Flight Schedule Database Example

by

Ricky W. Butler NASA, Langley Research Center

May 19, 1995

Flight Schedule Example

Requirements for an Airport Flight Schedule Database

- The flight schedule database shall store the scheduling information associated with all departing and arriving flights. In particular the database shall contain:
 - departure time and gate number
 - arrival time and gate number
 - route (i.e. navigation way points)

for each arriving and departing flight.

- There shall be a way to retrieve the scheduling information given a flight number.
- It shall be possible to add and delete flights from the database.

Formal Requirements Specification

- How do we represent the flight schedule database mathematically?
 - 1. a set of ordered pairs of flight numbers and schedules. Adding and deleting entries via set addition and deletion
 - 2. function whose domain is all possible flight numbers and range is all possible schedules. Adding and deleting entries via modification of function values.
 - 3. function whose domain is only flight numbers currently in database and range is the schedules. Adding and deleting entries via modification of the function domain and values.

Note: The choice between these is strongly influenced by the verification system used.

Getting Started

Let's start with approach 2:

function whose domain is all possible flight numbers and range is all possible schedules. Adding and deleting entries via modification of function values.

In traditional mathematical notation, we would write:

```
Let N = set of flight numbers

S = set of schedules

D: N \longrightarrow S
```

where D represents the database and S represents all of the schedule information.

Note that the details have been *abstracted away*. This is one of the most important steps in producing a good formal specification.

Specifying the Flight Schedule Database

$D: N \longrightarrow S$

How do we indicate that we do not have a flight schedule for all possible flight numbers?

We declare a constant of type S, say " u_o ", that indicates that there is no flight scheduled for this flight number.

Now can define an empty database. In traditional notation, we would write:

 $empty_database: N \longrightarrow S$ $empty_database(flt) \equiv u_o$

$$\forall flt \in N$$

Accessing an Entry

Let N = set of flight numbers S = set of schedules $D = \text{set of functions} : N \longrightarrow S$ $\forall d \in D \text{ and } flt \in N.$

 $\begin{aligned} &find_schedule: D \times N \longrightarrow S \\ &find_schedule(d, flt) = d(flt) \end{aligned}$

Note that $find_schedule$ is a higher-order function since its first argument is a function.

Specifying Adding/Deleting an Entry

Let N = set of flight numbers S = set of schedules $D: N \longrightarrow S$ $u_o \in S$ $D = \text{set of functions} : N \longrightarrow S$ $\forall d \in D, \forall flt \in N, \forall sched \in S$

$$add_flight: D \times N \times S \longrightarrow D$$
$$add_flight(d, flt, sched)(x) = \begin{cases} d(x) & \text{if } x \neq flt \\ sched & \text{if } x = flt \end{cases}$$

$$delete_flight: D \times N \longrightarrow D$$
$$delete_flight(d, flt)(x) = \begin{cases} d(x) & \text{if } x \neq flt \\ u_o & \text{if } x = flt \end{cases}$$

Complete Spec (Omitting Function Signatures)

Let N = set of flight numbers S = set of schedules $D = \text{set of functions} : N \longrightarrow S$ $\forall d \in D, \ \forall flt \in N, \ \forall sched \in S$

 $find_schedule(d, flt) = d(flt)$

 $add_flight(d, flt, sched)(x) = d$ WITH [flt := sched]

 $delete_flight(d, flt)(x) = d$ WITH $[flt := u_o]$

Can test spec with some putative theorems:

LEMMA (*putative 1*) : $find_schedule(add_flight(d, flt, sched), flt) = sched$ **LEMMA** (*putative 2*) : $delete_flight(add_flight(d, flt, sched), flt) = d$

Attempted Verification Of Putative 2 Reveals a Problem

LEMMA (*putative 2*): $delete_flight(add_flight(d, flt, sched), flt) = d$ **Proof:**

 $delete_flight(add_flight(d, flt, sched), flt) =$

 $delete_flight(d$ **WITH** [flt := sched]) =

d WITH [flt := sched] WITH [$flt := u_o$] =

d **WITH** $[flt := u_o] = ??$

But there is no way to reach d, because

d WITH $[flt := u_o] \neq d$

unless $d(flt) = u_o$.

This is only true if the flt is currently not scheduled in the flight database.

Verification Reveals Oversight

- We realize that we only want to add a flight with flight number flt, if one is not already in the database.
- If flt is already in the database, we probably need the capability to change it.

Thus, we modify *add_flight* and create a new function *change_flight*:

Verification Reveals Oversight (Cont.)

Let N =set of flight numbers

S =set of schedules

 $D = \mathbf{set} \ \mathbf{of} \ \mathbf{functions} : N \longrightarrow S$

 $\forall d \in D, \ \forall flt \in N, \ \forall sched \in S$

 $scheduled?(d, flt): boolean = d(flt) \neq u_o$

add_flight(d, flt, sched) = IF scheduled?(d, flt) THEN d ELSE d WITH [flt := sched] ENDIF

 $change_flight(d, flt, sched) =$

IF scheduled?(d, flt) THEN d WITH [flt := sched] ELSE d ENDIF

Putative 2 Proof After Correction

LEMMA (*putative 2*): **NOT** *scheduled*?(*d*, *flt*) \supset *delete_flight*(*add_flight*(*d*, *flt*, *sched*), *flt*) = *d*

Proof:

 $delete_flight(add_flight(d, flt, sched), flt)$

 $= delete_flight(\text{ IF } scheduled?(d, flt) \text{ THEN } d$ ELSE d WITH [flt := sched] ENDIF)

 $= delete_flight(d$ **WITH** [flt := sched])

= d WITH [*flt* := *sched*] WITH [*flt* := u_o]

= d WITH $[flt := u_o]$

= d (because NOT scheduled? $(d, flt) \supset d(flt) = u_o$)

A Minor Problem

To check our new function schedule? we postulate the following putative theorem:

SchedAdd: LEMMA *scheduled*?(*add_flight*(*d*, *flt*, *sched*), *flt*)

Proof:

 $scheduled?(add_flight(d, flt, sched)) =$ scheduled?(IF scheduled?(d, flt) THEN d ELSE d WITH [flt := sched] ENDIF = $IF d(flt) \neq u_o THEN d(flt) \neq u_o$ $ELSE d WITH [flt := sched](flt) \neq u_o ENDIF =$

d WITH $[flt := sched](flt) \neq u_o$

sched $\neq u_o$

which is not provable because nothing prevents $sched = u_o$.

A Minor Problem Repaired

We then realize that our specification does not rule out the possibility of assigning a " u_o " schedule to a real flight

Let N = set of flight numbers S = set of schedules $S^* = \text{set of schedules not including } u_o$ $D = \text{set of functions} : N \longrightarrow S$ $\forall d \in D, \ \forall flt \in N, \ \forall sched \in S^*$ $find_schedule : D \times N \longrightarrow S$ $add_flight : D \times N \times S^* \longrightarrow D$ $change_flight : D \times N \times S^* \longrightarrow D$ $delete_flight : D \times N \longrightarrow D$

This type of trivial problem is usually not manifested until when one attempts a mechanical (i.e. level 3) verification.

Another Example of a Putative Theorem

$$(\forall i: flt_i \neq flt) \land$$

 $\begin{aligned} find_schedule(d_0, flt) &= sched \land \\ d_1 &= add_flight(d_0, flt_1, sched_1) \land \\ d_2 &= add_flight(d_1, flt_2, sched_2) \land \\ & \ddots & \ddots \\ & \ddots & \ddots \\ & d_n &= add_flight(d_{n-1}, flt_n, sched_n) \\ \\ find_schedule(d_n, flt) &= sched \end{aligned}$

- Formal methods can establish that even in the presence of an *arbitrary* number of operations a property holds.
- Testing can never establish this.

 \supset

Some Observations

- Our specification is abstract. The functions are defined over infinite domains.
- As one translates the requirements into mathematics, many things that are usually left out of English specifications are explicitly enumerated.
- The formal process exposes ambiguities and deficiencies in the requirements.
- Putative theorem proving and scrutiny reveals deficiencies in the formal specification.

PVS Spec

flight_sched3: THEORY BEGIN

N : TYPE % flight numbers S : TYPE % schedules D : TYPE = [N -> S] % flight database u0: S % unscheduled S_good : TYPE = {sched: S | sched /= u0} flt : VAR N d : VAR D sched : VAR S_good emptydb(flt): S = u0 find_schedule(d, flt): S = d(flt) scheduled?(d,flt): boolean = d(flt) /= u0

```
add_flight(d, flt, sched): D =
    IF scheduled?(d,flt) THEN d
    ELSE d WITH [flt := sched] ENDIF
```

change_flight(d, flt, sched): D =
 IF scheduled?(d,flt) THEN d WITH [flt := sched]
 ELSE d ENDIF

delete_flight(d, flt): D = d WITH [flt := u0]

SchedAdd : LEMMA scheduled?(add_flight(d,flt,sched),flt)

END flight_sched3

Introduction to a PVS Proof

- Illustrative proof
- The single command GRIND proves it automatically

```
putative2 :
```

```
this simplifies to:
putative2 :
  |-----
[1] scheduled?(d!1, flt!1)
{2} delete_flight(IF scheduled?(d!1, flt!1) THEN d!1
                ELSE d!1 WITH [flt!1 := sched!1]
                ENDIF,
                flt!1)
        = d!1
Rule? (LIFT-IF )
Lifting IF-conditions to the top level,
this simplifies to:
putative2 :
  |-----
[1] scheduled?(d!1, flt!1)
{2} IF scheduled?(d!1, flt!1) THEN delete_flight(d!1, flt!1) = d!1
     ELSE delete_flight(d!1 WITH [flt!1 := sched!1], flt!1) = d!1
     ENDIF
```

Rule? (ASSERT) Simplifying, rewriting, and recording with decision procedures,

```
this simplifies to:
putative2 :
  |-----
[1] scheduled?(d!1, flt!1)
{2} delete_flight(d!1 WITH [flt!1 := sched!1], flt!1) = d!1
Rule? (EXPAND "delete_flight" )
Expanding the definition of delete_flight,
this simplifies to:
putative2 :
  |-----
[1] scheduled?(d!1, flt!1)
{2} d!1 WITH [flt!1 := sched!1] WITH [flt!1 := u0] = d!1
Rule? (EXPAND "scheduled?" )
Expanding the definition of scheduled?,
this simplifies to:
putative2 :
  |-----
{1} d!1(flt!1) /= u0
[2] d!1 WITH [flt!1 := sched!1] WITH [flt!1 := u0] = d!1
```

```
Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
Q.E.D.
```

```
Run time = 1.16 secs.
Real time = 61.49 secs.
Wrote proof file /airlab/home/rwb/fm/wkshp/pvs/flight_sched3.prf
NIL
>
```

New Requirement

"Two flights are not to be scheduled at the same gate at the same time!"

Introduce refinement of schedule:

```
N : TYPE
Date_and_time: TYPE
Gate_nums: TYPE
A_or_D: TYPE = (arriving,departing)
Way: TYPE
S: TYPE = [# % RECORD
        departure_tm: Date_and_time,
        arrival_tm: Date_and_time,
        dep_gate: Gate_nums,
        arr_gate: Gate_nums,
        arr_or_dep: A_or_D,
        nav_route: Way
        #] % END RECORD
```

Simplified Problem

Often it is useful to solve a simplified problem before you tackle the big problem. So let's only work with departing flights:

The requirement states that "two flights are not to be scheduled at the same gate at the same time":

```
same_time(sched1, sched2): boolean
```

New Requirement Continued

We also need to introduce concept of "scheduled at the same gate at the same time":

We would like to establish that the operations on the database will never result in an overlapped situation.

In other words, we want to establish an invariant:

```
is_valid(d: D): boolean = (FORALL (flt1,flt2: N): flt1 /= flt2 AND
scheduled?(d,flt1) AND scheduled?(d,flt2) IMPLIES
NOT overlapped(find_schedule(d,flt1), find_schedule(d,flt2)))
```

Database System as a State Machine

Need to establish that all of the "operations" maintain the invariant. For example,

Of course, add_flight must be modified to insure that this is true:

Add_flight Modified To Maintain Invariant

```
gate_in_use_at_time(d,sched): boolean =
    (EXISTS flt: scheduled?(d,flt) AND overlapped(sched,d(flt)))
add_flight(d, flt, sched): D =
    IF scheduled?(d,flt) OR gate_in_use_at_time(d,sched) THEN d
    ELSE d WITH [flt := sched]
    ENDIF
```

Thus, we have modeled the database as a finite state machine and the functions add_flight, change_flight, and delete_flight are operations on the state machine.

State Machines and PVS Type System

By creating a predicate subtype of the type D:

```
Valid_db: TYPE = {d: D | is_valid(d)}
```

and modifying the signatures of add_flight, change_flight, and delete_flight, e.g.

```
add_flight(vd: Valid_db, flt, sched): Valid_db =
    IF scheduled?(vd,flt) OR gate_in_use_at_time(vd,sched) THEN vd
    ELSE vd WITH [flt := sched]
    ENDIF
```

PVS will automatically generate the "invariant" lemmas that must proved (called TCC's).

- is just a particular case of the more general TCC mechanism
- illustrates how a mechanized specification language can provide much stronger typechecking than traditional programming languages

Conclusions

- With formal methods a clear, unambiguous, abstract specification can be constructed.
- Mechanized formal methods allows you can CALCULATE (prove) whether the specification has certain properties.
- These calculations can be done early in the lifecycle on abstract descriptions.
- And they can cover ALL the case,.