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• Of the five main purposes mentioned at the beginning, I
hope that my presentation has
-- Provided a high-level overview of some of the foundations of formal

methods

-- Begun to set the context for the remaining presentations at this
workshop

-- Perhaps motivated future in-depth study of formal methods

• The remaining presentations should continue to motivate
and to set context, and should also
-- Demonstrate the variety of formal techniques that are available

-- Illustrate ways in which formal methods may be applied in various
domains

Concluding Remarks
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Higher Order Logic
(example, continued)

• What does

list(i) = g
mean?

• Two functions are defined to be equal if for every possible
argument value, they return the same result

• This can be expressed in our notation as

∀(x : nat)
list(i)(x) = g(x)
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Higher Order Logic
(example)

• Consider the following statement:
-- There does not exist a list of all the possible functions that take a

natural number as an argument and return a natural number as the
result

• In a higher order logic, we might express this as follows:

¬∃(list : function[nat → function[nat → nat]])
∀(g : function[nat → nat])

∃(i : nat)
list(i) = g
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• Many-sorted logic extends predicate logic by dividing the
universe from which variables and constants are chosen
into several sorts (e.g., integers, reals, characters)

• Higher order logic (or type theory) allows functions to take
functions as arguments and to return functions as values,
and permits quantification over functions and predicates

• Constructive logic requires that a proof of existence of an
object provides a procedure for constructing the object

• Programming logics provide rules for specifying and
reasoning about imperative programs and program state

• Modal logics, temporal logics, logics for partial functions

Other Logics
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Predicate Logic
(proof example)

• Consider the sentence

∀x: ∃y: y = x + 7
• We first replace the universally quantified variable x by the

arbitrary constant a
∃y: y = a + 7

• We may now remove the existential quantifier, giving the
Skolem form for the sentence

y = a + 7
• This is easily satisfied by letting y = a + 7

a + 7 = a + 7
QED
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Predicate Logic
(proofs)

• A key concept in developing proofs in predicate logic is
skolemization
-- Provides procedure for reducing a sentence into a propositional

sentence that is true if the original sentence is true

-- Based on appropriate elimination of quantifiers

• Predicate logic is complete and consistent, but is only
semidecidable:
-- There is a mechanical procedure that will terminate for all true

sentences

-- This procedure may not terminate for all false sentences, but it will
identify the sentence as false if it does terminate
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Predicate Logic
(translating from English: answers)

Government workers are not always lazy

∃x: government-worker(x) ∧ ¬lazy(x)

Testing never reveals the absence of errors

∀x: testing(x) ⊃ ¬reveal-absence(x)

Only early registrants can attend the dinner at Captain George’s

∀x: dinner(x) ⊃ early-registrant(x)

Nothing of importance was said at the workshop

∀x: important(x) ⊃ ¬said-at-workshop(x)

A company creates good software if and only if it is uses FM

∀x: company(x) ⊃ (good-software(x) ≡ uses-formal-methods(x))
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Predicate Logic
(translating from English correctly)

• This sentence does not have the intended meaning: it
requires that an object be both an apple and an orange

• The following is what we really want:

∀x: (apple(x) ∨ orange(x)) ⊃ (delicious(x) ∧ nutritious(x))

• Here are a few more sentences for you to try at your leisure
-- Government workers are not always lazy

-- Testing never reveals the absence of errors

-- Only early registrants can attend the dinner at Captain George’s

-- Nothing of importance was said at the workshop

-- A company creates good software if and only if it uses formal
methods
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Predicate Logic
(translating from English incorrectly)

• Translating natural language sentences into predicate logic
is sometimes a little tricky

• Consider the following sentence:

Apples and oranges are delicious and nutritious

• Using the predicates apple(x), orange(x), delicious(x), and
nutritious(x), we might try the following:

∀x: (apple(x) ∧ orange(x)) ⊃ (delicious(x) ∧ nutritious(x))

• Is this what we want?
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Predicate Logic
(translating from English)

• Translating natural language sentences into predicate logic
is sometimes fairly simple

• Consider the following sentence:

All humans are mortal

• Using the predicates human(x) and mortal(x), we have

∀x: human(x) ⊃ mortal(x)
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• Some properties of predicate logic

Predicate Logic
(properties)

¬∀x: S ≡ ∃x: ¬S

      ∀x: S ≡ ¬∃x: ¬S

 ∀x: ∀y: S ≡ ∀y: ∀x: S

¬∃x: S ≡ ∀x: ¬S

      ∃x: S ≡ ¬∀x: ¬S

∃x: ∃y: S ≡ ∃y: ∃x: S

S ∨ ∀x: T ≡ ∀x: (S ∨ T)

S ∧ ∀x: T ≡ ∀x: (S ∧ T)

S ∨ ∃x: T ≡ ∃x: (S ∨ T)

S ∧ ∃x: T ≡ ∃x: (S ∧ T)

• The following are true if x is not a free variable in S
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• Every proposition is also a sentence (or formula)

• Sentences may also be constructed using the connectives
from propositional logic; if S and T are sentences, so are

          S ∧ T,   S ∨ T, ¬S, S ⊃ T,   S ≡ T
the meaning of each of these is as expected

• If x is a variable and S is a sentence, then the following are
also sentences:

-- ∀x: S true if S is true for all possible values of x

-- ∃x: S true if S is true for at least one value of x

Predicate Logic
(sentences & connectives)
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• Objects in predicate logic are denoted by expressions
called terms:

-- Constants a, b, c, ... are terms

-- Variables u, v, w, ... are terms

-- If t1, t2, ..., tn are terms and ƒ is a symbol that denotes a
function of n arguments, then ƒ(t1, t2, ..., tn) is a term

• In predicate logic, propositions are defined as follows:

-- true and false are propositions

-- If t1, t2, ..., tn are terms and p is a symbol that denotes a
predicate of n arguments, then p(t1, t2, ..., tn) is a
proposition

Predicate Logic
(terms & propositions)
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• Propositional logic only permits reasoning about (true or
false) complete sentences

• There is no way to reason about individual objects

-- There is a number n where n × n = n + n
-- All cats have whiskers

• Predicate logic extends the formal language to permit
reasoning about objects and the relationships between
them

-- ∃n: n × n = n + n
-- ∀a: Cat(a) ⊃ Whiskers(a)

Predicate Logic
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Propositional Logic
(proof example)

• Show that P ⊃ (Q ⊃ S)  ≡  (P ∧ Q) ⊃ S

• Proof

P ⊃ (Q ⊃ S) ≡ ¬P ∨ (Q ⊃ S) by implication definition

≡ ¬P ∨ (¬Q ∨ S) by implication definition

≡  (¬P ∨ ¬Q) ∨ S by associativity

≡ ¬(P ∧ Q) ∨ S by De Morgan

≡ (P ∧ Q) ⊃ S by implication definition

QED
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Propositional Logic
(proofs)

• A proof  of a given proposition establishes the truth of the
proposition based only on axioms, theorems, and inference
rules

• For propositional logic, truth tables provide a means of
defining truth

• Propositional logic is

-- complete:  everything that is true may be proven

-- consistent (sound):  nothing that is false may be proven

-- decidable:  there exists a mechanical procedure for
deciding whether any proposition is true or false
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• Inference rules permit reasoning (deducing conclusions
based on the truth of certain premises)

• Some inference rules of propositional logic include

Propositional Logic
(inference rules)

modus ponens

P ⊃ Q

P
___________

Q

modus tollens

P ⊃ Q

¬Q
___________

¬P
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• Some properties (axioms & theorems) of propositional logic

-- commutativity :  P ∧ Q ≡  Q ∧ P,      P ∨ Q ≡   Q ∨ P

-- associativity :  (P ∧ Q) ∧ R ≡   P ∧ (Q ∧ R),  same for ∨

-- distributivity:   P ∧ (Q ∨ R) ≡   (P ∧ Q) ∨ (P ∧ R)

                            P ∨ (Q ∧ R) ≡   (P ∨ Q) ∧ (P ∨ R)

-- De Morgan’s laws: ¬(P ∧ Q) ≡ ¬P ∨ ¬Q

¬(P ∨ Q) ≡ ¬P ∧ ¬Q

-- double negation : ¬¬P ≡  P

-- implication definition :  P ⊃ Q  ≡ ¬P ∨ Q

Propositional Logic
(properties)
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• Please note that each connective has a precisely defined
meaning

• This meaning does not always correspond to the natural
language meaning

• The definition of if-then  especially tends to confuse many
people, because it does not require cause and effect

Propositional Logic
(connectives vs. natural language)

2 + 2 = 4  ⊃  2 × 2 = 4

2 + 2 = 5  ⊃  2 × 2 = 4

2 + 2 = 5  ⊃  2 × 2 = 5

2 + 2 = 4  ⊃  2 × 2 = 5

are all true

is false

}
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• Propositions may be combined using the following
connectives:

-- and  (∧): P ∧ Q is true when both P and Q are true

-- or  (∨): P ∨ Q is true when either P or Q is true

-- not  (¬): ¬P is true when P is false

-- if-then  (⇒, ⊃): P ⊃ Q is true except when P is true and Q
is false

-- if-and-only-if  (≡): P ≡ Q is true when P and Q have the
same truth value

Propositional Logic
(connectives)
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• A proposition is a statement that is either true or false

-- Today is Wednesday

-- I have a son named David

-- 2 + 2 = 5

-- Fermat’s last theorem is true

-- This workshop is the most valuable workshop I’ve ever
attended

• The possibility of assigning a truth value is all that is
required; actual determination of the truth value is not
required

• Questions, commands, etc., are not propositions

Propositional Logic
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• The majority of existing formal techniques are based on
some flavor of symbolic logic

• Remainder of my talk will provide brief informal introduction
to each of the following:

-- Propositional Logic

-- Predicate Logic

-- Other Logics

• Along the way, we’ll also discuss some of the difficulties in
translating natural language into a logic

Symbolic Logic
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Parameters Possible Values Operational Procedures (possible actions)

If ((Temp = hot) or (Temp = cool)) and (Weather = sunny) and not Windy? then play volleyball

Scenarios (conditions under which a particular op. proc. is chosen)Example

What Does “Formal” Mean?
(continued)

Yes, it is.
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What Does “Formal” Mean?
(continued)

Is this table “formal” ?
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• Webster’s dictionary gives the following as one of the
definitions of “formal”:

relating to, concerned with, or constituting the outward form of something as
distinguished from its content

• A method is formal if its rules for manipulation are based on
form (syntax) and not on content (semantics)

• Simple arithmetic is an example of such a method:

-- 2 cats + 2 cats = 4 cats

-- 2 mice + 2 mice = 4 mice

-- 2x + 2x = 4x

What Does “Formal” Mean?
(continued)

Validity of addition rests on its form
alone --- as long as like objects are
added, it doesn’t matter what those
objects are.

2 cats + 2 mice = ????
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• Others think “formal” means one or more of the following
things:

-- boring, uninteresting

-- difficult to understand, complicated

-- filled with many odd symbols and foreign letters
∀    ∃    ⊃    λ    ∅    ∧    ∨    ℵ    ∈    ≡    ψ    ϕ

• One of the goals of this workshop is to convince you that
none of these perceptions is necessarily true

What Does “Formal” Mean?
(continued)
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When many people think of the word “formal”, they think of
something like this:

What Does “Formal” Mean?
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• These presentations are not intended to

-- Enable you to carry on a meaningful conversation with
mathematical logicians

-- Present a balanced view of the relative capabilities of
existing formal methods tools and techniques

-- Discuss all of the domains in which formal methods may
be applied

-- Tell you all you need to know to become a formal
methods expert

-- Put you to sleep

Non-Purposes
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• The five main purposes of these presentations are to

-- Provide a high-level overview of some of the foundations
of formal methods

-- Demonstrate the variety of formal techniques that are
available

-- Illustrate ways in which formal methods may be applied
in various domains

-- Set the context for the remaining presentations at this
workshop

-- Motivate future in-depth study of formal methods

Purposes
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• Definitions & Introduction to Basics of Logic
-- 30 minutes

-- Michael Holloway

• Application of Logic to Digital System Design
-- 30 minutes

-- Paul Miner

• Break for 30 minutes

• Detailed Example
-- 1 hour

-- Ricky Butler

Structure
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Informal
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to

Formal
Methods

C. Michael Holloway
by

Assessment Technology Branch

Paul S. Miner
Ricky W. Butler
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