Obstacles to getting started

e Diversity of tools

— Choice of proper tool is difficult

— QOver 50 notations, methods, and tool listed on WWW Formal
Methods Virtual Library

http://www.comlab.ox.ac.uk/archive /formal-methods.html
— Many domain specific tools and techniques
— Little support for combining results from different tools
— Some efforts currently in progress

e Immaturity of Tools
— Most tools are research prototypes
e Lack of sufficient Libraries

e Education

21

Mechanized Support for Formal Methods

General Purpose Theorem Provers: Specification and Proof us-
ing the logic supported by theorem prover. Proofs are semi-automatic.
Many of the steps are automated, but some require insight.

Examples include: PVS, HOL, Nuprl, Nqthm/Acl2, IMPS, ...

Specialized Approaches:

Model Checking: Fully automatic proofs that state machine de-
scription of hardware possess specified properties. Specifications
given in a decidable temporal logic. An example system is SMV.
Tools employing related techniques include COSPAN and Mura.

Design Derivation: Design proceeds from a behavioral level de-
scription to a hardware design via a series of correctness preseruv-
ing refinements. Example systems include DDD and DRS.

Software: Machine checked verification of Ada code (Penelope).
Decision tables for specification of software requirements (Table-
Wise).

20

Levels of Rigor

Level 1: Specification (and proof) using conventional mathematical
notation.

Level 2: Specification using a formal specification language with man-
ual proofs.

Level 3: Specification in a formal language with automatically checked
or generated proofs.

19

Correctness of Specification

How do we know that a specification is what we intend?

e At intermediate levels in the design hierarchy, the specification is a
refinement of higher-level requirements

— If the higher levels are related by proof, then the requirements at
this level are sufficient to ensure the high level requirements

e At the top-level, we must resort to review.

— The presence of a formal specification enables formal challenges.
A review can identify additional properties that a design must
possess. Formal verification techniques can then be used to ei-
ther prove the design already possesses the property or reveal its
absence.

e At the bottom levels in a design hierarchy, we must show that the
assumptions are consistent.

18

Hierarchical Specification of the Reliable
Computing Platform

Uniprocessor System Model (US)

Fault-tolerant Replicated Synchronous Model (RS)

Fault-tolerant Distributed Synchronous Model (DS)

Fault-tolerant Distributed Asynchronous Model (DA)

Clock Sync Property Minimal Voting DA (DA _minv)

Clock Sync Algorithm Local Executive Model (LE)

Hardware/Software Implementation

17

Design Refinement and Proof
(Example: Reliable Computing Platform)

Single-frame state transition divided into four phases

Us O ’O Top level correctness criteria
A

=K> Processor replication, voting

Global, synchronous transitions

7
)
o/

b
=K> Interprocessor communication

Multi-phase frame execution

3
)
o/
)
)
)

y

DA Q > > > =© Asynchronous processors
U U U Clock time and real time

Compute Broadcast Vote Sync

16

Design Verification (3)

Top-level: Abstract description of system (and assumptions)
Lower-level: Detailed description of system (and assumptions)

Prove: The detailed system description has the same behavior as the
abstract description given the assumptions and an abstraction func-
tion relating the two systems.

15

Verification of Fault-Tolerant Algorithms (2)

Top-level: Properties that algorithm should possess

Lower-level: Abstract description of the algorithm and underlying as-
sumptions

Prove: The algorithm satisfies desired properties given the assumptions

14

Formal Analysis of a Specification (1)

One property we might want to prove about the functions real_to_fp
and fp_to_real from the floating-point addition specification is that for
every finitely valued floating-point number and every rounding mode:

real_to_fp(fp_to_real(fin),mode) = fin

13

Formal Proof Activities

Use of methods from formal logic to

1. analyze specifications for certain forms of consistency, completeness

2. prove that specified behavior will satisfy the requirements, given the
assumptions

3. prove that a more detailed design implements a more abstract one

12

Temporal Abstraction

11

Abstraction Mappings

(Data Abstraction)

mein

Sp

PC

ac

macro
level

mpc

ir

mdr

mar

micro
level

10

State-machine Specification

Design layers formalized as state machines
e State represents memory contents and hardware status

e Transition function defines state transitions

Interpretation maps lower level states into higher level states

N;
S; > tl'
Ma% Map
N;
Si+1 Lt

Need to show that diagram “commutes” to establish that layer 7 4+ 1
correctly implements layer 2:

Map(Nit1(si41)) = Ni(Map(si+1))

Floating-Point Addition
(continued)

The formal specification of floating-point addition for finitely valued
arguments Is:

fp_add_finite(finl, fin2, mode) =
real_to_fp((fp_to_real(finl) + fp_to_real(fin2)), mode)

Floating-Point Addition
(Partial Specification)

For floating-point addition of two finitely valued arguments, finl and fin2,
the expression

fp_to_real(finl) + fp_to_real(fin2)

defines the infinitely precise result.

Floating-Point Operations
(declarations)

FP = the set of floating-point numbers
Fin
M
R = the set of real numbers
finl, fin2 € Fin
mode € M

the set of finitely valued floating-point numbers, Fin C F'P

the set of rounding modes

fp_to_real: Fin — R
real_to_fp: R x M — FP

Example of Functional Specification
(Floating-point Operations)

IEEE floating-point arithmetic requires that each arithmetic operation
be performed as if it first produced a result correct to infinite preci-
ston and unbounded range, and then coerced this result to fit in the
destination’s precision. [ANSI/IEEE STD 854-1987]

Example of Property-Based Specification
(Fault-tolerant clock synchronization)

1. Thereis a p < 1 such that for any clock C), that is non-faulty during
the interval from t; to ts:

(1= p)(ta —t1) < Cpt2) — Cpltr) < (14 p)(t2 — 1)

2. There is a 0 such that if clocks C}, and C, are non-faulty at time ¢,
then:
|Cp(t) = Cylt)] < 6

Formal Specification

Formal Specification: Use of notations derived from formal logic to
describe
e assumptions about the world in which a system will operate
o requirements that the system is to achieve
e the intended behavior of the system
Styles of Specification Different approaches are used for these de-
scriptions:
e Properties—enumeration of assumptions and requirements
o [unctions—express desired behavior or design descriptions
o State-machines—express desired behavior or design descriptions

Assumptions at one level become requirements at a lower level.

Outline

e Formal Specification

e Formal Proof Activities

e Degree of Rigor

e Obstacles to Getting Started

Application of Logic to Digital System Design

Paul S. Miner
May 10, 1995

