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Abstract

 Numerous authors suggest that the data gathered by investigators are not

normal in shape. Accordingly, methods for assessing pairwise multiple

comparisons of means with traditional statistics will frequently result in biased

rates of Type I error and depressed power to detect effects. One solution is to

obtain a critical value to assess statistical significance through bootstrap

methods. The SAS system can be used to conduct step-down bootstrapped

tests. We investigated this approach when data were neither normal in form nor

equal in variability in balanced and unbalanced designs. We found that the step-

down bootstrap method resulted in substantially inflated rates of error when

variances and group sizes were negatively paired. Based on our results, and

those reported elsewhere, we recommend that researchers should use trimmed

means and Winsorized variances with a heteroscedastic test statistic. When

group sizes are equal, the bootstrap procedure effectively controlled Type I error

rates.
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Pairwise Multiple Comparison Tests when Data are Nonnormal

 An underlying assumption of most pairwise multiple comparison

procedures (MCPs) (e.g., the methods due to Tukey, 1953, Scheffe, 1959, and

other procedures available through the major statistical packages) is that the

populations from which the data are sampled are normal in form. Although it may

be convenient (both practically and statistically) for researchers to assume that

their samples are obtained from normally distributed populations, this assumption

may rarely be accurate (Micceri, 1989; Pearson, 1931; Wilcox, 1990). Tukey

(1960) suggested that outliers should be a common occurrence in distributions

and others (e.g. Miller, 1988; Zumbo & Coulombe, 1997) have indicated that

skewed distributions frequently depict psychological (reaction time) data.

Researchers falsely assuming normally distributed data risk obtaining

unsatisfactory Type I and/or Type II error rates for many patterns of

nonnormality, especially when other assumptions are also not satisfied (e.g.,

variance homogeneity) (See Wilcox, 1997).

 One potential solution to the problem of nonnormal data is to use

bootstrap sampling methods to obtain an empirically determined critical value to

assess statistical significance rather than using critical values that are based on

the presumption of normally distributed data (e.g., values from the central t-

distribution). Diaconis and Efron (1983) provide an accessible introduction to

bootstrap concepts. Lunneborg (2000) provides a more comprehensive and

technical treatment. Bootstrap sampling allows the data analyst to obtain a

critical value that is empirically determined to ascertain statistical significance.

For example, the SAS system allows users to obtain both simultaneous and

stepwise pairwise MCPs that do not presume normally distributed data. In
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particular, users can use either bootstrap or permutation methods to compute all

possible pairwise comparisons.

 If users consider adopting this approach to combat the effects of

nonnormality they must consider the cautionary note provided by Westfall et al.

(1999, p. 234), namely, the procedure may not control the familywise error (FWE)

rate when the data are heterogeneous, particularly when group sizes are

unequal. Unfortunately, to date, we do not know what the magnitude of that effect

might be, if indeed there is one. Thus, researchers should also consider another

approach, that is, pairwise comparisons based on robust estimators and a

heteroscedastic statistic, an approach that has been demonstrated to generally

control the FWE when data are nonnormal and heterogeneous even when group

sizes are unequal.

 Specifically, a different type of testing procedure, based on trimmed

means, has been discussed by Yuen and Dixon (1973) and Wilcox (1995a,

1995b,1997), and is robust to violations of normality. That is, it is well known that

the usual group means and variances, which are the basis for all of the

previously described procedures, are greatly influenced by the presence of

extreme observations in distributions. In particular, the standard error of the usual

mean can become seriously inflated when the underlying distribution has heavy

tails and the population mean can lie in the tails of a skewed distribution which

"can give a distorted view of how the typical individual in one group compares to

the typical individual in another, and about accurate probability coverage,

controlling the probability of a Type I error, and achieving relatively high power"

(Wilcox, 1995a, p. 66). Theoretical results indicate that substituting robust

measures of location and scale for the usual mean and variance, one obtains a

test statistic which is relatively insensitive to the combined effects of variance

heterogeneity and nonnormality.
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 While a wide range of robust estimators have been proposed in the

literature (see Gross, 1976), the trimmed mean and Winsorized variance are

intuitively appealing because of their computational simplicity and good

theoretical properties (Wilcox, 1995a, 1995b). The standard error of the trimmed

mean is less affected by departures from normality than the usual mean because

extreme observations, that is, observations in the tails of a distribution, are

removed. Furthermore, as Gross (1976) noted, "the Winsorized variance is a

consistent estimator of the variance of the corresponding trimmed mean" (p.

410). In computing the Winsorized variance, the most extreme observations are

replaced with less extreme values in the distribution of scores.

 Based on the preceding, the purpose of our investigation was to examine

the FWE rate of the bootstrap method provided by SAS (1999) (see Westfall et

al., 1999, pp. 228-235) under conditions of nonnormality and variance

heterogeneity in balanced and unbalanced designs. These findings were then

compared to the results reported by Keselman, Lix, and Kowalchuk (1998) who

examined MCPs based on robust estimators.

Design

 A mathematical model that can be adopted when examining pairwise

mean differences in a one-way completely randomized design is

Y ,ij j ijœ . %

where Y  is the score of the ith participant (i 1,  , n) in the jth groupij œ á

( n N),  is the jth group mean, and  is the random error for the ithD . %j j ijœ

participant in the jth group. In the typical application of the model, it is assumed
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that the s are normally and independently distributed and that the treatment%ij

group variances ( s) are equal. Relevant sample estimates include52
j

. 5s œ œ œ œ  sj j ij ij j
i 1 j 1i 1

n J n
2 2Y Y /n  and  MSE (Y Y ) /J(n 1).

_ _! !!
œ œ œ

 A confidence interval for a pairwise difference  has the form. .j j w

Y Y   c  2/n ,
_ _

j j „ sw ! 5È

where c  is selected such that FWE . In the case of all possible pairwise! œ !

comparisons, one needs a c  for the set such that they simultaneously contain!

the true differences with a specified level of significance. That is, for all j j cÁ ßw !

must satisfy

P(Y Y c  2/n Y Y c  2/n ) 1   .
_ _ _ _

j j j j j j  Ÿ  Ÿ   œ s sw w w! !5 . . 5 !È È

The interval is equivalent to

P(max  c 1   ,j,jw
lÐ  ÑÐ  Ñl

s

Y
_

j j j j. .

5

Y
_

 2/n
w wÈ Ÿ Ñ œ ! !

where max stands for maximum. Evident from this last expression is that c  is!

related to the Studentized range distribution (see Scheffe, 1959, p. 28).

Specifically, if Z , Z ,  , Z  are standard normal independent random variates1 2 ná

and V is a random variable, independent of the Zs, and is chi-square distributed

with df degrees of freedom, then
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q max(J, df) j,jœ w
l  lZ Z
 V/df

j jwÈ

has a Studentized range distribution with parameters J and df. Another relation

that should be noted, is that it can be shown that c  satisfies!

P(q )/ c ) 1 .J, J(n 1)
È# Ÿ œ ! !

  The hypothesis H : 0 can be tested with the statistic:c j j. . œw

t (Y Y ) / (2 MSE/n) .
_ _

c j j
1/2œ  w

 The preceding can also be specified from a general linear model

perspective (see Westfall et al., 1999, Chapter 5). That is, the data can be

conceived as coming from the model

Y Xœ " %,

where  is an N 1 observational vector,  is the N p design matrix,  is theY X‚ ‚ "

p 1 vector of unknown parameters and  is the N 1 vector of random errors.‚ ‚%

 The usual assumptions to the model relate to the characteristics of the

random errors. Specifically, it is assumed that the , , ,  all (a) have a% % %1 2 Ná

mean of zero, (b) have common variance, , (c) are independent random52

variables, and (d) are normally distributed. Important estimates of the model are

obtained in the following manner:

"s œ ( )  X X X Yw  w .

5 " "s œ  s s2 ( ) ( )/df,Y X Y Xw
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where ( )  denotes a generalized inverse and df (N rank ) (see Westfall etñ œ  X

al., 1999, p. 87).

 One can specify estimable (see Scheffe, 1959, p. 13) functions of the

parameters, , where for this chapter, the functions would be the pairwisecw"

comparisons, such as say , where c cw" . .œ 1 2
w œ (0 1 1 0  0), which â

would be estimated by .cw"s

 To form simultaneous intervals or obtain simultaneous tests of the

estimable functions (pairwise comparisons), one needs to know the dependence

structures of the estimable functions. As Westfall et al. (1999) pointed out,

simultaneous inferences rely on the joint distribution of the quantities

T ,i œ
c c
c X X c
i i

i i

w w" "s

5sÈ w ( )w

where . The joint distribution of the T5sÈc X X ci iw w( )  is the standard error (SE) of cw"s i

is a multivariate t distribution, with df (N rank ) and dispersion matrixœ  X

R D C X X CD C c c Dœ œ á w w  " "
# #( ) , where ( , , ) and  is a diagonal matrix where1 k

the ith element equals ( ) .c X X cw w 
i i

 Confidence intervals of the estimable functions have the form

c ci i
w w" "s s„  c SE( ),! 

where c is chosen such that the FWE . Bonferroni-type methods can be! œ !

used to set the simultaneous intervals such the confidence coefficient will not

exceed 1 . However, because the Bonferroni procedure is overly !

conservative, we know that these intervals will simultaneously contain the true

values more than 100(1 ) percent of the time. This approach however can be !
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improved by taking the correlational structure among the estimable functions into

account, that is, by setting a simultaneous critical value via the multivariate t

distribution. That is,

PŒº c c
c X X c
i i

i i

w w" "s

5sÈ w w ( ) ¹ Ÿ c , for all i 1!  œ  !.

As Westfall et al. (1999, p. 89) noted, “The value of c  is the 1  quantile of the!  !

distribution of max  |T |, where the vector (T , , T ) has the multivariate ti i 1 kTw œ á

distribution.”

 FWE control is currently favored by social science researchers. In its

typical application, researchers compare a test statistic to a FWE critical value.

Another approach for assessing statistical significance is with adjusted p-values,

p , c 1,  , C (Westfall et al., 1999; Westfall & Wolfinger, 1997; Westfall &˜c œ á

Young, 1993). As Westfall and Young noted "p  is the smallest significance level˜c

for which one still rejects a given hypothesis in a family, given a particular

(familywise) controlling procedure (p. 11)." Thus, authors do not need to look up

(or determine) FWE critical values and moreover consumers of these findings

can apply their own assessment of statistical significance from the adjusted p-

value rather than from the standard (i.e., FWE) significance level of the

experimenter. The latter point is consistent with the current practice of reporting a

p-value for a single test statistic rather than stating that the ‘result was significant'

at the say .05 value; that is, current practice allows the consumer to take a p-

value and apply his/her own personal standard of significance in judging the

importance of the finding. For example, if p 0.09, the researcher/reader can˜c œ

conclude that the test is statistically significant at the FWE 0.10 level, but not atœ

the FWE 0.05 level.œ
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 To illustrate the calculation of an adjusted p-value consider the usual

Bonferroni procedure. In its usual application, H  is rejected if the p-value is less!c

than or equal to /C, where C denotes the total number of statistical tests!

(c 1, , C). Note that this is equivalent to rejecting any H  for which C p  isœ á †0c c

less than or equal to . Therefore, Bonferroni adjusted p-values are:!

p =˜ C p  if   C p 1
1  if   C pc

c c

c
œ † † Ÿ

†  "Þ

Adjusted p-values are provided by the SAS (1999) system for many popular

MCPs (See Westfall et al., 1999).

MCPs

 . The SAS (1999) system allows users toBootstrap and Permutation Tests

obtain both simultaneous and stepwise pairwise comparisons of means with

methods that do not presume normally distributed data. In particular, users can

use either bootstrap or permutation methods to compute all possible pairwise

comparisons. The availability of the SAS programs (e.g., PROC MULTTEST, see

Westfall et al., 1999) is a particularly attractive inducement for researchers to

employ bootstrap sampling to overcome the deleterious effects of nonnormality

because it alleviates the need to write bootstrap programs.

 Bootstrap sampling allows users to create their own empirical distribution

of the data and hence adjusted p-values are based on the empirically obtained

distribution, not a theoretically presumed distribution. For example, the empirical

distribution, say F, is obtained by sampling, , the pooled samples with replacement

residuals Y Y Y . That is, rather than assume that residuals are
_

% .s œ  œ sij ij ij jj

normally distributed, one uses empirically generated residuals to estimate the
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true shape of the distribution. From the pooled sample residuals one generates

bootstrap data.

 Adjusted p-values are calculated as p P(max |T | |t |). That is,˜c c c cœ  

adjusted p-values are based on the multivariate t distribution. As Westfall et al.

(1999, p. 229) noted, in many cases, this is equivalent to p P(min P p ).˜c c c cœ Ÿ

Their PROC MULTTEST computes adjusted p-values in this fashion [i.e.,

p P(min P p |F). With this in mind, bootstrapping of adjusted p-values with˜c c c cœ Ÿ s

their MULTTEST program is performed in the following manner:

ñ  Bootstrap data, Y , is generated by sampling with replacement from the pooledij
‡

sample of residuals.

ñ á Based on the bootstrapped data, p , p , , p  values are obtained from the1 2 C
‡ ‡ ‡

pairwise tests.

ñ The above process is repeated many times (PROC MULTTEST allows the user

to set the number of replications.).

ñ For stepwise testing, PROC MULTTEST uses minima over appropriate

restricted subsets to obtain the adjusted p-values (Further details about step-

down bootstrap methodology can be found in Westfall & Young, 1993, pp. 62-

68).

The adjusted p-values are obtained through a shortcut closure testing procedure

similar to Holm's (1979) step-down Bonferroni procedure, except that the method

used by Westfall et al. (1999, pp. 149-151;157-158; 229) takes the correlational

structure of the tests into account. An example program for all possible pairwise

comparisons is given by Westfall et al. (1999, p. 229).
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 As well, pairwise comparisons of means (or ranks) can be obtained

through permutation of the data with the program provided by Westfall et al.

(1999, pp. 233-234). Permutation tests also do not require that the data be

normally distributed. Instead of resampling with replacement from a pooled

sample of residuals, permutation tests take the observed data (Y ,  , Y , 11 n 1á á1

, Y ,  , Y ) and randomly redistributes them to the treatment groups, and1J n Já J

summary statistics (i.e., means or ranks) are then computed on the randomly

redistributed data. The original outcomes (all possible pairwise differences from

the original sample means) are then compared to the randomly generated values

(e.g., all possible pairwise differences in the permutation samples). That is, if,

Y Y  is the difference between the first two treatment group means based on a
_ _

1 2
* *


permutation of the data, then a permutational p-value can be computed as

p P(Y Y Y Y ). Accordingly, for pairwise comparisons, the adjusted p-
_ _ _ _

œ    1 2
* *

1 2

values are calculated as p P(min P p ), where the P  are computed from˜c c cc cœ Ÿ‡ ‡

the permutated data. As Westfall et al. (1999, p. 234) note, the major difference

between these two approaches ”concerns inferential philosophy rather than

actual results.” Accordingly, in our study, we just examined bootstrap resampling.

 . Trimmed means are computed by removing aTrimmed Means MCP

percentage of observations from each of the tails of a distribution (set of

observations). Let Y Y Y  represent the ordered observations(1) (2) (n)Ÿ Ÿ á Ÿ

associated with a group. Let g [  n], where  represents the proportion ofœ # #

observations that are to be trimmed in each tail of the distribution and [ ] isB

notation for the largest integer not exceeding . Wilcox (1995a, 1995b)B

suggested that 20% trimming should be used. The effective sample size

becomes h n 2g. Then the sample trimmed mean isœ 
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Y Y  .
œt

1
h     !

i g 1

n g
(i)

œ 



An estimate of the standard error of the trimmed mean is based on the

Winsorized mean and Winsorized sum of squares. The sample Winsorized mean 

is

Y [(g 1)Y  Y Y (g 1)Y ],
œ  w

1
n (g 1) (g 2) (n g 1) (n g)     á  

and the sample Winsorized sum of squared deviations is

SSD (g 1)(Y Y ) (Y Y ) (Y Y )w w w w(g 1) (g 2) (n g 1)
2 2 2œ     á  

  
   

 (g 1)(Y Y ) .  


(n g) w
2



Accordingly, the squared standard error of the mean is estimated as (Staudte &

Sheather, 1990)

d œ
SSD

h (h 1)
w

 .

 To test a pairwise comparison null hypothesis compute Y  and d for the jth
t

group, label the results Y  and d . The robust pairwise test (see Keselman, Lix &
tj j

Kowalchuk, 1998) becomes

tW œ
Y Y

d   d

q q




tj tj

j j

w

wÉ ,

with estimated df
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/W œ
(d   d )

d /(h 1)  d /(h 1)
j j

2

j
2 2

j j j



  

w

w w
.

When trimmed means are being compared the null hypothesis relates to the

equality of population trimmed means, instead of population means. Therefore,

instead of testing H : , a researcher would test the null hypothesis, H :0 j j 0. .œ w

. . .tj tj tœ w, where  represents the population trimmed mean (Many researchers

subscribe to the position that inferences pertaining to robust parameters are

more valid than inferences pertaining to the usual least squares parameters

when they are dealing with populations that are nonnormal in form.).

 Yuen and Dixon (1973) and Wilcox (1995a, 1995b) reported that for long

tailed distributions, tests based on trimmed means and Winsorized variances can

be much more powerful than tests based on the usual mean and variance.

Accordingly, when researchers feel they are dealing with nonnormal data they

can replace the usual least squares estimators of central tendency and variability

with robust estimators and apply these estimators in MCPs (see Keselman, Lix &

Kowalchuk, 1998).

Methods

In the simulation study six variables were manipulated: (a) the total

sample size, (b) the degree of sample size imbalance, (c) the magnitude of the

ratio between the largest and smallest variance, (d) the pairing of group sizes

and variances, (e) the configuration of population means and (f) the form of the

generated data.

For J 4 groups and equal sample sizes in each group, the total sampleœ

size was N 40, N 60, or N 100. According to a survey of the educationalœ œ œ

and psychological literature, the median sample size in one-way completely
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randomized designs is 64; however, in a third of the studies reviewed sample

size ranged between 20 and 40 (see Lix, Cribbie & Keselman, 1996). Therefore,

the N 40 and N 100 cases were intended to cover the range of valuesœ œ

identified by Lix et al. The N 100 case however, was intended to assessœ

whether the accuracy of the bootstrap methodology (i.e., estimating the true

distribution through resampling) improves with increases in sample size as

suggested by Westfall et al. (1999, p. 228).

We also varied sample size balance/imbalance. According to a recent

survey of the educational and psychological literature's for papers published in

1995-6, unbalanced designs are the norm, not the exception (Keselman, et al.,

1998). Furthermore, since the effects of variance heterogeneity are exacerbated

by sample size imbalance, we included three cases of balance/imbalance for

each sample size investigated. In particular, sample sizes were either equal,

moderately unequal, or very unequal, where the degree of balance/imbalance

was quantified with a coefficient of sample size variation (SCV); SCV is defined

as ( (n n) /J) / n, where n is the average group size. When sample sizesDj
2

j 
q q q"

#

were equal SCV 0; the moderately unequal cases had values of SCV .10,œ ¶

while SCV .40 for the largest case of imbalance investigated. Keselman et al.¶

report that SCV .40 values, or greater, are common. Sample sizes are¶

enumerated in Table 1 for each case of N.

We also considered two cases of variance heterogeneity, where in one

case the ratio of the largest to smallest variance was 4:1 while in the second

case the ratio was 8:1. Keselman et al. (1998) also reported that an 8:1 ratio for

unequal variances is not uncommon. Variances are enumerated in Table 1.

When variances were unequal, they were both positively and negatively

paired with the group sizes. For positive (negative) pairings, the group having the
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fewest (greatest) number of observations was associated with the population

having the smallest variance, while the group having the greatest (fewest)

number of observations was associated with the population having the largest

variance. These conditions were chosen since they typically produce

conservative and liberal results, respectively.

 Both complete and partial null hypotheses were investigated. In particular,

we investigated the following numerical value mean configurations for the four

population means: (a) 0.0, 0.0, 0.0, 0.0 (b) 0.0, 0.0, 0.0, 0.917, (c) 0.0, 0.0,

0.477, 0.954 and (d) 0.0, 0.0, 0.791, 0.791. Case (a) is a complete null

hypothesis configuration while cases (b) through (d) are partial null hypothesis

configurations.

 With respect to the effects of distributional shape on Type I error, we

chose to investigate conditions in which the statistics were likely to be prone to

an excessive number of Type I errors as well as a normally distributed case.

Thus, we generated data from a skewed distribution. Specifically, we sampled

from a  distribution. This particular type of nonnormal distribution was selected;2
3

since data obtained in applied settings (e.g., behavioral science data) typically

have skewed distributions (Micceri, 1989; Wilcox, 1994a, 1994b, 1995a,b).

Furthermore, Sawilowsky and Blair (1992) investigated the effects of eight non-

normal distributions identified by Micceri on the robustness of Student's t test and

found that only distributions with the most extreme degree of skewness which

were investigated (e.g., 1.64) were found to affect the Type I error control of#1 œ

the independent sample t statistic. Thus, since the statistics we investigated have

operating characteristics similar to those reported for the t statistic, we felt that

our approach to modeling skewed data would adequately reflect conditions in

which those statistics might not perform optimally. For the  distribution,;2
3

skewness and kurtosis values are 1.63 and 4.00, respectively.# #1 2œ œ
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Accordingly, our simulated  distribution mirrors data found in behavioral;2
3

science experiments with regard to skewness.

 To generate pseudo-random normal variates, we used the SAS generator

RANNOR (SAS Institute, 1989). If Z  is a standard normal variate, thenij

Y ( Z ) is a normal variate with mean equal to  and variance equalij j j ij jœ  ‚. 5 .

to . To generate pseudo-random variates having a distribution with six5 ;j
2 2 

(three) degrees of freedom, six (three) standard normal variates were squared

and summed. The variates were standardized, and then transformed to ;2
3

variates having mean and variance  [see Hastings & Peacock (1975), pp.. 5j 
2
j

46-51, for further details on the generation of data from this distribution].

 Our simulation program was written in SAS/IML (SAS, 1989). One

thousand replications of each condition were performed using a .05 significance

level. The step-down bootstrap tests were obtained with the program (PROC

MULTTEST) provided by Westfall et al. (1999, see pp. 228-231); the number of

bootstrap samples was set at 10,000.

Results

To evaluate the particular conditions under which a test was insensitive to

assumption violations, Bradley's (1978) liberal criterion of robustness was

employed. According to this criterion, in order for a test to be considered robust,

its empirical rate  of Type I error ( ) must be contained in the interval 0.5! !s

Ÿ Ÿs! !1.5 . Therefore, for the five percent level of statistical significance used

in this study, a test was considered robust in a particular condition if its empirical

rate of Type I error fell within the interval .025 .075. Correspondingly, aŸ Ÿs!

test was considered to be nonrobust if, for a particular condition, its Type I error

rate was not contained in this interval. In the tables, bolded entries are used to

denote liberal values, that is, values greater than .075. We chose this criterion
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since we feel that it provides a reasonable standard by which to judge

robustness. That is, in our opinion, applied researchers should be comfortable

working with a procedure that controls the rate of Type I error within these

bounds, if the procedure limits the rate across a wide range of assumption

violation conditions.

Empirical FWE rates for N 40, N 60, and N 100 are contained inœ œ œ

Tables 1 through 3, respectively (Partial null hypothesis results were obtained by

averaging rates of error over the three partial null cases investigated.). Since the

rates were similar for normal and nonnormal  data, we only tabled the rates for;3
2

the nonnormal case. Results were similar across the investigated sample sizes

and indicate that the SAS (Westfall et al., 1999) step-down bootstrap procedure

for pairwise comparisons was: (a) able to control Type I errors when group sizes

were equal and when group sizes and variances were positively paired, (b) not

able to control the rate of Type I error when group sizes and variances were

negatively paired, with rates approaching 20 percent, and (c) liberal for negative

pairings of group sizes and variances under the partial null cases, with rates

exceeding 10 percent.

To further investigate the effect of sample size on Westfall et al.'s

conjecture that the stability of the bootstrap estimates should improve with

increases in sample size we collected FWE rates for the complete null

hypothesis for four similar conditions that produced liberal rates in Tables 1-3

when there were 100 observations per group (N 400). In particular, weœ

investigated the rates of error when (a) n 90, 100, 100, 110 and 4, 2, 1,j j
2œ œ5

1; (b) n 90, 100, 100, 110 and 8, 5, 3, 1; (c) n 70, 90, 110, 130 andj jj
2œ œ œ5

5 5j j
2 2

jœ œ œ4, 2, 1, 1; and (d) n 70, 90, 110, 130 and 8, 5, 3, 1. The empirical
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FWE values were .079, .071, .102, and .098, respectively. Thus, rates of error

marginally improve with increases in sample size.

Discussion

 The rates we presented in Tables 1 through 3 indicate that the step-down

bootstrap MCP available through the SAS (1999) system of programs cannot

control the FWE rate when data are nonnormal and are as well heterogeneous,

when the design is unbalanced and variances and group sizes are negatively

paired. That is, as Westfall et al. (1999) suspected, this approach to pairwise

testing with nonnormal data does not work when variances are heterogeneous in

unbalanced designs. However, when group sizes are equal the bootstrap

procedure does provide acceptable Type I error control. Furthermore, our data

suggest that some improvement in Type I error control can be achieved with

increases in sample size, though the required sample size would be much larger

than those typically found in educational and psychological research.

 The results tabled by Keselman et al. (1998) indicate that when trimmed

means and Winsorized variances are substituted into Welch's (1938)

heteroscedastic statistic, rates of Type I error can indeed be controlled under

these same conditions with many stepwise MCPs [e.g., Shaffer's (1986)

sequentially rejective Bonferroni procedure, Hayter's (1986) two-stage modified

LSD procedure, range-type procedures, Hochberg's (1988) step-up sequentially

acceptive Bonferroni procedure].

 Accordingly, we recommend that for pairwise comparisons of treatment

group means researchers adopt one of the MCPs enumerated by Keselman et

al. when data are nonnormal, variances are unequal and the design is

unbalanced, conditions that, according to various authors, characterize

behavioral science investigations. The reader should note that Wilcox and

Keselman (2000) have enumerated a number of bootstrap MCPs that utilize
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trimmed means and Winsorized variances. However, when group sizes are

equal, researchers can confidently rely on the bootstrap (permutation) procedure

provided by Westfall et al. (1999) to examine pairwise mean differences under

conditions of nonormality and variance heterogeneity. That is, bootstrapping

provides effective Type I error control for comparisons of means; however, the

reader should take note that comparisons of means with bootstrapping methods

can still fall short with respect to power considerations. Lastly, though likely least

attractive, researchers can write their own bootstrap sampling programs for

examining pairwise comparisons when data are nonnormal and heterogeneous

(see Westfall & Young, 1993, pp. 88-89).



Pairwise Comparisons         21

References

Bradley, J.V. (1978). Robustness? British Journal of Mathematical and

Statistical Psychology, , 144-152.31

Diaconis, P., & Efron, B. (1983). Computer-intensive methods in statistics.

Scientific American 248, (5), 116-130.

Gross, A. M. (1976). Confidence interval robustness with long-tailed

symmetric distributions.  , , 409-Journal of the American Statistical Association 71

416.

Hastings, N. A. J., & Peacock, J. B. (1975). : Statistical distributions A

handbook for students and practitioners.  New York: Wiley.

Hayter, A. J. (1986). The maximum familywise error rate of Fisher's least

significant difference test.  , ,Journal of the American Statistical Association 81

1000-1004.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of

significance.  , , 800-802Biometrika 75 .

Holm, S. (1979). A simple sequentially rejective multiple test procedure.

Scandinavian Journal of Statistics 6, , 65-70.

Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R., Donahue,

B., Kowalchuk, R. K., Lowman, L. L., Petoskey, M. D., Keselman, J. C. & Levin,

J. R. (1998). Statistical practices of educational researchers: An analysis of their

ANOVA, MANOVA, and ANCOVA analyses. ,Review of Educational Research

68, 350-386.

Keselman, H.J., Lix, L.M., & Kowalchuk, R. K. (1998). Multiple comparison

procedures for trimmed means. , , 123-141.Psychological Methods 3

Lix, L. M., Cribbie, R. A., & Keselman, H. J. (1996, June). The analysis of

between-subjects univariate designs. Paper preseneted at the annual meeting of

the Psychometric Society, Banff, Canada.



Pairwise Comparisons         22

Lunneborg, C. E. (2000). : Data analysis by resampling Concepts and

applications. Pacific Grove, CA: Duxbury.

Micceri, T. (1989). The unicorn, the normal curve, and other improbable

creatures.  , , 156-166.Psychological Bulletin 105

Miller, J. (1988). A warning about median reaction time. Journal of

Experimental Psychology Human Perception and Performance 14: , ,  539-543.

Pearson, E. S. (1931). The analysis of variance in cases of nonnormal

variation. , , 114-133.Biometrika 23

Sawilowsky, S.S., & Blair, R.C. (1992). A more realistic look at the

robustness and Type II error probabilities of the  test to departures from>

population normality. , , 352-360.Psychological Bulletin 111

SAS Institute Inc. (1999). , . Cary, NC: SASSAS/STAT user's guide Version 7

Institute Inc.

SAS Institute Inc. (1989). SAS/IML software: Usage and reference, version 6

(1st ed.). Cary, NC: Author.

Scheffé, H. (1959). . Wiley, 1959.The analysis of variance

Shaffer, J.P. (1986). Modified sequentially rejective multiple test procedures.

Journal of the American Statistical Association, , 826-831.81

Staudte, R. G., & Sheather, S. J. (1990). . NewRobust estimation and testing

York: Wiley.

Tukey, J. W. (1953). . UnpublishedThe problem of multiple comparisons

manuscript, Princeton University, Department of Statistics.

Tukey, J.W. (1960). A survey of sampling from contaminated normal

distributions. In I. Olkin et al. (Eds.) Contributions to probability and

Statistics (pp.  448-485), Stanford, CA: Stanford University Press.

Welch, B. L. (1938). The significance of the difference between two means

when population variances are unequal. , , 330-336.Biometrika 38



Pairwise Comparisons         23

Westfall, P. H., Tobias, R. D., Rom, D., Wolfinger, R. D., & Hochberg, Y.

(1999). . Cary, NC: SAS Institute, Inc.Multiple comparisons and multiple tests

Westfall, P. H., & Wolfinger, R. D. (1997). Multiple tests with discrete

distributions. , , 3-8.The American Statistician 51

Westfall, P. H., & Young, S. S. (1993). :Resampling-based multiple testing

Examples and methods for p-value adjustment. New York: Wiley.

Wilcox, R. R. (1990). Comparing the means of two independent groups.

Biometrics Journal 32, , 771-780.

Wilcox, R.R. (1994a). A one-way random effects model for trimmed means.

Psychometrika 59, , 289-306.

Wilcox, R.R. (1994b). Some results on the Tukey-McLaughlin and Yuen

methods for trimmed means when distributions are skewed.  ,Biometrical Journal

36, 259-273.

Wilcox, R.R. (1995a). ANOVA: A paradigm for low power and misleading

measures of effect size? , , 51-77.Review of Educational Research 65

Wilcox, R.R. (1995b). ANOVA: The practical importance of heteroscedastic

methods, using trimmed means versus means, and designing simulation studies.

British Journal of Mathematical and Statistical Psychology 48, , 99-114.

Wilcox, R. R. (1997). Three multiple comparison procedures for trimmed

means. , , 643-656.Biometrical Journal 37

Wilcox, R. R., & Keselman, H. J. (2000). Using trimmed means to compare K

measures corresponding to two independent groups. Manuscript submitted for

publication.

Yuen, K.K., & Dixon, W.J. (1973). The approximate behaviour and

performance of the two-sample trimmed t. , , 369-374.Biometrika 60



Pairwise Comparisons         24

Zumbo, B. D., & Coulombe, D. (1997). Investigation of the robust rank-order

test for non-normal populations with unequal variances: The case of reaction

time. , , 139-150.Canadian Journal of Experimental Psychology 51



Table 1. Empirical Rates of Type I Error (Chi-Squared Data; N=40)

Sample Sizes Variances Complete Null Partial Null

10, 10, 10, 10 1, 1, 2, 4 .065 .015

10, 10, 10, 10 1, 3, 5, 8 .067 .024

9, 10, 10, 11 1, 1, 2, 4 .051 .017

9, 10, 10, 11 1, 3, 5, 8 .054 .020

9, 10, 10, 11 4, 2, 1, 1 .099 .054

9, 10, 10, 11 8, 5, 3, 1 .076 .048

5, 8, 12, 15 1, 1, 2, 4 .042 .008

5, 8, 12, 15 1, 3, 5, 8 .038 .009

5, 8, 12, 15 4, 2, 1, 1 .138 .097

5, 8, 12, 15 8, 5, 3, 1 .178 .104

Note: Sample sizes and variances are paired according to the order in which they are
enumerated in the table. The numerical values for the population means investigated
were: (a) 0.0, 0.0, 0.0, 0.0 (complete null), (b) 0.0, 0.0, 0.0, 0.917 (partial null), (c) 0.0.
0.0, 0.477, 0.954 (partial null), and (d) 0.0, 0.0, 0.791, 0.791 (partial null). The empirical
rates tabled under the partial null column are an average value over the three partial
null cases. Empirical values not contained in Bradley’s (1978) liberal interval (0.25
through .075) are set in bold face type.  



Table 2. Empirical Rates of Type I Error (Chi-Squared Data; N=60)

Sample Sizes Variances Complete Null Partial Null

15, 15, 15, 15 1, 1, 2, 4 .074 .015

15, 15, 15, 15 1, 3, 5, 8 .074 .018

13, 15, 15, 17 1, 1, 2, 4 .059 .016

13, 15, 15, 17 1, 3, 5, 8 .048 .014

13, 15, 15, 17 4, 2, 1, 1 .083 .065

13, 15, 15, 17 8, 5, 3, 1 .097 .056

7, 12, 18, 23 1, 1, 2, 4 .041 .009

7, 12, 18, 23 1, 3, 5, 8 .028 .007

7, 12, 18, 23 4, 2, 1, 1 .139 .111

7, 12, 18, 23 8, 5, 3, 1 .157 .118

Note: See the note from Table 1.



Table 3. Empirical Rates of Type I Error (Chi-Squared Data; N=100)

Sample Sizes Variances Complete Null Partial Null

25, 25, 25, 25 1, 1, 2, 4 .059 .019

25, 25, 25, 25 1, 3, 5, 8 .069 .021

20, 25, 25, 30 1, 1, 2, 4 .048 .012

20, 25, 25, 30 1, 3, 5, 8 .060 .013

20, 25, 25, 30 4, 2, 1, 1 .088 .066

20, 25, 25, 30 8, 5, 3, 1 .090 .071

10, 20, 30, 40 1, 1, 2, 4 .026 .007

10, 20, 30, 40 1, 3, 5, 8 .031 .007

10, 20, 30, 40 4, 2, 1, 1 .150 .107

10, 20, 30, 40 8, 5, 3, 1 .182 .130

Note: See the note from Table 1.


