ t œ

distribution [ exp( ) exp(1/2), where N(0,1)]. Sample data were thenZ R Rœ  µ

generated, for each simulation, from multivariate distributions having covariance matrix

F .. Pseudorandom observation vectors  = [ ] with mean vector Y Y Yw
ij jij1 ijqá œw

[ ] and covariance matrix  were obtained from a -variate normal distribution.. . Fj1 jq já q

The observation vectors were obtained by a triangular decomposition of ; that is,Fj

Y L ZN Lij j ij jœ  œ  * , where  is a lower triangular matrix satisfying the equality . F

LL ZNw and  is an independent normally distributed unit vector obtained by theij

RANNOR function (SAS, 1989). The nonnormal data were created by summing the;$
# 

squared values of three N(0,1) variates and standardizing the resulting sum.

The remaining six factors examined in our study were: (a) the value of , (b) totalf

sample size, (c) equality/inequality of the between-subjects group sizes, (d)

equality/inequality of the group covariance matrices, (e) pairing of the covariance

matrices and group sizes, and (f) distributional form of the response variable. It is

important to note that when covariance matrices were equal across groups our results will

be relevant to what can be expected for the test of a repeated measures variable in a

simple repeated measures design, that is a design containing no between-subjects

grouping variables (Kirk, 1995; Maxwell & Delaney, 1990; Rogan et al., 1979).
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The size of  could affect the performance of the EB procedure and accordinglyf

was varied.  In particular, we set  1, 2, 3, 5( ).f qœ

Sample size affects the relative power of the -adjusted univariate and%

multivariate tests. That is, when sample size is small, the power of the multivariate test

will be low and likely less than the adjusted univariate test because of the imprecision in

estimating all of the variances and covariances (Boik, 1997). As sample size increases,

however, the power of the multivariate test improves and can be greater than the power

of the -adjusted test. Clearly sample size affects the EB approach as well. Consequently,%

in our investigation we set sample size at three values: 18, 30, 45. These sampleN œ

sizes were chosen, in part, because according to the survey of the educational and

psychological literature reported by Kowalchuk, Lix and Keselman (1996), over 30%

(50%) of the repeated measures articles they reviewed had fewer that 30 (60)

observations in simple (mixed) designs. Additionally, we investigated two small sample

size conditions, namely 6 and 9. We investigated these small sample size casesN Nœ œ

because we felt the EB approach might prove superior in these cases compared to the -%

adjusted and multivariate procedures.

In addition, to varying the total sample size, we also investigated the effect of

group size balance/imbalance. Balance/imbalance was varied because the effect of other

conditions (e.g., covariance heterogeneity) are known to be exacerbated by group

imbalance. Furthermore, a recent survey indicates that imbalance is the norm and not the

exception in behavioral science research (see Keselman et al., 1998).  For each value of N

two cases of imbalance were investigated, where the second case for each  the sizesN

were more disparate: (a) 4, 6, 8 and 3, 6, 9 for 18, (b) 8, 10, 12 and 7, 10, 13 forN œ

N Nœ œ30, and (c) 13, 15, 17 and 12, 15, 18 for 45.

Previous research pertaining to the %-adjusted univariate and multivariate tests

indicated that between-group covariance heterogeneity affects rates of Type I error,

particularly when group sizes are unequal. Accordingly, we varied the equality/inequality
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of the group covariance matrices. When unequal, the matrices were multiples of one

another, namely , and . This degree and type of covarianceF F F F1 2 3 23 3
5œ œ"

heterogeneity was selected because it has been used by others in research involving the

analysis of repeated measurements (see e.g., Algina & Keselman, 1997; Keselman, et al.,

1997, 1999; Keselman et al., 1993).

Six pairings of covariance matrices and group sizes ( & n ) were investigated:Fj j

(a) equal n ; equal , (b) equal n ; unequal , (c/c ) unequal n ; unequal  (positivelyj j j j j jF F Fw

paired), and (d/d ) unequal n ; unequal  (negatively paired). The c /d  condition refersw w w
j jF

to the more disparate unequal group sizes case while the c/d condition designates the less

disparate unequal group sizes case. A positive pairing results when the largest group size

is associated with the covariance matrix containing the largest element values whereas a

negative pairing results when the largest group size is associated with the covariance

matrix with the smallest element values.

The last variable investigated was the distributional shape of the response

variable. In particular, the form of the variable was either multivariate normal or ;Ð$Ñ
#

distributed (see Keselman et al., 1993). The effect of nonnormality on the EB approach is

predictable since the EB procedure operates like the conventional multivariate procedures

when sample size is large and more like the conventional univariate procedure as sample

size decreases and/or departure from sphericity decreases. Nonetheless, for completeness,

we will table a few exemplars to verify this observation.

Type I error rates were collected over 5,000 replications per investigated

condition. We believe that this number of replications results in stable estimates of the

Type I error rates.

Results

To evaluate the particular conditions under which a test was insensitive to

assumption violations, Bradley's (1978) liberal criterion of robustness was employed.
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According to this criterion, in order for a test to be considered robust, its empirical rate

of Type I error ( ) must be contained in the interval 0.5 1.5 . Therefore, for! ! ! !s sŸ Ÿ

the five percent level of significance used in this study, a test was considered robust in a

particular condition if its empirical rate of Type I error fell within the interval

.025 .075. Correspondingly, a test was considered to be non robust if, for aŸ Ÿs!

particular condition, its Type I error rate was not contained in this interval.  In the tables,

bolded entries are used to denote these latter values. We chose this criterion since we feel

that it provides a reasonable standard by which to judge robustness. That is, in our

opinion, applied researchers should be comfortable working with a procedure that

controls the rate of Type I error within these bounds, if the procedure limits the rate

across a wide range of assumption violation conditions. Nonetheless, there is no one

universal standard by which tests are judged to be robust or not and thus with other

standards different interpretations of the results are possible.

For space considerations, we do not present results for the usual multivariate tests

of the repeated measures interaction effect; these results are predictable from results that

are tabled. Instead, we present all three EB interaction test results because this represents

new information. Furthermore, from a preliminary analysis of the data we found that the

rates of error were very similar when 1.00 and 0.75; accordingly, we do not always% œ

table rates of Type I error when .75.% œ

Z Normally Distributed

Table 1 contains empirical rates of Type I error (%) for the six combinations (a-

d') of & n  investigated when 18 for 3 and 15 when  was obtained from aFj j N fœ œ Z

normal distribution (WJ rates are not tabled because sample sizes were smaller than those

recommended by Keselman et al., 1993).  Apparent from this table is that the empirical1

values generally did not differ substantially across these two values of  investigated;f

furthermore, rates of Type I error were not consistently larger for either value of . Thef
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remaining values of  that were investigated ( 6 and 9) resulted in rates that weref f œ

similar to those reported in Table 1.

The empirical values tabled for condition (a) (homogeneity of between-subjects

covariance matrices) when 1.0 indicate how the EB approach to the analysis of% œ

repeated measurements (in either a simple or mixed design) performs under second-stage

sphericity. Tabled values were all within the Bradley (1978) interval. Also evident from

Table 1 is that the EB tests' Type I error rates were, with the exception of the HL test of

the interaction effect, also within Bradley's interval for conditions (a) and (b) (equal

group sizes) when .40 (and for the non tabled .75 values).% %œ œ

Further examination of Table 1 indicates that all procedures were affected by

violations of multisample sphericity in at least one of the conditions investigated. The

IGA test resulted in liberal values under condition d (7.86% for the test of the interaction

effect when 3) and d' (e.g., 9.02% for the test of the main effect when 3)f fœ œ

(negative pairing of covariance matrices and group sizes). As expected, the adjusted df

univariate and multivariate tests were generally not robust to combinations of unequal

covariance matrices and unequal group sizes (conditions c/c', d/d'). In particular, the tests

were conservative for positive pairings of covariance matrices and group sizes and liberal

for negative pairings of covariance matrices and group sizes; conservative values were as

low as .74% (for the  test of the main effect when 15) while liberal values were as
_
% f œ

large as 19.78% (for the T  test of the main effect when 15). Not surprisingly, the EB2 f œ

tests were likewise affected by covariance heterogeneity when the design was

unbalanced.  That is, rates were conservative (e.g., .82% for the test of the main effect

when 3) for positive pairings of covariance matrices and group sizes and liberal (e.g.,f œ

22.42% for the test of the interaction effect when 15) for negative pairings off œ

covariance matrices and group sizes. The HL version of EB was also frequently liberal

when covariance matrices were unequal but group sizes were equal [condition (b)]. Of

the three EB tests of the interaction effect, the HL values were most liberal, followed by



Empirical Bayes     14

W and then P. The preceding findings were very similar across the three values of %

investigated.

Since rates of Type I error do not appear to be affected by , the remaining tabledf

values were based on one of our intermediate investigated values, i.e., 6. The rates inf œ

Table 2 are for the sample size cases of 30 and 45. Because the 30 unequalN N Nœ œ œ

sample size conditions (8, 10, 12 and 7, 10, 13) are close, though still smaller, than the

recommended values prescribed by Keselman et al. (1993), WJ values are tabled along

with the other investigated tests.

Once again when sphercity is satisfied and covariance matrices are equal across

groups, the EB procedure maintains effective Type I error control. Furthermore, control

is maintained, when group sizes were equal (conditions (a) and (b)), even when .40% œ

(and for the non tabled .75 values). As we found when 18, the adjusted df% œ œN

univariate, multivariate and EB tests were prone to depressed and inflated rates of error

when covariance matrices and group sizes were unequal. The rates however, were not

quite as distorted for these larger sample size cases. In particular, the rates when 30N œ

were elevated, ranging in value around 10%-12%. On the other hand, the IGA test was

always robust to violations of multisample sphericity, while WJ was robust except for the

test of the interaction effect under condition d and d' (Remember the 30 sample sizesN œ

were smaller than those recommended by Keselman et al.). When 45, the adjustedN œ

df, multivariate and EB tests were once again prone to elevated rates of Type I error for

negative pairings, though rates were rarely conservative for positive pairings of

covariance matrices and group sizes. The EB rates were in the 8% to 11% range. On the

other hand, the rates for the IGA and WJ tests were always well controlled.

Z Nonnormally Distributed ( 3)t œ

As previously indicated, if  is not Gaussian, then does notZ (V Z ZV)F œ w w 1

follow an inverted Wishart distribution. The results in Table 3 for 3, 18 andf Nœ œ

f N tœ œ6, 45 indicate that when the rows of  were distributed as  variates (with threeZ



Empirical Bayes     15

df) the effect on Type I error rates was minimal. For the 3, 18 data, when  wasf Nœ œ Z

obtained from a normal distribution, 54 of the tabled empirical values fell outside of

Bradley's (1978) interval while the number of estimates that were outside the interval was

55 when  was obtained from a  distribution. For 6, 45 data, the correspondingZ t f Nœ œ

number of non robust empirical values was values was 22 and 27, respectively.

Z Nonnormally Distributed (Lognormal)

Table 4 contains empirical rates of Type I error when  was lognormallyZ

distributed for various combinations of ,  and . The effect of obtaining  from a non-f N % Z

symmetric distribution was similar to the effect of obtaining  from the symmetric  andZ t

normal distributions. That is, the EB approach was robust under conditions (a) and (b),

(group sizes are equal) and generally non robust under conditions (c), (d), (c'), and (d')

(group sizes are unequal). Specifically, for the test of the repeated measures main effect,

the non robust rates of error ranged from 1.08% to 19.06%, whereas for the interaction

effect test, the rates ranged from 1.08% to 21.68%. Also, as was found with the normal

and  data, the IGA test was robust except in condition (d) (7.64% for the interaction test)t

and (d') (8.96% for the main effect test and 9.68% for the interaction test) when 18.N œ

As well, the WJ test was robust except in condition (d') (8.30% for interaction test) for

N œ q30. The results for the -adjusted test were also similar to prior results.%

Y Z Nonnormally Distributed/  Nonnormally Distributed (Lognormal)

Table 4 also contains empirical rates of Type I error when the response variable

was distributed, rather than normally distributed  Specifically, as a point of;$
# Þ

comparison, we have tabled empirical values for the same combinations of ,  and f N %

investigated when the response variable was normally distributed, namely when 3,f œ

N f Nœ œ œ œ œ18, 1.00 and 6, 45, 0.40. The effect of the response variable being% %

nonnormally distributed resulted, on average, in the liberal values being slightly elevated

compared to their normal distribution counterparts. That is, when 3, 18,f Nœ œ

% œ 1.00, the average liberal Type I error rate was 14.2% for nonnormal data compared
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to 14% for normally distributed data. The corresponding values for 6, 45,f Nœ œ

% œ 0.40 were 9.7% and 9.4%, respectively.

Small Sample Behavior

We also investigated the Type I error behaviour of the EB, -adjusted and%q

multivariate procedures when sample sizes were small, i.e., 6 and 9, becauseN Nœ œ

the EB approach may perform better than its competitors in such cases. We only table

conditions (a) and (b) because the results for conditions involving unequal group sizes

are predictable from the results previously presented. Table 5 contains rates for normally

distributed data while Table 6 presents rates for  distributed data.  Because the IGA;$
#

and WJ procedures require larger sample sizes they were not investigated for these

sample size cases.

Normally Distributed Data. For the main effect test, the -adjusted and%q

multivariate procedures always had rates of error within Bradley's (1978) liberal interval.

The empirical EB values, with one exception (7.66%) were also within Bradley's interval.

For the interaction effect, only the -adjusted and EB Pillai tests resulted in robust values%q

[condition (b) has unequal covariance matrices]. The Hotelling-Lawley and Wilks EB

tests frequently had liberal rates of Type I error (e.g., in excess of 8%).

;$
# . When the response variable was not normally distributedDistributed Data

main effect rates of Type I error were much larger than the values enumerated in Table 5.

Thus, most of the main effect values fell outside of Bradley's (1978) liberal interval,

attaining values in the 8%-12% range. On the other hand, the rates for the test of the

interaction effect were very similar to their Table 5 counterparts, meaning that by in

large, the procedures, excluding HL, were robust to nonnormal.

Discussion

In our paper we compared one of the newest approaches to the analysis of

repeated measurements, the empirical Bayes approach presented by Boik (1997), to

procedures that are frequently used by researchers to analyze repeated measures
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hypotheses (an adjusted df univariate approach and multivariate statistics) and to

procedures that have been reported to be generally robust to non sphericity, covariance

heterogeneity, and nonnormality [Huynh's (1978) IGA test and Johansen's (1980) WJ

test]. The approach involves a blending of the univariate and multivariate approaches to

the analysis of repeated measurements. The EB approach requires that the data be

sampled from a multivariate normal distribution and that the covariance matrix be

sampled from a spherical inverted Wishart distribution. Our investigation, examined the

Type I error operating characteristics of the EB approach when the two assumptions were

violated separately and jointly.

Our findings with respect to the EB approach varied with whether the response

variable was normally distributed, whether group sizes were equal, and whether the

approach was being used to analyze main or interaction effects. When the response

variable was normally distributed, the EB approach for testing main and interaction

effects was robust even though  was not distributed as a spherical inverted WishartF

variable when group sizes were equal. This finding held even when covariance matrices

were unequal. However, when the response variable was not normally distributed, the EB

approach tended to be non robust In particular, main effect Type I error rates were liberal

when sample size was small ( 18) even when the data were spherical. That is, equalN œ

group sizes did not guarantee robustness. For larger sample sizes ( 45), the EBN œ

procedure was not robust when covariance matrices were unequal even though group

sizes were equal. On the other hand, the EB approach generally resulted in a robust test

when applied to the interaction effect, particularly when the Pillai-Bartlett and Wilks

criteria were adopted. Thus, we could only recommend the EB approach when data are

known to be normally distributed and covariance matrices are homogeneous (or group

sizes are equal).

In our investigation we also compared the empirical Bayes approach with an

adjusted df univariate test (due to Quintana & Maxwell, 1994), a multivariate test, the
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IGA procedure due to Huynh (1978) and the WJ procedure presented by Keselman et al.

(1993). Furthermore, the Monte Carlo investigation also varied equality/inequality of the

between-subjects group sizes, equality/inequality of the group covariance matrices, and

pairings of the covariance matrices and group sizes.

We examined combinations of covariance homogeneity/heterogeneity and group

size homogeneity/heterogeneity because we believed the EB approach might be also

adversely affected by the same factors which affect the validity of the approaches which

comprise the EB approach, namely covariance heterogeneity when occurring in

unbalanced designs. Since unbalanced designs are the norm and not the exception in

behavioural science research according to a recent survey by Keselman et al. (1998), the

effects that covariance heterogeneity might have on this newest of approaches to the

analysis of repeated measurements should be of interest to behavioural science

researchers. In particular, since the EB approach was not designed for heterogeneity it

was reasonable to assume that heterogeneity when present would distort rates of Type I

error.

We found, as expected, that the empirical Type I error rates of the adjusted df

univariate and multivariate tests were adversely affected by heterogeneity of covariance

matrices when group sizes were unequal. In particular, the rates were either depressed or

elevated depending on whether covariance matrices and group sizes were positively or

negatively paired. Not surprisingly therefore, the EB tests were similarly affected. On the

other hand, the IGA and WJ tests were generally robust to these pairings of unequal

covariances and unequal group sizes except when  was small (i.e., 18) and thus theN N œ

smallest of the unequal group sizes was particularly small (e.g., 3). Though we did not

table WJ values when sample sizes were small, results reported by Keselman et al.,

(1993) and Keselman, Keselman and Lix (1995) indicate that the procedure is robust to

nonnormality and covariance heterogeneity as long as sample sizes conform to the

prescriptions given by Keselman et al. (1993).
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Therefore, when group sizes are unequal and covariance matrices may be

heterogeneous, we recommend either the IGA or WJ approach. Results presented here as

well as elsewhere indicate that these procedures are generally robust to the effects of

nonsphericity and covariance heterogeneity (see Algina & Keselman, 1997; Keselman et

al., 1997, 1999; Keselman et al., 1993). Based on the power results presented by Algina

and Keselman (1998) one can expect a more powerful test of a repeated measures effect

with the WJ test. However, to obtain a robust WJ test, sample sizes need to be larger than

is the case with the IGA test. Thus, when researchers do not have the requisite sample

sizes prescribed by Keselman et al. (1993) and Algina and Keselman (1997), the IGA test

should be used.

As a postscript we point out that in making the preceding recommendations we

have taken into account the literature regarding mixed-model analyses for repeated

measurements. That is, the mixed-model approach to the analysis of repeated

measurements is advocated by its proponents because it allows users to model the correct

covariance structure of their data, thereby, presumably, as previously indicated, resulting

in more powerful tests of repeated measures effects. However, results reported by

Keselman et al. (1997, 1999) indicate that the default and Satterthwaite  tests that areF

computed with the SAS ( ) mixed-modelLittell, Milliken, Stroup & Wolfinger, 1996

program (PROC MIXED) are also prone to depressed or inflated rates of Type I error

when covariance matrices and group sizes are unequal and positively or negatively

paired, respectively.  Thus, these findings also played a role in our recommendations.
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Footnotes

1. According to Keselman et al. (1993), when data are normally distributed, to obtain a

robust test of the repeated measures main effect hypothesis, the number of observations

in the smallest of groups must be 2 to 3 times the number of repeated measurements

minus one (i.e., 1); to obtain a robust test of the interaction, this number must be 3 orK 

4 times ( 1). The corresponding values for nonnormally distributed data are 3 or 4K 

times one and 5 or 6 times one, respectively. Algina and Keselman (1997) determined

that the sample size requirements enumerated by Keselman et al. (1993) generalize to

larger repeated measures designs (i.e., 6 4 and 6 8 as opposed to the 3 4 and 3 8‚ ‚ ‚ ‚

designs investigated by Keselman et al., 1993) for the test of the main effect but that

sample size requirements had to be larger in order to obtain a robust interaction test.
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Table 1. Empirical Type I Error Rates (%) (Z Normally Distributed)

,/C Main Effect Test Interaction Effect Test

IGA ,) T2 EB IGA ,) HL(EB) P(EB) W(EB)

f=3, N=18

1.0/a 5.36 5.06 4.90 4.76 6.46 5.30 5.46 3.82 5.00

b 5.34 5.36 6.06 5.76 6.68 6.26 7.92 5.40 6.98

c 5.12 2.60 2.42 2.14 5.52 3.12 3.52 1.88 2.98

d 6.72 10.48 13.72 12.90 7.86 11.16 15.10 11.22 13.66

c’ 4.84 1.28 1.06 0.82 5.40 1.96 2.24 0.96 1.58

d’ 8.46 14.10 19.48 19.02 9.24 14.72 21.64 17.76 20.38

.40/a 5.02 5.04 4.98 5.04 6.28 5.08 5.58 3.48 5.02

b 5.18 5.48 6.78 6.30 5.70 5.66 7.34 4.64 6.40

c 4.72 2.42 2.10 2.00 5.88 3.66 3.40 1.62 2.70

d 7.40 10.48 14.62 13.68 7.40 10.14 15.28 10.76 13.64

c’ 4.98 1.68 1.32 1.34 5.68 2.60 2.26 1.06 1.74

d’ 9.02 12.92 19.28 18.72 9.36 13.96 20.64 15.82 18.72

f=15, N=18

1.0/a 5.46 5.12 5.48 6.08 5.50 4.82 6.30 5.38 5.94

b 4.96 4.72 6.24 5.98 5.44 5.60 7.64 6.20 7.06

c 5.62 2.06 2.28 2.16 5.40 2.28 2.98 1.98 2.42

d 5.74 10.72 14.24 13.76 6.06 12.30 16.34 13.72 15.20

c’ 4.82 0.74 1.14 0.94 6.00 1.78 2.48 1.62 1.98

d’ 6.80 16.38 18.94 20.08 7.10 17.10 22.42 19.64 21.50

.40/a 5.14 5.16 4.96 4.76 6.12 5.16 5.14 3.64 4.78

b 5.02 5.44 6.44 5.94 6.86 6.72 7.70 4.62 6.64

c 5.00 2.64 2.78 2.16 5.94 3.76 2.98 1.82 2.50

d 6.66 9.80 13.80 13.16 7.64 10.38 15.64 11.94 14.24

c’ 5.10 1.94 1.16 0.96 5.62 2.20 2.20 1.10 1.72

d’ 8.54 12.76 19.78 18.56 9.04 12.92 20.56 15.74 18.86

Note: ,/C-Value of the sphericity parameter/Pairing of covariance marices and group sizes

condition; IGA-Huynh’s (1978) ImprovedGeneral Approximation Test,,) -EBAR (Quintana &
Maxwell, 1994),T2-Hotelling’s test,HL-Hotelling-Lawley Trace, P-Pillai test, W-Wilks test, EB-
Empirical Bayes.





Table 2. Empirical Type I Error Rates (%) (Z Normally Distributed)

,/C Main Effect Test Interaction Effect Test

IGA WJ ,) T2 EB IGA WJ ,) HL(EB) P(EB) W(EB)

f=6, N=30

1.0/a 5.40 5.14 5.22 5.30 5.22 6.34 5.02 4.94 4.94 4.02 4.46

b 5.34 4.80 5.30 5.72 5.46 6.76 6.72 6.40 7.44 5.72 6.74

c 4.78 4.86 2.88 3.14 2.92 6.06 5.94 3.90 4.10 3.18 3.76

d 5.24 5.08 7.88 10.10 9.74 6.86 8.18 9.66 11.64 9.92 10.78

c’ 4.78 4.06 2.30 2.00 1.78 6.06 5.70 2.90 3.20 2.48 2.88

d’ 6.14 5.68 10.52 12.68 12.50 6.76 8.46 11.04 13.80 11.54 12.86

.40/a 5.10 4.90 5.12 5.26 4.90 6.08 5.26 4.76 4.64 3.82 4.22

b 4.84 5.10 4.98 5.98 5.78 6.54 6.40 6.32 6.98 5.40 6.28

c 4.64 4.60 3.20 3.28 2.84 6.86 6.00 4.70 4.40 3.18 3.76

d 5.06 4.82 7.14 9.72 8.94 6.56 7.58 8.50 11.06 8.64 10.04

c’ 4.68 4.84 2.36 2.12 1.90 6.40 5.78 3.60 3.24 2.18 2.68

d’ 6.00 5.70 9.18 12.64 12.36 6.76 8.46 9.72 14.20 11.90 13.18

f=6, N=45

1.0/a 5.02 4.44 4.90 4.62 4.52 6.84 4.98 5.00 5.14 4.66 4.90

b 5.08 5.12 5.10 5.78 5.74 6.30 5.80 5.86 6.72 5.92 6.26

c 4.80 4.62 3.54 3.54 3.30 6.24 4.86 4.30 4.52 3.78 4.20

d 4.70 4.58 6.58 7.60 7.26 5.82 5.36 7.30 8.84 7.94 8.38

c’ 4.68 4.28 2.64 2.48 2.46 6.50 5.36 3.92 3.88 3.26 3.54

d’ 5.38 4.94 8.28 9.74 9.60 7.10 5.86 9.62 10.92 9.86 10.54

.40/a 5.18 4.66 5.12 4.78 4.78 6.82 4.80 4.96 4.82 4.12 4.62

b 5.60 5.40 5.70 6.12 5.74 6.24 5.50 5.74 6.84 5.62 6.40

c 4.78 4.88 3.70 3.62 3.40 6.54 5.58 4.96 4.50 3.72 4.10

d 4.62 4.40 6.24 7.40 6.98 5.80 5.44 6.56 8.24 7.28 7.78

c’ 4.62 4.92 3.40 3.20 2.86 5.50 4.88 3.88 3.32 2.68 3.10

d’ 5.38 4.88 8.14 9.40 8.92 6.68 6.02 8.64 10.16 8.94 9.66

Note: ,/C-Value of the sphericity parameter/Pairing of covariance marices and group sizes condition;

IGA- Huynh’s (1978) Improved General Approximation Test,  WJ-Welch-James test (Keselman et

al.,1993), ,) -EBAR (Quintana & Maxwell, 1994),T2-Hotelling’s test, HL-Hotelling-Lawley Trace, P-Pillai
test, W-Wilks test, EB-Empirical Bayes.



Table 3. Empirical Type I Error Rates (%) (Z t=3 Distributed)

,/C Main Effect Test Interaction Effect Test

IGA WJ ,) T2 EB IGA WJ ,) HL(EB) P(EB) W(EB)

f=3, N=18

1.0/a 4.78 --- 4.68 5.10 4.74 6.70 --- 5.72 5.52 4.26 5.12

b 5.58 --- 5.66 6.68 6.20 6.72 --- 6.62 7.92 5.10 6.58

c 4.90 --- 2.54 2.18 2.18 6.50 --- 3.52 3.66 1.86 2.96

d 6.30 --- 9.40 12.88 12.48 7.80 --- 11.28 16.12 12.00 14.46

c’ 4.86 --- 1.50 1.22 0.94 6.12 --- 2.54 2.16 1.06 1.68

d’ 8.40 --- 13.18 18.88 17.62 8.92 --- 14.64 20.96 16.66 19.46

.40/a 5.56 --- 5.58 5.20 5.18 6.28 --- 5.20 4.88 3.38 4.32

b 5.94 --- 6.28 6.82 6.54 6.12 --- 5.96 7.92 5.04 7.02

c 4.64 --- 2.30 2.14 1.76 6.16 --- 3.48 3.36 1.68 2.54

d 7.00 --- 10.20 13.88 13.04 8.36 --- 11.00 16.20 12.16 15.00

c’ 5.34 --- 1.80 1.24 1.18 5.34 --- 2.46 2.60 1.20 2.10

d’ 9.00 --- 13.00 19.04 18.32 9.06 --- 13.18 19.92 15.50 18.54

f=6, N=45

1.0/a 5.34 4.96 5.22 5.14 4.92 6.50 5.14 5.06 4.98 4.54 4.76

b 5.62 5.36 5.62 6.12 5.94 5.98 5.06 5.66 6.12 5.24 5.72

c 5.18 4.74 3.98 3.36 3.38 6.06 5.14 4.04 4.50 3.74 4.20

d 5.16 5.02 6.86 8.40 8.02 6.94 5.76 8.18 9.74 8.46 9.26

c’ 4.86 4.64 3.22 3.08 2.88 5.76 5.12 3.48 3.92 3.32 3.66

d’ 5.68 5.36 8.12 10.48 10.10 6.14 5.92 8.68 10.54 9.32 10.00

.40/a 4.24 4.74 4.24 4.90 4.84 6.82 5.00 4.78 4.48 4.00 4.28

b 5.60 4.64 5.78 5.56 5.20 6.80 5.62 6.50 6.12 5.30 5.78

c 5.00 4.84 3.72 3.56 3.40 5.66 5.36 4.22 4.66 3.88 4.22

d 5.10 4.96 6.44 8.44 8.20 6.02 5.46 7.12 8.72 7.58 8.16

c’ 5.00 4.98 3.30 2.84 2.82 6.44 5.52 4.12 4.06 3.26 3.78

d’ 5.54 5.30 7.96 10.34 10.12 6.20 5.88 8.08 10.52 9.32 9.92

Note: ,/C-Value of the sphericity parameter/Pairing of covariance marices and group sizes condition;

IGA-Huynh’s (1978) Improved General Approximation Test,  WJ-Welch-James test (Keselman et

al.,1993), ,) -EBAR (Quintana & Maxwell, 1994),T2-Hotelling’s test, HL-Hotelling-Lawley Trace, P-Pillai
test, W-Wilks test, EB-Empirical Bayes.



Table 4. Empirical Type I Error Rates (%) (Z Lognormal Distributed)

C Main Effect Test Interaction Effect Test

IGA W J ,) T2 EB IGA W J ,) HL(EB) P(EB) W (EB)

Response Variable Normally Distributed

f=3, N=18, ,=1.00

a 4.90 --- 4.68 4.50 4.42 6.22 --- 5.10 5.56 3.98 4.64

b 5.38 --- 5.48 6.18 5.52 6.72 --- 6.44 7.94 5.10 6.68

c 5.14 --- 3.04 2.70 2.64 5.86 --- 3.42 3.54 1.86 2.82

d 6.72 --- 10.14 14.08 13.38 7.64 --- 10.58 15.76 12.16 14.46

c’ 5.18 --- 1.40 1.22 1.08 6.16 --- 2.46 1.80 1.08 1.44

d’ 8.96 --- 14.22 19.54 19.06 9.68 --- 15.12 21.68 17.52 20.60

f=6, N=45, ,=0.40

a 5.14 4.48 5.12 4.66 4.66 6.38 5.54 4.66 5.14 4.38 4.80

b 4.82 5.08 4.92 5.88 5.48 5.94 4.74 5.50 6.04 4.96 5.58

c 4.34 4.80 3.30 3.70 3.64 6.60 5.40 4.80 4.54 3.60 4.06

d 5.66 5.40 7.28 8.38 8.20 6.52 6.20 7.70 9.92 8.94 9.52

c’ 4.68 4.88 2.90 3.04 2.86 5.94 5.06 3.98 3.70 3.00 3.36

d’ 5.46 5.38 8.00 10.02 9.70 6.72 6.34 8.50 10.94 9.56 10.36

Response Variable Chi-Square (3) Distributed

f=3, N=18, ,=1.00

a 6.44 --- 6.56 10.24 8.84 3.94 --- 3.96 4.62 3.54 4.26

b 6.20 --- 6.48 11.46 10.26 5.50 --- 6.28 8.20 5.54 7.02

c 6.32 --- 3.88 6.18 4.78 4.80 --- 3.54 3.64 2.12 3.02

d 8.66 --- 12.16 19.58 18.42 7.10 --- 10.52 14.36 10.98 13.02

c’ 6.32 --- 2.56 4.46 3.26 4.98 --- 2.50 2.58 1.60 2.28

d’ 10.96 --- 15.62 27.50 22.48 9.36 --- 14.42 19.90 15.88 18.60

f=6, N=45, ,=0.40

a 5.40 --- 5.46 6.78 6.56 5.86 --- 4.88 4.18 3.80 4.06

b 5.10 --- 5.30 8.26 8.10 5.78 --- 5.70 6.46 5.68 6.10

c 5.40 --- 4.40 7.42 7.12 5.94 --- 4.60 5.78 4.78 5.30

d 5.76 --- 7.44 11.22 11.00 6.14 --- 7.36 9.32 7.62 8.56

c’ 5.24 --- 3.62 4.94 4.78 5.62 --- 3.92 3.84 2.96 3.54

d’ 5.32 --- 7.84 12.88 12.62 6.10 --- 7.96 10.76 9.64 10.42

Note: C-Pairing of covariance marices and group sizes condition; IGA-Huynh’s (1978) Improved General

Approx imation Test,  W J-W elch-James test (Keselman et al., 1993), ,) -EBAR (Quintana & Maxwell, 1994),T2-

Hotelling’s test, HL-Hotelling-Lawley Trace, P-Pillai test, W-W ilks test, EB-Empirical Bayes.--- - indicates that rates of

Type I error were not collected since sample size was smaller than recomm ended values.



Table 5. Empirical Type I Error Rates (%) (Normally Distributed Data)

Main Effect Test Interaction Effect Test

C ,) T2 EB ,) HL(EB) P(EB) W(EB)

N=6, f=3, ,=1.00

a 5.92 5.48 5.78 6.14 6.46 4.34 6.42

b 6.24 6.20 6.90 6.92 8.16 4.58 7.38

N=6, f=3, ,=0.40

a 5.54 5.58 6.08 5.60 6.22 2.52 5.62

b 6.30 5.70 7.12 6.84 7.64 2.98 6.94

N=6, f=6, ,=0.75

a 4.80 5.76 5.88 4.94 6.96 5.54 6.84

b 5.34 6.72 7.28 5.88 8.92 6.48 8.60

N=9, f=3, ,=1.00

a 5.42 4.84 5.48 6.04 6.98 3.68 6.22

b 6.20 7.08 7.32 6.96 8.66 4.24 7.26

N=9, f=3, ,=0.40

a 4.96 4.56 5.24 5.26 5.76 2.76 4.70

b 6.22 7.48 7.66 6.66 8.70 3.50 7.28

N=9, f=6, ,=0.75

a 4.70 4.78 5.14 5.52 6.90 4.36 6.10

b 5.58 7.32 6.52 5.56 8.54 5.30 7.66

Note: C-Pairing of covariance marices and group sizes condition; ,) - EBAR
(Quintana &Maxwell, 1994), T2-Hotelling’s test, HL-Hotelling-Lawley
Trace, P-Pillai test, W-Wilks test, EB-Empirical Bayes.



Table 6 Empirical Type I Error Rates (%) [Chi-Square (3) Data]

Main Effect Test Interaction Effect Test

C ,) T2 EB ,) HL(EB) P(EB) W(EB)

N=6, f=3, ,=1.00

a 8.04 6.44 8.66 5.80 6.66 3.92 6.38

b 8.76 8.06 9.68 6.62 8.24 5.16 7.96

N=6, f=3, ,=0.40

a 7.50 7.06 8.64 4.90 5.38 2.30 5.14

b 8.24 7.94 10.44 6.50 7.72 3.00 7.10

N=6, f=6, ,=0.75

a 6.04 6.58 7.70 4.58 6.86 5.24 6.64

b 6.82 8.46 9.22 5.42 8.14 5.60 7.76

N=9, f=3, ,=1.00

a 7.26 10.52 9.38 5.18 6.02 3.44 5.24

b 7.94 12.78 11.08 6.58 8.66 4.40 7.32

N=9, f=3, ,=0.40

a 7.32 10.34 10.34 4.44 5.80 2.48 4.88

b 7.66 11.94 11.10 6.04 8.84 3.68 7.28

N=9, f=6, ,=0.75

a 5.66 9.74 8.12 4.24 5.42 3.58 4.90

b 6.90 13.02 10.30 5.62 8.04 4.56 6.82

Note: C-Pairing of covariance marices and group sizes condition; ,) -EBAR
(Quintana &Maxwell, 1994), T2-Hotelling’s test, HL-Hotelling-Lawley
Trace, P-Pillai test, W-Wilks test, EB-Empirical Bayes.


