
Flight Schedule Database Example

by

Ricky W. Butler

NASA, Langley Research Center

May 19, 1995

1

Flight Schedule Example

Requirements for an Airport Flight Schedule Database

� The
ight schedule database shall store the scheduling

information associated with all departing and arriving

ights. In particular the database shall contain:

{ departure time and gate number

{ arrival time and gate number

{ route (i.e. navigation way points)

for each arriving and departing
ight.

� There shall be a way to retrieve the scheduling infor-

mation given a
ight number.

� It shall be possible to add and delete
ights from the

database.

2

Formal Requirements Speci�cation

� How do we represent the
ight schedule database mathematically?

1. a set of ordered pairs of
ight numbers and schedules. Adding

and deleting entries via set addition and deletion

2. function whose domain is all possible
ight numbers and range

is all possible schedules. Adding and deleting entries via mod-

i�cation of function values.

3. function whose domain is only
ight numbers currently in database

and range is the schedules. Adding and deleting entries via

modi�cation of the function domain and values.

Note: The choice between these is strongly in
uenced by the ver-

i�cation system used.

3

Getting Started

Let's start with approach 2:

function whose domain is all possible
ight numbers and range is all possible

schedules. Adding and deleting entries via modi�cation of function values.

In traditional mathematical notation, we would write:

Let N = set of
ight numbers

S = set of schedules

D : N �! S

where D represents the database and S represents all of the schedule

information.

Note that the details have been abstracted away. This is one of the

most important steps in producing a good formal speci�cation.

4

Specifying the Flight Schedule Database

D : N �! S

How do we indicate that we do not have a
ight schedule for all

possible
ight numbers?

We declare a constant of type S, say \u
o
", that indicates that there is no
ight

scheduled for this
ight number.

Now can de�ne an empty database. In traditional notation, we would

write:

empty database : N �! S

empty database(flt) � uo

8 flt 2 N
5

Accessing an Entry

Let N = set of
ight numbers

S = set of schedules

D = set of functions : N �! S

8d 2 D and flt 2 N:

find schedule : D �N �! S

find schedule(d; f lt) = d(flt)

Note that find schedule is a higher-order function since its �rst argu-

ment is a function.

6

Specifying Adding/Deleting an Entry

Let N = set of
ight numbers

S = set of schedules

D : N �! S

uo 2 S

D = set of functions : N �! S

8d 2 D; 8flt 2 N; 8sched 2 S

add flight : D �N � S �! D

add flight(d; flt; sched)(x) =
8>>><

>>>:
d(x) if x 6= flt

sched if x = flt

delete flight : D �N �! D

delete flight(d; flt)(x) =
8>>><

>>>:
d(x) if x 6= flt

uo if x = flt

7

The WITH Notation

sin(x):

0 2 4 6 8 10 12

pppp
pppp
pppp
ppppp
pppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
ppppppp
ppppp
pp pppp ppp pppp ppp

pppp
pppppp
ppppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
pppp
ppppp
pppp
pppp
pppp
pppp
ppppp
ppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
ppppp
pp pppp pp pppp pppp

pppp
ppppp
ppppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
pppp
ppppp
ppppp
ppp

sin(x) WITH [7.4 := -0.60] =

8>>><
>>>:
-0.60 if x = 7.4

sin(x) otherwise

sin(x) WITH [7.4 := -0.60]

0 2 4 6 8 10 12

pppp
pppp
pppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
ppppp
ppppp
ppppp
p ppp ppp pppp ppp

pppp
pppppp
ppppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
pppp
ppppp
pppp
pppp
pppp
pppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pppp
pg

s
pppp pppp pp pppp pppp

pppp
ppppp
ppppp
ppppp
pppp
pppp
pppp
pppp
pppp
pppp
ppppp
pppp
ppppp
ppppp
ppp

8

Complete Spec (Omitting Function Signatures)

Let N = set of
ight numbers

S = set of schedules

D = set of functions : N �! S

8d 2 D; 8flt 2 N; 8sched 2 S

find schedule(d; flt) = d(flt)

add flight(d; flt; sched)(x) = d WITH [flt := sched]

delete flight(d; flt)(x) = d WITH [flt := uo]

Can test spec with some putative theorems:

LEMMA (putative 1) : find schedule(add flight(d; flt; sched); flt) = sched

LEMMA (putative 2) : delete flight(add flight(d; flt; sched); flt) = d

9

Attempted Veri�cation Of Putative 2 Reveals a Problem

LEMMA (putative 2): delete flight(add flight(d; flt; sched); flt) = d

Proof:

delete flight(add flight(d; flt; sched); flt) =

delete flight(d WITH [flt := sched]) =

d WITH [flt := sched] WITH [flt := uo] =

d WITH [flt := uo] = ??

But there is no way to reach d, because

d WITH [flt := uo] 6= d

unless d(flt) = uo.

This is only true if the flt is currently not scheduled in the
ight database.

10

Veri�cation Reveals Oversight

�We realize that we only want to add a
ight with
ight number

flt, if one is not already in the database.

� If flt is already in the database, we probably need the capability

to change it.

Thus, we modify add flight and create a new function change flight:

11

Veri�cation Reveals Oversight (Cont.)

Let N = set of
ight numbers

S = set of schedules

D = set of functions : N �! S

8d 2 D; 8flt 2 N; 8sched 2 S

scheduled?(d; flt) : boolean = d(flt) 6= uo

add flight(d; flt; sched) =

IF scheduled?(d; flt) THEN d

ELSE d WITH [flt := sched] ENDIF

change flight(d; flt; sched) =

IF scheduled?(d; flt) THEN d WITH [flt := sched]

ELSE d ENDIF

12

Putative 2 Proof After Correction

LEMMA (putative 2): NOT scheduled?(d; flt) �

delete flight(add flight(d; flt; sched); flt) = d

Proof:

delete flight(add flight(d; flt; sched); flt)

= delete flight(IF scheduled?(d; flt) THEN d

ELSE d WITH [flt := sched] ENDIF)

= delete flight(d WITH [flt := sched])

= d WITH [flt := sched] WITH [flt := uo]

= d WITH [flt := uo]

= d (because NOT scheduled?(d; flt) � d(flt) = uo)

13

A Minor Problem

To check our new function schedule? we postulate the following putative theorem:

SchedAdd: LEMMA scheduled?(add flight(d; flt; sched); flt)

Proof:

scheduled?(add flight(d; flt; sched)) =

scheduled?(IF scheduled?(d; flt) THEN d

ELSE d WITH [flt := sched] ENDIF =

IF d(flt) 6= uo THEN d(flt) 6= uo

ELSE d WITH [flt := sched](flt) 6= uo ENDIF =

d WITH [flt := sched](flt) 6= uo

sched 6= uo

which is not provable because nothing prevents sched = uo.

14

A Minor Problem Repaired

We then realize that our speci�cation does not rule out the possibility of assigning

a \uo" schedule to a real
ight

Let N = set of
ight numbers

S = set of schedules

S� = set of schedules not including uo

D = set of functions : N �! S

8d 2 D; 8flt 2 N; 8sched 2 S�

find schedule : D �N �! S

add flight : D �N � S� �! D

change flight : D �N � S� �! D

delete flight : D �N �! D

This type of trivial problem is usually not manifested until when one attempts a

mechanical (i.e. level 3) veri�cation.

15

Another Example of a Putative Theorem

(8i : flti 6= flt) ^

find schedule(d0; flt) = sched ^

d1 = add flight(d0; flt1; sched1) ^

d2 = add flight(d1; flt2; sched2) ^

: :

: :

: :

dn = add flight(dn�1; fltn; schedn)

�

find schedule(dn; flt) = sched

� Formal methods can establish that even in the presence of an arbitrary number

of operations a property holds.

� Testing can never establish this.

16

Some Observations

� Our speci�cation is abstract. The functions are de�ned over in�-

nite domains.

� As one translates the requirements into mathematics, many things

that are usually left out of English speci�cations are explicitly

enumerated.

� The formal process exposes ambiguities and de�ciencies in the

requirements.

� Putative theorem proving and scrutiny reveals de�ciencies in the

formal speci�cation.

17

PVS Spec

flight_sched3: THEORY

BEGIN
N : TYPE % flight numbers

S : TYPE % schedules

D : TYPE = [N -> S] % flight database

u0: S % unscheduled

S_good : TYPE = {sched: S | sched /= u0}

flt : VAR N

d : VAR D

sched : VAR S_good

emptydb(flt): S = u0

find_schedule(d, flt): S = d(flt)

scheduled?(d,flt): boolean = d(flt) /= u0

18

add_flight(d, flt, sched): D =

IF scheduled?(d,flt) THEN d

ELSE d WITH [flt := sched] ENDIF

change_flight(d, flt, sched): D =

IF scheduled?(d,flt) THEN d WITH [flt := sched]

ELSE d ENDIF

delete_flight(d, flt): D = d WITH [flt := u0]

putative2 : LEMMA NOT scheduled?(d,flt) IMPLIES

delete_flight(add_flight(d,flt,sched),flt) = d

SchedAdd : LEMMA scheduled?(add_flight(d,flt,sched),flt)

END flight_sched3

19

Introduction to a PVS Proof

� Illustrative proof

� The single command GRIND proves it automatically

putative2 :

|-------

{1} (FORALL (d: D, flt: N, sched: S_good):

NOT scheduled?(d, flt)

IMPLIES delete_flight(add_flight(d, flt, sched), flt) = d)

Rule? (SKOSIMP*)

Repeatedly Skolemizing and flattening,

this simplifies to:

putative2 :

|-------

{1} scheduled?(d!1, flt!1)

{2} delete_flight(add_flight(d!1, flt!1, sched!1), flt!1) = d!1

Rule? (EXPAND "add_flight")

Expanding the definition of add_flight,
20

this simplifies to:

putative2 :

|-------

[1] scheduled?(d!1, flt!1)

{2} delete_flight(IF scheduled?(d!1, flt!1) THEN d!1

ELSE d!1 WITH [flt!1 := sched!1]

ENDIF,

flt!1)

= d!1

Rule? (LIFT-IF)

Lifting IF-conditions to the top level,

this simplifies to:

putative2 :

|-------

[1] scheduled?(d!1, flt!1)

{2} IF scheduled?(d!1, flt!1) THEN delete_flight(d!1, flt!1) = d!1

ELSE delete_flight(d!1 WITH [flt!1 := sched!1], flt!1) = d!1

ENDIF

Rule? (ASSERT)

Simplifying, rewriting, and recording with decision procedures,

21

this simplifies to:

putative2 :

|-------

[1] scheduled?(d!1, flt!1)

{2} delete_flight(d!1 WITH [flt!1 := sched!1], flt!1) = d!1

Rule? (EXPAND "delete_flight")

Expanding the definition of delete_flight,

this simplifies to:

putative2 :

|-------

[1] scheduled?(d!1, flt!1)

{2} d!1 WITH [flt!1 := sched!1] WITH [flt!1 := u0] = d!1

Rule? (EXPAND "scheduled?")

Expanding the definition of scheduled?,

this simplifies to:

putative2 :

|-------

{1} d!1(flt!1) /= u0

[2] d!1 WITH [flt!1 := sched!1] WITH [flt!1 := u0] = d!1

22

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.

Run time = 1.16 secs.

Real time = 61.49 secs.

Wrote proof file /airlab/home/rwb/fm/wkshp/pvs/flight_sched3.prf

NIL
>

23

New Requirement

\Two
ights are not to be scheduled at the same gate at the same time!"

Introduce re�nement of schedule:

N : TYPE

Date_and_time: TYPE

Gate_nums: TYPE

A_or_D: TYPE = (arriving,departing)

Way: TYPE

S: TYPE = [# % RECORD

departure_tm: Date_and_time,

arrival_tm: Date_and_time,

dep_gate: Gate_nums,

arr_gate: Gate_nums,

arr_or_dep: A_or_D,

nav_route: Way

#] % END RECORD

24

Simpli�ed Problem

Often it is useful to solve a simpli�ed problem before you tackle the big problem.

So let's only work with departing
ights:

N : TYPE

Date_and_time: TYPE

Gate_nums: TYPE

S: TYPE = [# % RECORD

departure_tm: Date_and_time,

dep_gate: Gate_nums,

#] % END RECORD

The requirement states that \two
ights are not to be scheduled at the same gate

at the same time":

same_time(sched1, sched2): boolean
25

New Requirement Continued

We also need to introduce concept of \scheduled at the same gate at the same

time":

overlapped(sched1,sched2): boolean = dep_gate(sched1) = dep_gate(sched2)

AND same_time(sched1,sched2)

We would like to establish that the operations on the database will never result in

an overlapped situation.

In other words, we want to establish an invariant:

is_valid(d: D): boolean = (FORALL (flt1,flt2: N): flt1 /= flt2 AND

scheduled?(d,flt1) AND scheduled?(d,flt2) IMPLIES

NOT overlapped(find_schedule(d,flt1), find_schedule(d,flt2)))

26

Database System as a State Machine

&%
'$ &%
'$

&%
'$

&%
'$

@
@

@
@
@
@
@
@

@
@
@
@@R

-

?

is valid

is valid

is valid

is valid
del
ight

change
ight

Add
ight

Need to establish that all of the \operations" maintain the invariant. For example,

add_flight_is_valid: LEMMA

(FORALL (d: D, flt: N, sched: S_good):

is_valid(d) IMPLIES is_valid(add_flight(d,flt,sched)));

Of course, add_flight must be modi�ed to insure that this is true:

27

Add
ight Modi�ed To Maintain Invariant

gate_in_use_at_time(d,sched): boolean =

(EXISTS flt: scheduled?(d,flt) AND overlapped(sched,d(flt)))

add_flight(d, flt, sched): D =

IF scheduled?(d,flt) OR gate_in_use_at_time(d,sched) THEN d

ELSE d WITH [flt := sched]

ENDIF

Thus, we have modeled the database as a �nite state machine and the functions

add_flight, change_flight, and delete_flight are operations on the state machine.

28

State Machines and PVS Type System

By creating a predicate subtype of the type D:

Valid_db: TYPE = {d: D | is_valid(d)}

and modifying the signatures of add_flight, change_flight, and delete_flight, e.g.

add_flight(vd: Valid_db, flt, sched): Valid_db =

IF scheduled?(vd,flt) OR gate_in_use_at_time(vd,sched) THEN vd

ELSE vd WITH [flt := sched]

ENDIF

PVS will automatically generate the \invariant" lemmas that must

proved (called TCC's).

� is just a particular case of the more general TCC mechanism

� illustrates how a mechanized speci�cation language can provide

much stronger typechecking than traditional programming lan-

guages

29

Conclusions

�With formal methods a clear, unambiguous,

abstract speci�cation can be constructed.

�Mechanized formal methods allows you can

CALCULATE (prove) whether the speci�cation has cer-

tain properties.

� These calculations can be done early in the

lifecycle on abstract descriptions.

� And they can cover ALL the case,.

30

