
Obstacles to getting started

� Diversity of tools

{ Choice of proper tool is di�cult

{ Over 50 notations, methods, and tool listed on WWW Formal

Methods Virtual Library

http://www.comlab.ox.ac.uk/archive/formal-methods.html

{ Many domain speci�c tools and techniques

{ Little support for combining results from di�erent tools

{ Some e�orts currently in progress

� Immaturity of Tools

{ Most tools are research prototypes

� Lack of su�cient Libraries

� Education
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Mechanized Support for Formal Methods

General Purpose Theorem Provers: Speci�cation and Proof us-

ing the logic supported by theorem prover. Proofs are semi-automatic.

Many of the steps are automated, but some require insight.

Examples include: PVS, HOL, Nuprl, Nqthm/Acl2, IMPS, . . .

Specialized Approaches:

Model Checking: Fully automatic proofs that state machine de-

scription of hardware possess speci�ed properties. Speci�cations

given in a decidable temporal logic. An example system is SMV.

Tools employing related techniques include COSPAN and Mur�.

Design Derivation: Design proceeds from a behavioral level de-

scription to a hardware design via a series of correctness preserv-

ing re�nements. Example systems include DDD and DRS.

Software: Machine checked veri�cation of Ada code (Penelope).

Decision tables for speci�cation of software requirements (Table-

Wise).
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Levels of Rigor

Level 1: Speci�cation (and proof) using conventional mathematical

notation.

Level 2: Speci�cation using a formal speci�cation language with man-

ual proofs.

Level 3: Speci�cation in a formal language with automatically checked

or generated proofs.
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Correctness of Speci�cation

How do we know that a speci�cation is what we intend?

� At intermediate levels in the design hierarchy, the speci�cation is a

re�nement of higher-level requirements

{ If the higher levels are related by proof, then the requirements at

this level are su�cient to ensure the high level requirements

� At the top-level, we must resort to review.

{ The presence of a formal speci�cation enables formal challenges.

A review can identify additional properties that a design must

possess. Formal veri�cation techniques can then be used to ei-

ther prove the design already possesses the property or reveal its

absence.

� At the bottom levels in a design hierarchy, we must show that the

assumptions are consistent.
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Hierarchical Speci�cation of the Reliable

Computing Platform

Uniprocessor System Model (US)

j

Fault-tolerant Replicated Synchronous Model (RS)

j

Fault-tolerant Distributed Synchronous Model (DS)

j

Fault-tolerant Distributed Asynchronous Model (DA)

j j

Clock Sync Property Minimal Voting DA (DA minv)

j j

Clock Sync Algorithm Local Executive Model (LE)

j

Hardware/Software Implementation
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Design Re�nement and Proof

(Example: Reliable Computing Platform)

Single-frame state transition divided into four phases
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Clock time and real time

Asynchronous processors

Multi-phase frame execution

Interprocessor communication

Global, synchronous transitions

Processor replication, voting

Top level correctness criteriaUS
RS

DS
DA

DSmap

DAmap

RSmap

Compute Broadcast Vote Sync
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Design Veri�cation (3)

Top-level: Abstract description of system (and assumptions)

Lower-level: Detailed description of system (and assumptions)

Prove: The detailed system description has the same behavior as the

abstract description given the assumptions and an abstraction func-

tion relating the two systems.
15



Veri�cation of Fault-Tolerant Algorithms (2)

Top-level: Properties that algorithm should possess

Lower-level: Abstract description of the algorithm and underlying as-

sumptions

Prove: The algorithm satis�es desired properties given the assumptions
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Formal Analysis of a Speci�cation (1)

One property we might want to prove about the functions real to fp

and fp to real from the oating-point addition speci�cation is that for

every �nitely valued oating-point number and every rounding mode:

real_to_fp(fp_to_real(fin),mode) = fin
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Formal Proof Activities

Use of methods from formal logic to

1. analyze speci�cations for certain forms of consistency, completeness

2. prove that speci�ed behavior will satisfy the requirements, given the

assumptions

3. prove that a more detailed design implements a more abstract one
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Temporal Abstraction
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Abstraction Mappings

(Data Abstraction)



 TT TT

 

 TT TT



level

micro

level

macro

Map

mpcirmdrmarmemsppcac
ac pc sp mem

10



State-machine Speci�cation

Design layers formalized as state machines

� State represents memory contents and hardware status

� Transition function de�nes state transitions

Interpretation maps lower level states into higher level states

-

66

-

Map Map

Ni+1

Ni

ti+1
ti

si+1
si

Need to show that diagram \commutes" to establish that layer i+ 1

correctly implements layer i:

Map(Ni+1(si+1)) = Ni(Map(si+1))
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Floating-Point Addition

(continued)

The formal speci�cation of oating-point addition for �nitely valued

arguments is:

fp_add_finite(fin1; fin2;mode) ^=

real_to_fp( (fp_to_real(fin1) + fp_to_real(fin2)), mode)
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Floating-Point Addition

(Partial Speci�cation)

For oating-point addition of two �nitely valued arguments, fin1 and fin2,

the expression
fp_to_real(fin1) + fp_to_real(fin2)

de�nes the in�nitely precise result.
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Floating-Point Operations

(declarations)

FP = the set of oating-point numbers

Fin = the set of �nitely valued oating-point numbers, Fin � FP

M = the set of rounding modes

R = the set of real numbers

fin1; fin2 2 Fin

mode 2 M

fp_to_real: Fin ! R

real_to_fp: R � M ! FP
6



Example of Functional Speci�cation

(Floating-point Operations)

IEEE oating-point arithmetic requires that each arithmetic operation

be performed as if it �rst produced a result correct to in�nite preci-

sion and unbounded range, and then coerced this result to �t in the

destination's precision. [ANSI/IEEE Std 854-1987]
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Example of Property-Based Speci�cation

(Fault-tolerant clock synchronization)

1. There is a �� 1 such that for any clock Cp that is non-faulty during

the interval from t1 to t2:

(1� �)(t2 � t1) � Cp(t2)� Cp(t1) � (1 + �)(t2 � t1)

2. There is a � such that if clocks Cp and Cq are non-faulty at time t,

then:

jCp(t)� Cq(t)j < �

4



Formal Speci�cation

Formal Speci�cation: Use of notations derived from formal logic to

describe

� assumptions about the world in which a system will operate

� requirements that the system is to achieve

� the intended behavior of the system

Styles of Speci�cation Di�erent approaches are used for these de-

scriptions:

� Properties|enumeration of assumptions and requirements

� Functions|express desired behavior or design descriptions

� State-machines|express desired behavior or design descriptions

� . . .

Assumptions at one level become requirements at a lower level.
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