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Abstract

In 1987, Jennings enumerated data analysis procedures that authors must follow for

analyzing effects in repeated measures designs when submitting papers to

Psychophysiology. These prescriptions were intended to counteract the effects of

nonspherical data, a condition know to produce biased tests of significance.  Since this

editorial policy was established, additional refinements to the analysis of these designs

have appeared in print in a number of sources that are not likely to be routinely read by

psychophysiological researchers.  Accordingly, this paper presents additional procedures

that can be used to analyze repeated measurements not previously enumerated in the

editorial policy.  Furthermore, the paper indicates how numerical solutions can easily be

obtained.

Descriptors: Repeated Measurements, main, interaction, and contrast tests, new analyses



Assessing Repeated Measurements
3

Testing Treatment Effects in Repeated Measures Designs:

An Update for Psychophysiological Researchers

In 1987,  stipulated a policy for analyzing data from repeatedPsychophysiology

measures designs (Jennings, 1987).  In particular, the assumptions that are required to

obtain valid tests of omnibus and sub-effect hypotheses were enumerated and

prescriptions for analyzing effects in such designs were stipulated.  Recently, there have

been additional refinements to the analysis of these designs which have appeared in print

in a number of sources that are not likely to be routinely read by psychophysiological

researchers. Accordingly, the purpose of this paper is to update prior recommendations.

It is important for the reader to note that the recommendations presented in this

paper are based on the findings of empirical investigations which compared various

alternative strategies of data analysis.  The studies, individually and collectively, did not,

nor could they, exhaust all conceivable parametric conditions that psychophysiological

researchers may encounter in their research endeavors. Consequently, my

recommendations will not always result in the optimal method of analysis; however, they

should, more often than not, result in the 'best' method of analysis.   Analyses based on a

thorough familiarity with the phenomenon under investigation, including the

mechanism(s) that is(are) responsible for generating the data will always prove superior

to those based on general recommendations.  The caveat of “know thy data" certainly

applies to the analysis of repeated measures designs and should always be paramount

when considering the appropriateness of the recommendations.

The one Between  by one Within-Subjects design-

Assessing Main Effects
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Researchers working in the psychophysiological area frequently adopt a repeated

measures design that contains both Between-Subjects grouping variables and Within-

Subjects repeated measures variables (see, for example, articles published in the January

1997, Volume , Number 1 issue of ).  The simplest of these designs34 Psychophysiology

involves a single Between-Subjects grouping factor and a single Within-Subjects

repeated measures factor, in which subjects (i 1,   , n , n N) are selectedœ á œg gD

randomly for each level of the Between-Subjects factor (g 1,   , G) and observedœ á

and measured under all levels of the Within-Subjects factor (m 1,   , M).œ á

To set the stage for the procedures that I will present for analyzing such designs

and to help clarify notation, consider the following hypothetical research problem.

Specifically, I will use the data presented in Table 1 which could represent the outcome

of an experiment in which the Between-Subjects variable is susceptibility to stressors

(g 1,   , 3) and the Within-Subjects variable is a task to be performed at four levelsœ á

of challenge (m 1,   , 4).  Readers should note that these data were obtained from aœ á

random number generator and, therefore, are not intended to reflect actual characteristics

of the previously posed hypothetical problem.  However, they were generated to reflect

characteristics (i.e., covariance structure, relationship of covariance structure to group

sample sizes, the distributional shape of the data, etc.) of repeated measures data that are

likely to be obtained in psychophysiological investigations.   That is, these data are based1

on the assumption that I as well as others working in the field make (see, for example,

Keselman & Keselman, 1988; 1993; Jennings, 1987; Overall & Doyle, 1994; Vassey &

Thayer, 1987), namely, that psychophysiological data will not, in all likelihood, conform

to the validity assumptions of the traditional tests of repeated measures effects.

---------------------------------------------
Insert Table 1 About Here
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---------------------------------------------

In each of the groups, there are 13 observations (i.e., n n n 13;1 2 3œ œ œ

Dn 39).  The computational procedures that will be illustrated when group sizes areg œ

unequal will be based on the data associated with subject numbers that are not enclosed

in parentheses; thus, for these analyses n 7, n 10, and n 13 ( n 30).  Cell1 2 3 gœ œ œ œD

and marginal (unweighted) means for each data set (balanced and unbalanced) are

contained in Table 2.  In the illustrations that follow, the results for all analysis

procedures will be presented and discussed; naturally, researchers would only compute

those procedures that actually relate to their research hypotheses.

  ---------------------------------------------
Insert Table 2 About Here

---------------------------------------------

The Univariate Approach

Tests of the Within-Subjects main and interaction effects traditionally have been

accomplished by the respective use of the univariate analysis of variance (ANOVA) F

statistics

F MS / MS  F[ ; (M 1), (N G)(M 1)] and (1)M M M S/Gœ µ   ‚ !

F MS / MS  F[ ; (G 1)(M 1), (N G)(M 1)], (2)G M G M M S/G‚ ‚ ‚œ µ    !

where should be read as `is distributed as'.  The validity of these tests rests on theµ

assumptions of normality, independence of errors, and homogeneity of the treatment-

difference variances (i.e., sphericity) (Huynh & Feldt, 1970; Rogan, Keselman &

Mendoza, 1979; Rouanet & Lepine, 1970). The sphericity assumption is satisfied if and

only if the M 1 contrasts (orthonormalized) among the repeated measures variable are

independent and equally variable.  Further, the presence of a Between-Subjects grouping

factor requires that the data meet an additional assumption, namely, that the covariance

matrices of these contrasts are the same for all levels of this grouping factor.  Jointly,

these two assumptions have been referred to as multisample sphericity (Mendoza, 1980).
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When the assumptions to the traditional tests have been satisfied, they will

provide a valid test of their respective null hypotheses and will be uniformly most

powerful for detecting treatment effects when they are present.  These traditional tests are

easily obtained with the major statistical packages, that is with BMDP (1994), SAS

(1990), and SPSS (Norusis, 1993). Thus, when assumptions are known to be satisfied

psychophysiological researchers can adopt the traditional procedures and report the

associated p-values since, under these conditions, these values are an accurate reflection

of the probability of rejecting the null hypothesis by chance when the null hypothesis is

true.    For the balanced (i.e., N 39) data set given in Table 1, PROC GLM (SAS,œ

1990) results are F 3.95 (3, 108; p .0103) and F 5.17 (6, 108; p .0001).M G Mœ œ œ œ‚

Unfortunately, as Jennings (1987) and others have indicated, the data from most

applied work are unlikely to conform to the strict requirements of multisample sphericity

(Keselman & Keselman, 1988; 1993; Overall & Doyle, 1994; Vassey & Thayer, 1987).

The result of applying the traditional tests of significance with data that do not conform

to the assumptions of multisample sphericity is that too many null hypotheses are falsely

rejected (Box, 1954; Collier, Baker, Mandeville & Hayes, 1967; Kogan, 1948).

Furthermore, as the degree of nonsphericity increases, the traditional repeated measures F

tests becomes increasingly liberal (Collier et al.).

However, when the design is balanced (group sizes are equal) the Greenhouse and

Geisser (1959) and Huynh and Feldt (1976) tests are robust alternatives to the traditional

tests.  As Keselman and Rogan (1980) have indicated, the Greenhouse and Geisser or

Huynh and Feldt methods adjust the degrees of freedom of the usual F statistics; the

adjustment for each approach is based on a sample estimate,   and  , respectively, of% %s µ

the unknown sphericity parameter ( ).%

The empirical literature indicates, however, that these adjusted degrees of

freedom tests are not robust when the design is unbalanced (Keselman & Keselman,
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1990; Keselman, Keselman & Lix, 1995).  Specifically, the tests will be liberal

(conservative) when group sizes and covariance matrices are negatively (positively)

paired with one another.  A positive (negative) pairing refers to the case in which the

smallest (largest) n  is associated with the covariance matrix with the smallest (largest)g

element values.2

The major statistical packages [BMDP, SAS, SPSS] provide Greenhouse and

Geisser (1959) and Huynh and Feldt (1976) adjusted p-values.  For the balanced (i.e.,

N 39) data set given in Table 1, PROC GLM (SAS, 1990) results for the Greenhouseœ

and Geisser tests are F 3.95 [3(.4497) 1.3491, 108(.4497) 48.5676; p .0409]M œ œ œ œ

and F 5.17 [6(.4497) 2.6982, 108(.4497) 48.5676; p .0046], where  G M‚ œ œ œ œ s%

œ œ.4497.  The corresponding Huynh and Feldt results are F 3.95M

[3(.4869) 1.4607, 108(.4869) 52.5852; p .0372] and F 5.17œ œ œ œG M‚

[6(.4869) 2.9214, 108(.4869) 52.5852; p .0036], where  .4869.œ œ œ œµ%

The Multivariate Approach

The multivariate test of the repeated measures main effect is performed by first creating

M 1 difference (D) variables.   The null hypothesis that is tested, using Hotelling's 3

(1931) T  statistic, is that the vector of population means of these M 1 D variables2 

equals the null vector. The upper 100(1 ) percentage points of the T  distribution can ! 2

be obtained from the relationship

F T   F[ ; M 1, N G M 2] . (3)œ µ    
N G M 2

(N G)(M 1)
  
 

2 !

The multivariate test of the Within-Subjects interaction effect, on the other hand,

is a test of whether the vectors of population means of the M 1 D variables are equal

across the levels of the grouping variable.  A test of this hypothesis can be obtained by

conducting a one-way multivariate ANOVA, where the M 1 D variables are the



Assessing Repeated Measurements
8

dependent variables and the grouping variable (G) is the Between-Subjects independent

variable. When G 2, four popular multivariate criteria are: (1) Wilk's (1932) likelihood

ratio, (2) the Pillai (1955)-Bartlett (1939) trace statistic, (3) Roy's (1953) largest root

criterion, and (4) the Hotelling (1951)-Lawley (1938) trace criterion.  Based on Olson's

work (1974), I recommend the Pillai-Bartlett criterion since it seems most robust to

assumption violations.  When G 2, all criteria are equivalent to Hotelling's T  statistic.œ 2

Valid multivariate tests of the repeated measures hypotheses, unlike the univariate

tests, depend not on the sphericity assumption but only on the equality of the covariance

matrices at all levels of the grouping factor as well as normality and independence of

observations across subjects.  The empirical results indicate that the multivariate tests of

the repeated measures main and interaction effects are generally robust to their

assumption violations when the design is balanced and not robust when the design is

unbalanced (Keselman et al., 1995).  Furthermore, under most conditions that researchers

are likely to encounter with real data (sample sizes, magnitude of treatment effects), a

multivariate test will be more sensitive to the presence of treatment effects than the

univariate tests (Algina & Keselman, 1997; Davidson, 1972). Also, as indicated,

multivariate tests require fewer assumptions. Consequently, when the design is balanced

I recommend that researchers adopt multivariate procedures to assess the effects of their

treatments rather than the adjusted degrees of freedom tests recommended by Keselman

and Rogan (1980).  Multivariate tests of repeated measures designs hypotheses are easily

obtained from the multivariate or repeated measures program associated with any of the

three major statistical packages.  PROC GLM (SAS, 1990) results for the balanced data

set are F 6.00 (3, 34; p .0021) and F (Pillai's Trace) 3.49 (6, 70; p .0044).M G Mœ œ œ œ‚

Additionally, researchers should note that they can estimate how many

observations they need in their studies to detect repeated measures effects with either the

multivariate or adjusted degrees of freedom approach (see Algina & Keselman, 1997;
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Muller & Barton, 1989, 1991; O'Brien & Muller, 1993, pp. 325-333).  Power analysis

modules can be obtained from the Internet network through file transfer protocols (see

O'Brien & Muller, 1993, p.340).

Nonpooled Corrected Degrees of Freedom Statistics

Since the effects of heterogeneous covariances on tests of mean equality in unbalanced

repeated measures designs are similar to the effects of variance heterogeneity on such

tests in independent groups designs, one solution to analysis problems in heterogeneous

unbalanced designs parallels that found in the context of completely randomized designs.

The Keselman, Carriere and Lix (1995) Statistic.  The Keselman, Carriere and

Lix (1995) statistic (WJ), based on the work of Johansen (1980), is a multivariate

extension of the (Welch, 1947, 1951)-James (James, 1951, 1954) procedures for

completely randomized designs.  The statistic does not pool across heterogeneous sources

of variation (covariance matrices) and estimates error degrees of freedom from the data.

Though the test statistic cannot always be obtained from the major statistical packages,

Lix and Keselman (1995) present a SAS (1989) IML program that can be used to

compute the Welch-James test for  repeated measures design.  The program requiresany

only that the user enter the data, the number of observations per group (cell), and the

coefficients of one or more contrast matrices that represent the hypothesis of interest.

Lix and Keselman present illustrations of how to obtain numerical results with their

SAS/IML program.

The empirical literature indicates that the Welch-James test is generally

insensitive to heterogeneity of the covariance matrices and, accordingly, will provide a

valid test of repeated measures hypotheses (Keselman, Algina, Kowalchuk, & Wolfinger,

1997a; Keselman, Carriere & Lix, 1993).  Specifically, researchers should consider using
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this statistic when they suspect that group covariance matrices are unequal and they have

groups of unequal size.  It should be noted, however, that to obtain a robust statistic

sample sizes must be relatively large.  That is, according to Keselman et al. (1993) in

order to obtain a robust test of the repeated measures main effect hypothesis using this

statistic, the number of observations in the smallest of groups must be three to four times

the number of repeated measurements minus one (i.e., M 1); to obtain a robust test of

the interaction, this number must be five or six to (M 1).  Algina and Keselman (in

press) determined that the sample size requirements enumerated by Keselman et al.

(1993) generalize to larger repeated measures designs (i.e., 6 4 and 6 8 as opposed to‚ ‚

the 3 4 and 3 8 designs investigated by Keselman et al., 1993) for the test of the‚ ‚

main effect but that sample size requirements had to be larger in order to obtain a robust

interaction test.  Nonetheless, for most situations likely to be encountered with applied

data (i.e., moderate degrees of nonnormality, covariance heterogeneity, and

unbalancedness), these authors recommended that researchers continue to use the Welch-

James test for examining repeated measures effects.

For the data set in which group sizes are unequal (i.e., n  7, n  10, and1 2œ œ

n 13), Welch-James results are WJ 9.53 (3, 11.25; p .002) and WJ 8.263 M G Mœ œ œ œ‚

(6, 13.89; p .0006).œ

The Huynh (1978)-Algina (1994)-Lecoutre (1991) Statistic. Huynh (1978)

developed a test of the Within-Subjects main and interaction hypotheses, the Improved

General Approximation test, that is designed to be used when multisample sphericity is

violated.  The Improved General Approximation tests of the Within-Subjects main and

interaction hypotheses are the usual statistics, F  and F , respectively, withM G M‚

corresponding critical values of bF[ ; h', h] and cF[ ; h'', h].  The parameters of the! !

critical values are defined in terms of the group covariance matrices and group sample

sizes.  Estimates of the parameters (c, b, h, h and h ), and the correction due to Lecoutrew ww
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(1991), are presented in Algina (1994) and Keselman and Algina (1996).  These

parameters adjust the critical value to take into account the effect that violation of

multisample sphericity has on F  and F .  If multisample sphericity holds,M G M‚

bF[ ; h', h] F [ ; (M 1), (N G)(M 1)] and! !œ   

cF[ ; h'', h] F [ ; (G 1)(M 1), (N G)(M 1)].! !œ    

A SAS/IML (SAS Institute, 1989) program is also available for computing this test in

any repeated measures design (see Algina, in press).  IGA results are F 7.44 (1.2085,M œ

14.8387; p .0470), where b 1.6753 and F 3.04 (1.3992, 14.4387; p .1723),œ œ œ œG M‚

where c 1.4884.œ

Keselman et al. (1997a) compared the Welch-James and Improved General

Approximation tests and found that both were generally able to control their rates of

Type I error even when assumptions (normality and covariance homogeneity) were

jointly violated.  The Welch-James test, however, required a larger sample size to achieve

robustness.  Based on their results and recommendations and results reported by

Keselman et al. (1993) and Algina and Keselman (1997), I recommend the Welch-James

test for analyzing effects in repeated measures designs.  Typically it will not only provide

a robust test of repeated measures effects, but, as well, will generally provide a more

powerful test of nonnull effects, compared to the Improved General Approximation test.

Indeed, Algina and Keselman (1997) found, when Type I error rates were controlled,

power differences in favor of Welch-James as large as 60 percentage points!  However, if

one cannot meet the recommended sample size requirements for the valid use of the

Welch-James test, then the Improved General Approximation test is recommended.

A General Method

Another procedure that psychophysiological researchers can adopt to test repeated

measures effects can be derived from a general formulation for analyzing effects in

repeated measures models.  This newest approach to the analysis of repeated
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measurements is a mixed model analysis.  Advocates of this approach suggest that it

provides the `best' approach to the analysis of repeated measurements since it can, among

other things, handle missing data and also allows users to model the covariance structure

of the data.  Thus, one can use this procedure to select the most appropriate covariance

structure prior to testing the usual repeated measures hypotheses, e.g., F  and F .M G M‚

The first of these advantages is typically not a pertinent issue to those involved in

controlled experiments since data in these contexts are rarely missing.  The second

consideration, however, could be most relevant to experimenters since, according to the

developers of mixed model analyses, modeling the correct covariance structure of the

data should result in more powerful tests of the fixed-effects parameters.  The PROC

MIXED program in SAS (1996) allows researchers to examine a number of different

covariance structures that could possibly describe their particular data [e.g., compound

symmetric (the structure assumed by many programs for valid univariate tests),

unstructured (the structure assumed by many programs for valid multivariate tests), first-

order autoregressive, etc.].  The program allows even greater flexibility to the user by

allowing him/her to model covariance structures that have Within-Subjects and/or

Between-Subjects heterogeneity.

In order to select an appropriate structure for one's data, PROC MIXED users can

use either an Akaike (1974) or Schwarz (1978) information criteria.  Keselman, Algina,

Kowalchuk, and Wolfinger (1997b) compared these criteria for various Between- by

Within-Subjects repeated measures designs in which the true covariance structure of the

data was varied as well as the distributional form of the data and group size and

covariance balance/imbalance.  Their data indicated that neither criteria uniformly

selected the correct covariance structure.  Indeed, for most of the structures investigated,

both criteria, and particularly the Schwarz (1978) criteria, more frequently picked the

wrong covariance structure.  Thus, though the mixed model approach allows users to

model the covariance structure, two popular criteria for selecting the `best' structure
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performed poorly.  Not surprisingly, Keselman et al. (1997a) found that the default F-

tests that PROC MIXED computes based on either of these two criteria were prone to

inflated rates of Type I error.  Accordingly, any presumed power benefits must be

discounted when the procedure is prone to excessive rates of Type I error.

Multiple comparison procedures

Contrast Tests On Between-Subjects Marginal Means

The choice of a test statistic for contrasts on the Between-Subjects marginal

means rests on the tenability of the homogeneity of variance assumption.  If this

assumption is tenable, then a test statistic which uses a pooled estimate of error variance

(i.e., MS ) in estimating the standard error of a contrast is appropriate and will provideS/G

the most powerful test.  On the other hand, if the homogeneity of variance assumption is

untenable, then the more appropriate test statistic is one which allows for an individual

estimate of the contrast variance (Welch, 1938).  Given that one seldom knows whether

the variance homogeneity assumption is tenable, the safest course of action is to

uniformly adopt a test statistic that is based on the separate variance approach.  Indeed,

research has indicated that this strategy results in only slight losses in power when the

homogeneity of variance assumption is satisfied (Best & Rayner, 1987; Games &

Howell, 1976).  Test statistics based on the separate variance approach, often referred to

as nonpooled statistics, can be obtained from programs in the popular statistical packages

(e.g., the BMDP 3D program, the SAS PROC TTEST, and the SPSS T-TEST and

ONEWAY procedures).

Stepwise Multiple Comparison Procedures. A class of multiple comparison

procedures that can be used to test pairwise contrast hypotheses are stepwise procedures.

Unlike simultaneous multiple comparison procedures [e.g., Tukey's HSD; see Kirk, 1995,

p. 144] which use a constant critical value to assess statistical significance, stepwise

procedures involve a succession of testing stages in which the significance criterion, and
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hence the critical value, is adjusted throughout the stages. Stepwise procedures are

recommended since they usually (i.e., for many nonnull mean configurations) provide a

more powerful test of the multiple comparison null hypothesis.  For pairwise contrasts

among means, researchers can adopt any one of a number of stepwise multiple

comparison procedures.

Fisher's (1935) Two-Stage Least Significant Difference (LSD) approach. A

popular approach for testing pairwise contrasts is due to Fisher (1935).  In this approach,

an omnibus test is conducted at stage one and, if declared nonsignificant, all pairwise

contrast hypotheses are regarded as null.  If, on the other hand, the omnibus test is

declared significant at stage one, then all pairwise contrasts hypotheses are tested using t

statistics, each assessed at an  level of significance.  Hayter (1986) showed, however,!

that when G 3 this two-stage procedure does not limit the overall, that is, familywise

rate of Type I error to .  By modifying the critical value of the stage two tests of the!

pairwise differences (that is, by using q / 2, where q  is a value from the ; G-1, ! / !r

Studentized range distribution), however, Hayter (1986) showed that Fisher's (1935) two-

stage approach provides exact Type I error control.

Shaffer's (1979, 1986) Sequentially Rejective Bonferroni Approaches.  Another

stepwise multiple comparison procedure that researchers can adopt is one due to Shaffer

(1986).  In this procedure, the p-values associated with the test statistics are rank-ordered

from smallest to largest.  That is, p  p ,  , p , where w G(G 1)/2 for1 2 wŸ Ÿ á Ÿ œ 

pairwise contrasts.  At step one, the smallest p-value, p , is compared to /w.  If1 !

p /w, statistical testing stops and all pairwise contrast hypotheses (H , 1 i w)1 i Ÿ Ÿ!

are retained; if p /w, however, H  is rejected and one proceeds to test the remaining1 1Ÿ !

hypotheses in a similar step-down fashion by comparing the associated p-values to /w ,! *

where w  equals the maximum number of true null hypotheses, given the number of*

hypotheses rejected at previous steps.  For example, if w 6 (i.e., G 4) and H  (sayœ œ 1

. . !1 2 2 œ 0) was rejected at step one, Shaffer's procedure would compare p  to /3 at
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step two, since only three pairwise null hypotheses could be true (i.e., , ,. . . .1 3 1 4œ œ

and , or , , and ).  Note that this procedure is more. . . . . . . .3 4 2 3 2 4 3 4œ œ œ œ

powerful than the usual Bonferroni procedure which would compare each p-value to /6.!

Appropriate denominators for each -stage test can be found in Shaffer's (1986) Table 2,!

for designs containing up to ten treatment levels (see also Seaman, Levin & Serlin,

1991).

Shaffer (1979, 1986) proposed a modification to her sequentially rejective

Bonferroni procedure which involves beginning this procedure with an omnibus test.  If

the omnibus test is declared nonsignificant, statistical testing stops and all pairwise

differences are declared nonsignificant. On the other hand, if one rejects the omnibus null

hypothesis one proceeds to test pairwise contrasts using the sequentially rejective

Bonferroni procedure previously described with the exception that p , the smallest p-1

value, is compared to a significance level which reflects the information conveyed by the

rejection of the omnibus null hypothesis. For example, for w 6, rejection of theœ

omnibus null hypothesis implies at least one inequality of means and therefore p  is1

compared to /3, rather than /6; the remaining stages (2, 3, etc., etc.) use the w  values! ! *

given by Shaffer (1986) or Seaman et al., (1991).

Hochberg's (1988) Step-up Bonferroni Approach. Like Shaffer's (1986)

procedure, the p-values associated with the test statistics are rank ordered.  In Hochberg's

procedure, however, one begins by comparing the largest p-value, p , to /w.  If p ,w w! !Ÿ

all hypotheses are rejected.  If p , then H  is retained and one proceeds to comparew w !

p  to /2.  If p /2, then all remaining Hs are rejected.  If not, then H  is(w 1) (w 1) (w 1)  ! !Ÿ

retained and one proceeds to compare p  with /3, and so on.  Clearly, this stepwise(w 2) !

procedure is likely to be more sensitive in detecting pairwise differences than the usual

Bonferroni procedure since on every comparison, except the last, the level of significance

is larger. It is important to note that researchers can adopt other stepwise multiple

comparison critical values (see Keselman, 1993, 1994; Seaman, Levin & Serlin, 1991).
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The illustrations in the remainder of the paper are based on the unbalanced data

set (n 7, n 10, and n 13).  Prior to illustrating tests on the Between-Subjects1 2 3œ œ œ

marginal means, I report the omnibus test results for the Between-Subjects effect.

The test of the Between-Subjects grouping variable is statistically significant,

assuming the level of significance to be .05, with either the traditional test of significance

(F 11.74: 2, 27; p .0002) or the robust Welch (1951) test (WJ 4.80: 2, 11.42;œ œ œ

p .0307). I recommend that psychophysiological researchers adopt the Welchœ

procedure since, as indicated, it is generally robust to variance heterogeneity and is

relatively sensitive in detecting treatment effects, as compared to the ANOVA F test,

even when homogeneity is satisfied (Best & Rayner, 1987).

Pairwise comparisons can be computed on the Between-Subjects marginal means

either following a significant omnibus test or instead of the omnibus test if postulated a

priori.  For illustration purposes, I will adopt Fisher's (1935) two-stage LSD procedure.

Since the omnibus Welch (1951) test was statistically significant, one would proceed to

the pairwise tests.  The pairwise tests are based on the two-sample Welch (1938) test.

Results for the three tests are: (a) WJ 8.91 (8.18; p .0170) for G  vs. G , (b)œ œ 1 2

WJ 10.08 (6.52; p .0172) for G  vs. G , and (c) WJ 0.00 (13.20; p .9966) forœ œ œ œ1 3

G  vs. G .  Since G 3, Fisher's (1935) LSD controls the familywise Type I error rate2 3 œ

and therefore each of the t-tests can be assessed for significance with .05.! œ

Accordingly, we conclude that G  vs. G  and G  vs. G  are statistically significant.1 2 1 3

Contrast Tests On Within-Subjects Marginal Means

Multiple comparison procedures that use a constant, that is, a pooled estimate of

error variance in obtaining the standard error of a contrast do not limit the familywise

rate of Type I error to  when the data do not satisfy the multisample sphericity!

assumption (Keselman & Keselman, 1988; Keselman, Keselman & Shaffer, 1991;

Maxwell, 1980).  That is, as Keselman and Keselman (1988) noted, when the assumption

of multisample sphericity is not satisfied, the use of various types of pooled estimates of
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error variance in estimating the standard error of Within-Subjects contrasts results in

biased tests of significance, particularly when the design is unbalanced.  Fortunately, a

test procedure is available which provides a robust test of pairwise contrasts of repeated

measures means for unbalanced (as well as balanced) nonspherical data (Keselman et al.,

1991).  This procedure involves the use of a nonpooled statistic (i.e., Welch) and

Satterthwaite's solution for degrees of freedom (Keselman et al., 1991; Satterthwaite,

1941, 1946). The program provided by Lix and Keselman (1995) can be used to obtain

numerical results.

Simultaneous Multiple Comparison Procedures. Using the nonpooled statistic,

Keselman et al. (1991) investigated the robustness of various simultaneous multiple

comparison procedures in nonspherical unbalanced repeated measures designs. The

results of their simulations indicated that the nonpooled statistic generally limited the

familywise rate of Type I error to  when used in conjunction with a Bonferroni!

{t[ /(2c); ]}, Studentized range {q[ ; M, ]/ 2 } or a Studentized maximum modulus! / ! /s s È
{M[ ; c, ]} critical value, where c M(M 1)/2, the total number of pairwise! /s œ 

contrasts and  is error degrees of freedom based on the Satterthwaite (1941, 1946)/s

solution (Hochberg & Tamhane, 1987; Maxwell & Delaney, 1990).  In general,

Keselman et al. found that a Bonferroni critical value provided the best Type I error

control, followed by a Studentized maximum modulus critical value and, finally, a

Studentized range critical value.

Stepwise Multiple Comparison Procedures. With respect to tests of pairwise

contrasts of repeated measures means, Keselman (1993, 1994) reported that several

stepwise strategies can be used to limit the familywise rate of Type I error to  for!

repeated measures data that do not meet the multisample sphericity assumption.  For a

detailed discussion of stepwise multiple comparison procedures for repeated measures

designs, the reader is referred to Keselman (1993, 1994).  The stepwise procedures

enumerated for tests of Between-Subjects marginal means can be used here as well.
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For illustration purposes, I will assume the pairwise tests were postulated a priori

and therefore will adopt Hochberg's step-up Bonferroni procedure to assess statistical 

significance. The six pairwise WJ values are (a) M  vs. M : WJ .25 (1, 7.76; 1 2 œ

p .6291), (b) M  vs. M : WJ 1.83 (1, 7.65; p .2151), (c) M  vs. M : WJ 4.86œ œ œ œ1 3 1 4

(1, 7.14; p .0626), (d) M  vs. M : WJ 14.66 (1, 25.34; p .0008), (e) M  vs. M :œ œ œ2 3 2 4

WJ 25.54 (1, 12.31; p .0003), and (f) M  vs. M : WJ 14.01 (1, 8.86; p .0047).œ œ œ œ3 4

The largest p-value, .6291, is compared to .05 and thus this pairwise hypothesis (M  vs.1

M ) cannot be rejected.  Next, the second largest p-value, .2151, is compared to2

!/2 .05/2 .025.  Since this p-value is greater than its criterion of significance, thisœ œ

pairwise difference (M vs M ) also cannot be rejected.  In the third step, .0626 is1 3

compared to /3 .0167 and consequently M vs M  is retained.  In the fourth step! œ 1 4

.0047 is compared to /4 .0125.  Since this p-value is less than its criterion of! œ

significance, M vs M  as well as the remaining comparisons (i.e., M  vs M  and M vs3 4 2 3 2 

M ) are declared statistically significant.4

Assessing the interaction effect

Traditionally, interaction effects have been assessed using one of two methods: (1) tests

of simple effects and/or (2) interaction contrasts.  The choice between these two methods

has depended on the hypotheses of interest.

As a preface to the discussion, it is important to note that although researchers

frequently compute simple effect tests following a significant interaction such tests do

not probe the interaction hypothesis.   Cogent discussions of this point have been4

presented in the literature (see, for example, Betz & Gabriel, 1978; Boik, 1993; Lix &

Keselman, 1996).  The presentation of simple effect tests, therefore, is intended for those

researchers who compute these tests, not as a means of probing interactions, but as means

for examining differences between treatments at a fixed level of one variable, when such
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comparisons have interpretive meaning within a particular research context (see, for

example, Toothaker, 1991, pp. 119-122).

Simple Between-Subjects Effects

In the G M repeated measures design, the simple effect of factor G refers to the effect‚

of the Between-Subjects factor G at a particular or fixed level of the Within-Subjects

factor M.  By restricting our attention to a particular level of M, we have essentially

eliminated the Within-Subjects factor from the design and are left with a single-factor

Between-Subjects design.

A statistic that estimates error variance on the basis of the data at a fixed level of

M and, accordingly, does not require multisample sphericity is

F at M    F[ ; (G 1), (N G)]. (6)G m œ µ   MS  
MS

G at Mm
S/G at Mm

!

Essentially, this approach is equivalent to conducting a simple Between-Subjects analysis

of the grouping factor G at a particular level of M and, therefore, is dependent on the

assumptions of independence of observations, normality, and homogeneity of variances.

If the variance homogeneity assumption is untenable, a heterogeneous variance

procedure, such as the one by Welch (1951), should be used.  In order to limit the

familywise Type I error rate to , each simple effect should be assessed at a reduced!

significance level.  For a discussion of familywise control with simple effect testing,

readers are referred to Kirk (1995) and Maxwell and Delaney (1990).

 For our example there are four simple effect tests: G at M , G at M , G at M ,1 2 3

and G at M .  Each of the simple effect hypotheses is tested with a Welch (1951)4

omnibus test statistic. Thus, we find that: (a) WJ 2.56 (2, 11.36; p .1212), (b)œ œ

WJ 3.07 (2, 12.95; p .0543), (c) WJ 10.27 (2, 12.20; p .0024), and (d)œ œ œ œ
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WJ 38.18 (2, 10.25; p .0000), respectively, for the preceding four Between-Subjectsœ œ

simple effect tests.  Only G at M  and G at M  are statistically significant since their p-3 4

values are less than /4 .05/4 .0125 ( Bonferroni procedure).! œ œ

If relevant, each of the three simple effect tests can be followed-up with contrast

tests, such as pairwise comparisons between the simple effect means.  Again, Welch

(1938) tests would be recommended in order to circumvent the homogeneity of variance

assumption.  To maintain consistency with each simple effect level of significance, these

tests can be assessed at the .0125/3 .004167 level.œ

Simple Within-Subjects Effects

In our G M design, the simple effect of factor M refers to the effect of the Within-‚

Subjects factor M at a particular level of the Between-Subjects factor G.  By focusing our

attention on a fixed level of G, the Between-Subjects factor is effectively eliminated and

we are left with a single-factor Within-Subjects design.  Accordingly, one can adopt

univariate or multivariate approaches to the analysis of simple Within-Subjects effects.

Adopting a univariate approach, the simple effects of the Within-Subjects factor

M can be tested with a statistic that corrects for nonsphericity, namely, an adjusted

degrees of freedom approach due to Greenhouse and Geisser (1959) ( ) or Huynh and%s

Feldt (1976) ( ).  Using the Greenhouse and Geisser adjustment, the test would be%µ

F  F[ ; (M 1) , (n 1)(M 1) ], (7)M at Gg  œ   MS
 MS

M at Gg

M S/Gg‚
µ   s s! % %g

where  (or ) is estimated on the basis of , the sample covariance matrix of group g.% %s µ Sg

The three Greenhouse and Geisser approximate degrees of freedom tests equal:

(a) F 0.85 (1.09, 6.58; p .4007, .3653), (b) F 19.23 (1.74, 15.64; p .0001,œ œ œ œ œs%
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% %s sœ œ œ œ.5791), and (c) F .18 (1.92, 23.07; p .8291,  .6407), respectively, for the

three simple effect tests of M at G , M at G , and M at G .1 2 3

As with the univariate approach, I prefer the use of a separate error matrix

(nonpooled) in arriving at a multivariate statistic.  Using this approach, the M repeated

measurements for the n  subjects at a fixed level of G are transformed into M 1 Dg 

variables and a test of the simple Within-Subjects effect is performed using Hotelling's

(1931) T  statistic.  Upper 100(1 ) percentage points of Hotelling's T  distribution2 2 !

can be obtained from the relationship

F  F[ ; M 1, n M 1] . (8)œ
n M 1

(n 1)(M 1)
g

g

 
  T2 µ   ! g

The three multivariate tests equal: (a) F 10.43 (3, 4; p .0232), (b) F 20.07œ œ œ

(3, 7; p .0008), and (c) F .37 (3, 10; p .7748), respectively, for the three simpleœ œ œ

effect tests M at G , M at G , and M at G  (Note that the multivariate criteria are equal in1 2 3

this instance.).

Finally, with either approach and in order to limit the familywise rate of Type I

error to  for the set of simple effect tests, each simple effect test should be conducted!

using a reduced significance level (Kirk, 1995; Maxwell & Delaney, 1990).  That is, a

Bonferroni procedure can be adopted to control the overall level of significance.

Accordingly, with either approach to simple effect testing, only M at G  is statistically2

significant since its p-value is less than /3 .05/3 .0167.! œ œ

Interaction Contrasts

A second method of assessing the interaction effect is to perform a series of interaction

(tetrad) contrasts.  Tetrad contrasts, are most useful for teasing out interaction effects in

large factorial designs (Lix & Keselman, 1995, 1996). As previously indicated, this
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method truly explores interaction effects, which is  the case with simple main effectnot

tests (Boik, 1993).

Adopting a multivariate approach and letting D  X X , the interactionig ig1 ig2œ 

contrast can be conceptualized as a Between-Subjects contrast ( ) between say G  and<s 1

G  on the dependent variable, D .  In this conceptualization, the test statistic is2 ig

t œ <s

ÊDg c s2 2g g(D)
ng

 , (9)

where s  is the variance of the D variable at level g.  This statistic can be approximated2
g(D)

by Student's t distribution with estimated Welch (1938) degrees of freedom given by

/W    . (10)œ

Ò ÓDg c s /n2 2 2
g g g

!
g

c s /n2 2g g g 2

n   1g 
Ò Ó



Familywise control can be achieved using a Bonferroni critical value, t[ /(2c); ],! /W

where c  [G(G 1)/2][M(M 1)/2] (see Lix & Keselman, 1996).  For our data set,œ  

there are a total of c 3 6 18 tetrad contrasts.  Adopting the nonpooled statistic theœ ‚ œ

contrast tests equal:
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Contrast WJ df p-value
(GM GM ) vs. (GM GM ) 1.08 7.38 .3258
(GM GM ) vs. (GM GM ) 0.21 6.35 .6650
(GM GM ) vs. (GM GM ) 2.

11 12 21 22

11 12 31 32

21 22 31 32

 
 
  97 13.51 .1077

(GM GM ) vs. (GM GM ) 0.69 7.34 .4314
(GM GM ) vs. (GM GM ) 0.02 6.28 .8842
(GM GM ) vs. (GM GM ) 7.94 12.77

11 13 21 23

11 13 31 33

21 23 31 33

 
 
  .0147

(GM GM ) vs. (GM GM ) 0.63 6.76 .4532
(GM GM ) vs. (GM GM ) 0.44 6.36 .5302
(GM GM ) vs. (GM GM ) 24.16 16.81 .0001
(

11 14 21 24

11 14 31 34

21 24 31 34

 
 
 

GM GM ) vs. (GM GM ) 0.39 14.72 .5394
(GM GM ) vs. (GM GM ) 8.49 15.34 .0105
(GM GM ) vs. (GM GM ) 4.69 19.58 .0429
(GM

12 13 22 23

12 13 32 33

22 23 32 33

12

 
 
 
 GM ) vs. (GM GM ) 0.00 9.81 .9725

(GM GM ) vs. (GM GM ) 9.36 8.08 .0154
(GM GM ) vs. (GM GM ) 21.75 17.34 .0002
(GM GM ) 

14 22 24

12 14 32 34

22 24 32 34

13 14


 
 
 vs. (GM GM ) 0.11 7.85 .7486

(GM GM ) vs. (GM GM ) 3.85 6.90 .0913
(GM GM ) vs. (GM GM ) 25.23 16.84 .0001.

23 24

13 14 33 34

23 24 33 34


 
 

 

With a Bonferroni critical value (.05/18 .0028), only (GM GM ) vs.œ 21 24

(GM GM ), (GM GM ) vs. (GM GM ), and  (GM GM ) vs.31 34 22 24 32 34 23 24   

(GM GM ) would be judged statistically significant.  Interpretively, there are just33 34

three pairwise differences between levels of the repeated measures variable (M vs. M ,1 4

M  vs. M , and M  vs. M ) that vary among just two levels of the Between-Subjects2 4 3 4

grouping variable (G  and G ) .# 3

Summary

The intention of this article was to present tests of hypotheses and sub-hypotheses in

repeated measures designs that have not previously been discussed in this journal

(Jennings, 1987; Keselman & Keselman, 1988; Keselman & Rogan, 1980).  Specifically,

methods for obtaining valid tests of the repeated measures main and interaction effect

hypotheses as well as for probing these effects were presented.  In addition to presenting



Assessing Repeated Measurements
24

methods not previously discussed, the paper indicated how users can obtain solutions

with various statistical algorithms that are readably available.

The recommendations offered differed according to whether the design was

balanced or unbalanced; that is, researchers should choose an analysis strategy based on

whether group sizes are equal or unequal.  When equal, multivariate techniques were

recommended.  On the other hand, when group sizes are unequal, the multivariate tests

will be invalid when the covariance homogeneity assumption is not satisfied, particularly

when data are also nonnormal.  Accordingly, in this case, it was recommended that

researchers adopt the Welch-James test to investigate omnibus and sub-effect hypotheses.

It is important to note that the Welch-James approach compares favorably to the

multivariate approach with regard to sensitivity to detect nonnull effects and, hence,

researchers wishing to follow a unified approach to significance testing can choose to

uniformly adopt the Welch-James nonpooled statistic for both balanced and unbalanced

designs.
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Footnotes

1. The data were generated from a multivariate lognormal distribution with marginal

distributions based on Y exp(X ) (i 1, , n ) where X  is distributed as N(0,ijk ij j ijkœ œ á

.25); this distribution has skewness and kurtosis values of 1.75 and 5.90, respectively.

Furthermore, the correlational (covariance) structure of the data was determined by

setting the sphericity parameter  at .57.  Additionally, the between-subjects covariance%

matrices were made to be unequal such that the elements of the matrices were in the ratio

of 1:3:5 (i.e., 1/3 5/3 ).  When group sizes were unequal they wereD D D1 2 3œ œ

negatively related to the unequal covariance matrices.  That is, the smallest n  wasj

associated with the covariance matrix containing the largest element values and the

largest n  was associated with the covariance matrix containing the smallest elementj

values (See Footnote 2).

2. For our 3 4 design,   the covariance matrices equaled‚ if

D D D1 2 3œ œ œ

Ô × Ô × Ô ×Ö Ù Ö Ù Ö ÙÖ Ù Ö Ù Ö Ù
Õ Ø Õ Ø Õ Ø

8 2 -1 -2 16 9 5 3 24 16 11 8
6 0 0 12 5 4 18 10 8

4 1 8 4 12 7
2 4 6

, , and and

sample sizes were n 13, n 10, and n 7, then a negative pairing (relationship) of1 2 3œ œ œ

covariance matrices and sample sizes exists; however, if n 7,  n 10, and n 13,1 2 3œ œ œ

then a positive relationship between the two exists.

3. In a 3 4 design, a contrast vector to compare means {e.g., [    ] }among the‚ . . . .1 2 3 4

levels of the repeated measures variable could be defined as [1 -1 0 0   1 0 -1 0   1 0 0 -1].

Though this example contains simple (D pairwise) contrasts (coefficients), the vector´

can contain any set of linearly independent contrasts.

4. It is easy to show how comparisons between means at a fixed level of one variable do

not merely represent a probing of interaction effects.  For example, in a two-way factorial

design let Y ( )  be the less than full rank model345 4 5 45 345œ    . ! " !" %
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( 1,  , J, 1,  , K), where  and  are the effects for the row and column4 œ á 5 œ á ! "4 5

variables, respectively, and ( )  represents the interaction effect.  In terms of the!" 45

parameters of the model, a comparison between say  (a comparison between. .11 12

columns one and two within the first row of ) would be equivalent to4

[ ( ) ] [ ( ) ] ( ) [( ) ( ) ]. ! " !" . ! " !" " " !" !"       œ    Þ1 1 1 12" " # " # "" "#

Thus, this comparison confounds effects due to the column variable with interaction

effects.
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Table 1. Hypothetical data for a 3 X 3 Repeated Measures Design

Subject M1 M2 M3 M4

G1

1 14.26 4.22 4.24 5.83

2 -1.35 3.61 4.79 6.98

3 -6.65 -1.45 1.45 4.21

4 7.22 4.79 7.12 8.10

5 -0.44 1.03 2.33 3.03

6 0.58 3.35 4.40 9.41

7 13.91 6.47 7.40 5.30

(8) 7.73 -0.07 0.80 0.00

(9) -4.51 -2.14 -0.92 -1.18

(10) 1.60 2.90 -0.53 -1.08

(11) 3.24 2.26 0.68 0.68

(12) 7.41 0.82 0.61 -1.18

(13) 5.58 1.22 0.16 -0.14



Table 1, continued

Subject M1 M2 M3 M4

G2

14 -0.99 -1.38 0.14 2.38

15 -2.46 -1.54 0.01 2.53

16 -4.28 -2.79 -0.65 2.35

17 -1.27 1.03 1.94 2.89

18 -4.11 0.10 1.18 0.95

19 -3.33 2.48 1.51 2.66

20 -3.51 -2.06 0.13 1.94

21 -4.78 -1.49 1.19 3.34

22 0.46 1.88 1.45 4.52

23 5.88 2.88 2.78 4.94

(24) -3.51 -2.06 0.13 1.94

(25) -4.78 -1.49 1.19 3.34

(26) 0.46 1.88 1.45 4.52



Table 1, continued

Subject M1 M2 M3 M4

G3

27 -1.13 0.06 0.23 0.87

28 -1.30 -0.15 0.41 0.87

29 3.20 0.92 1.03 -0.06

30 3.65 1.67 1.16 0.41

31 -1.79 -1.05 -0.80 -0.06

32 -0.24 -1.06 0.03 0.79

33 0.33 0.60 0.53 0.45

34 0.09 2.05 0.29 0.40

35 -1.15 -1.04 -0.26 0.25

36 -1.11 0.02 0.08 0.10

37 -0.59 0.18 1.25 0.60

38 2.34 1.38 2.21 0.33

39 1.87 4.03 0.79 1.02

Note: M1-M3: levels of the Within-Subjects Repeated Measures variable; G1-G3: levels
of the Between-Subjects grouping variable. For the balanced data set n1=13, n2=13, and
n3=13.  For the unbalanced data set n1=7, n2=10, and n3=13.



Table 2. Cell and Marginal Unweighted Means

(a) Balanced data set:

M1 M2 M3 M4 Row Mean

G1 3.74 2.08 2.50 3.07 2.85

G2 -2.02 -0.20 0.96 2.95 .42

G3 0.32 .59 .53 .46 .48

Column
Mean

0.68 .82 1.33 2.16 1.25

(b) Unbalanced data set:

M1 M2 M3 M4 Row Mean

G1 3.93 3.15 4.53 6.12 4.43

G2 -1.84 -0.09 0.97 2.85 .47

G3 0.32 .59 .53 .46 .48

Column
Mean

0.80 1.22 2.01 3.14 1.79

Note: See the note from Table 1.




