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On Multivariate Adaptive Approximation

Y. K. Hu, K. A. Kopotun, and X. M. Yu

Abstract. Recently, A. Cohen, R. A. DeVore, P. Petrushev, and H. Xu investigated
nonlinear approximation in the spa@V (R?). They modified the classical adaptive
algorithmto solve related extremal problems. In this paper, we further study the modified
adaptive approximation and obtain results on some extremal problems related to the
spaces/;_p(Rd) of functions of “Bounded Variation” and Besov spa@%RY).

1. Introduction

Nonlinear approximation has been investigated extensively in recent years. In the uni-
variate case, because of the simplicity of the real line topology, free knot spline approxi-
mation is widely used in numerical computations. But in the multivariate case, generating
good free spline approximants is a more complicated and difficult task and is still under
research. However, there is the so-called Adaptive Approximation that works well in
multidimensional spaces and is practically easy to implement. Its main disadvantage
is that it gives a slightly lower than the best approximation order. Recently, A. Cohen,
R. DeVore, P. Petrushev, and H. Xu [7] successfully introduced a splitting and merg-
ing method to modify adaptive approximation, and showed that their method produces
near-minimizers to the extremal problems related to the sBaa@&?). In this paper, we
shall explore their method to show that this new modified adaptive approximation gen-
erates near-minimizers to some extremal problems in the sp@gﬂﬁzd) of functions
of “bounded variation” and Besov spacB$(RY).

If Xo andX; are quasi-normed spaces continuously embedded in a Hausdorff space
X, then theK -functional for all f € Xy + X7 is defined as

K (f,t, Xo, X1) = ifnif {Ifollxo + tlfalx, }
=lo 1

where|| - ||x, is a (quasi)norm ifXp, and| - |, is a (semi)norm or (semiquasi)normxa.
The extremal problem we are interested in is as follows. For a givenXy + X;, and
a parametet > 0, find a functionf; € X; with fy := f — f; € X which attains the
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infimum in the definition ofK (f, t, Xo, X1). Such a functionf; is called a minimizer.
A functiong € X; with f — g € Xg is called a near minimizer if

I —gllx, +tlglx, < C_inf (Il follx, + 1t falx,} -
=fotf
The problem of finding a minimizer or a near minimizer is closely related to the charac-
terization ofK -functionals, interpolation spaces, and approximation spaces.
The interpolation spacXo, X1)s,q, 0 < 6 < 1,0 < g < oo, consists of all functions
f € Xg+ Xy suchthat f [(Xo. X1)pq < OO where

©° t

1/q
[t K (f,t, Xo. Xp)]" T) ., 0<g<oo,

0
supt K (f,t, Xo, X1), q = oo.
t>0

| f |(X0qX1)9Aq =

The approximation spacly (X, {Mn}nen), @ > 0,0 < g < o0, consists of allf € X
such that

0 1 1/q
(Z [n“E(f, I\/In)x]q —) , 0<q< oo,
Lz o Ml = \n=1 n
supn®E(f, Mp)x, g = oo,
n>1

is finite. HereE(f, Mp)x = infgem, || T — gllx is the error for approximation from the
manifold M, C X, n € N. TheseM, are usually required to satisfy the assumptions:

(i) Mo = {O};
(i) Mn C Mnyg;
(i) aM, = M, for anya # 0;
(iv) Mp+ My C Mcp with ¢ := c({Mp});
(V) Uneo Mn is dense inX; and
(vi) any f € X has a best approximation from ealefy.

The following result is due to DeVore and Popov [17], and shows that if the Jackson and
Bernstein inequalities are satisfied for the spaXemndY (Y < X), then the approxi-
mation spaceAg (X, {Mp}nen) €an be characterized as interpolation spaces betXeen
andyY.

Theorem A. Suppose that for a pair of spaces X we have
E(f, My)x = in'\; If —gllx <Cn | fly, f e Y (Jackson inequalify
geMn
and

lgly < Cr|lgllx, ge M, neN (Bernsteininequalify

Thenfor0 < « < Aand0 < q < oo:

A‘é(X, {Mn}nen) = (X, Y)O,/)\,q .
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In this paper, we deal with = L andY =V, , or B*. After reviewing the spacB®,
we shall introduce in this section some notation for piecewise polynomial functions on
dyadic rings. These piecewise polynomial functions are usellifoitn the next section,
we define the spacég , and the moduli of smoothness;, and discuss some of their
basic properties. In Section 3 we study the approximation on a ring, which is the key step
to obtaining a Jackson inequality. After presenting briefly the description of the modified
adaptive algorithm in Section 4, and discussing the properties of multivariate free splines
on ring partitions in Section 5, we establish the Jackson inequality and the Bernstein
inequality forV; ; (in Section 6) and foB* (in Section 7). In the last section, we provide
a brief discussion of wavelet decompositions and related approximation spaces.

If0 <o <rand0< p,q < oo, then the Besov spadgf (L, 2), 2 € RY, is the
set of all functionsf € L,(2) such that

o0 dt 1/q
(/(; [t’“a),(f,t,Q)p]q T) , 0<q < oo,

supt™wr (f,t, Q)p, q = oo,
t>0

I flee,. =

is finite. (Herew; is the usuaf th modulus of smoothness.) The quantitygg(Lp,Q) is
a semi-(quasi)norm foBg (L p, €2), and the (quasi)norm fdBg (L, €2) is defined by

I lezp2 == I - L@ + |- IB2Lp.9)-
Also, fora > 0 and O< p < oo, we define
B*(Q) := B*P(Q) := B*(L,, Q)  with 1/o =a/d+1/p,
andB* := B%([0, 1)%). DeVore and Popov [16] proved

TheoremB. If 0 <a < ,0< p <oo,ando = (¢/d+1/p)~%,then(Lp, B®)o/p.5
= B<.

Besov spaces have the following properties:
a>a, p=p,
Bi(Lp) S By (Lp) if ja=¢', g<q, p=p,
a=d, q=q, p>p.

It also follows from Theorem B thaB* C B if o > «'.
Let Dx(RY), k € Z, denote the collection of all dyadic cubesRA of side length 2,
ie.,

DR = {[1227%, (1 + D27 x - x [1927 . (g + D279 | i € Z, 1 <i =d},
and letD(RY) be the collection o&ll dyadic cubes ifR9,

D(RY) = U Dk (RY).

kez
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It will also be convenient to denote
Dk() = {l e Dk(RY | | € )

and

D(R) := UDk(Q) ={l eDRY | I c Q).
kez
We will say thatR = 1\ J is adyadic ringif |, J € D(RY) (with J possibly empty) and
J C 1. The set of all dyadic rings will be denoted by

DRY :={R=1\J|1,J eDRY),andJ C 1},

and
D(Q) = {ReDRY | RC Q}.

Given adyadic rindR = 1\ J we denoteRg := | andR5 := J. This notation turns out
to be rather convenient later in the paper. Also, we note that a dyadi&risg cube if
and only if R = Rg, and will say that dyadic cubes adegeneratelyadic rings.

It will also be convenient to denote the class of all (finite) partition2cf D(RY)
into dyadic rings byr, (), i.e.,

7 () 1= {{Ra}ieA ||Al <00, R €D(Q).RNR =nifi#j, | JR =Q},
ieA
Also, letI1,_; denote the set of all algebraic polynomials of total degree, and let

Zn.r (2) be the set of all piecewise polynomial functio®ef order< r on partitions in
7 (2) consisting of not more thamdyadic rings, i.e.,

(1.1) Znr () = {SI S =Y P )XR (), (R} €m(Q), v=n, pe Hrl} :
i=1

In all of the above, if2 is equal to [0 1)¢ then it will be omitted. For exampl&) :=
D([O, 1)d); m = ([0, 1)d), Znr = Zns ([0, 1)d)| etc.

2. Spaces of Functions of “Bounded Variation”

Given a cubd , let len(1) denote its sidelength. For example] i& Dy, then lergl ) =
27k Then, for any cubd, vol(l) = len(l)¢, where, as usual, veR) denotes the
measure of2. If Ris a dyadic ring R € D), then we define lg(R) := len(Rg), and
hence valR) ~ vol(Rg) = len(Rg)¢. In fact, vok Rg) > vol(R) > (1—2"%) vol(Rg).

For f e Ly([O, 1D, 0 <o < p,andr € N, let V; » denote the set of functions
f e Ly([0, 1)%), for which the “variation over rings”

1/0
[flv;, == sup (Z or (f,len(R), R)‘;,)

{Rlica€mr ieA
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is finite. We note that, it > p, thenV; ; = L. This is the reason for the restriction
o <p.

Also, for f e Ly([O, DN, 0<0 < p, B :=1/c —1/p, andr € N, we define a
modulus

O<h=<t{R}n_ en! i

1/o
Wi (f,t)pp = sup sup h’ (Zwr(f len(R), R.)") ,

where the second sup is taken over all partitions ofl)d consisting “of about 1h
rings”:
M= {{R}L em In<[1/h] +1}.

This modulusis a generalization of the univariate modfgs, t),, , of R. A. DeVore and
X. M. Yu[19]. Itis also a modification and generalization of the univariate characteristic
ks p(n, ) of Pekarskii [23].

Let Ef (R)p denote the rate df ,-approximation of a functiorf defined in a region
R (which can be a cube, a ring, a rectangular soli¥ etc.) by polynomials of total
degree<r,i.e.,Et(R)p = E(f, I, _1),r = infpen,_, I f — PllL,®-

Remark. Because of the equivalence (see Lemma 1)

Er(R)p ~ o (f,len(R), R),

for any dyadic ringR, the moduliw, in the above definitions can be replacedhy(R) .
For example,

1/o
W (f, t)opN sup  sup h? (Z Ef (R)7 ) .

O<h<t (R 1E7Tr i—1

We now mention some of the important properties of the modudiuéf, t),; , which
are used later in this paper. First of all, it immediately follows from the definition that
W (f, 1), p is @ nondecreasing function buch that

Wi (f 40, D0.p < C (W (£, D5, p + Wi (G, D p)

and

Wi (f, Mt), 5 < MY7"YPW, (f, 1), p, M > 1
Also,
(2.1) Wi (f,)0p <CllIfll,, forall feLp(0, 1?.

Indeed, using MdIder’s inequality, we have

1/o
Wi (f,t)sp < C sup sup h? (Z ||f||Lp<R>>

O<h=t (R} en’ i—1

IA

1/p
C sup sup hPnt/o-1/p (Z IIfIILp(R))

O<h<t{R} eﬂrh i—1

Cll flle,.

IA
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Also, foranyg € V, .
(2.2) W, (9. Dop < tPIglve .

since

n 1/0
Wr (9, t)a,p = Ssup sup h? (Z wr (9, len(R), R!);)

O<h<t (RN en! i=1

IA

n 1/o0
t* sup (Z o (g, len(R), Ra)‘;,)

{RIL em \i=1

tﬁ|g|v;‘p.

3. Approximation on a Ring

We say that a rectangular solid is regular if the ratio of lengths of any two of its sides is
between}1 and 4. LetR be a dyadic ring. We shall show thBtcan be represented as a
union of regular dyadic rectangular solid®= | i ri, © = 1(R), such that:

1. 1<pu<2d.

2. One of the children oRg (see Section 4 for the definition of a child) is contained
in all thoser; which satisfy voir;) > %VO|(R|33). We denote this child by, and
call it “the root of the union.” All those; containing it are called branches.

3. Anyr; (i =1,..., u) in the union is either a branch or is intersecting a bramch
with vol(ri Nrj) > 2 vol(ry).

Lemmal. Let R be a dyadic ring ilRY. Then there exists a representation of R as

a union of regular dyadic rectangular solid® = (J/_, ri, such that the above three
conditions are satisfiedMoreoverfor all 0 < p < oo:

"
Ef(Rp<C) o (f, Yvol(ri), 1)p < Cox (f, YVOI(R), R)p,
i=1

where C is a constant which depends only od,rand p and is independent of R

Proof. Without loss of generality, we may assume tRat = [0, 1) and thatRy =

[ag, @14+ 27%) x [a2, 82+ 27%) x -+ x [ag, & + 27¥) with & > O anda; +27% < 1,

i =1,2,...,d. By rotating the coordinate axes if necessary, we may also assume that
O<a <a <---<aq.Noticethatforeach=1,2,...,d, we have eithea; =0 or
a > 27k,

Definer; := [0, 1) x---x[0, 1) x[a +27%, 1) x[0, 1) x---x[0, Dfori =1,2,...,d,
andrgyi :=[0, G 1) x---x[0, G i—1) x[0, &) x[811, &+1+GCiit1) X - X [ad, 8d+Ci,d)
fori =1,2,...,d, where

- |max(2@ + 274, &), j <i,
ST Imax2 L, &), j>i
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Note that ifa; = 0, thenryq,, = @ forallv = 1,...,i. In particular, ifk = 1, then
rqri =@ foralli =1,...,d. Keeping that in mind, everywhere below we assume that
k > 2 (the casd& = 1 can be treated similarly and, in fact, is much simpler).

We are going to prove that the unibjfil ri is adesired expression Bf It is apparent
that we have the first two conditions satisfied wigh=[3, 1) x --- x [3, 1) as its root
andri,i =1, 2,...,d, as its branches. From the definitiongpandry.;, we also see
that all of them are regular d(}/adic rectangular solids.

We now show thaR = f:lri. Letx = (X1, X2, ..., X4) € R. Then there exists at
least one such that eithes +27% < x < 1,0r0< X < g and 0< X; < & + 2 ¥ for
all j #i. In the former case, we havee r;. For the latter case, lég := maxi | 0 <
X <& and0< x; < g +2Kforall j #i}. By the definitionof 4, (i = 1,2, ..., d),
we havex € rq4i, because & X, < a,, & < X < & + 2%forall j =ip+1,...,d
andc,; > a + 2% forall j < io. Itis easy to see, on the other hand, thatrall
(i=12...,2d)are subsets oR (note that allc ; for j < i do not exceed 1 by the
assumptiors; 4+ 27K < % and allg; ; for j > i do not excee(%). Therefore, we have

It remains to show that for each nonempty rectangular sglidi =1, ..., d, there
exists a branch; with vol(rq4i Nry) > %vol(rd+i ). (Itis easy to see that the soligl,;,
i =1,...,dis notabranch since voki) = & [T, 5 ¢ [[°.1 G <a < 1)

Assume thatq,; # ¢. From the definitions of; andrg.;, we have volrgy Nrj) >
%vol(rd+i) if j #1i.Indeed, we haveyi Nrj =[0,G 1) x--- x[0,Ci—1) x [0, &) x
[@i4+1, 841+ Giit1) X -+ X [§ +2*k,a,— +Cj) x---x[ag,aq +Cq), if j > 1;and
Fasi N1 =[0,C1) x - x[a+27%¢j) x-x[0,6-1) x [0,&) x [&41, 811+
Cii+1) %+ -x[ad, aa+GCiq),if ] <i.Sinceg j > 27+ for j > iandc j > 2(a +27)
for j <i,sovolrgyi Nry) > %vol(rd+i) and then the third condition is satisfied.

Now let us estimatéss (R)p using the above decomposition Bfinto ri. The case
p = oo is trivial, and so we assume that© p < oco. Let R, € II,_; denote a
polynomial of best ,-approximation tof onri, i.e.,Ef(ri)p = [ f — PrllLa)-

Since we have

Er(R} < If = Pylll ()

"
< Y IF=Pollf )
i=1

if we can show foreach(i = 1,2,..., u) that

"
I = Polli,en <C D Er )y,
j=1

then

IA

"
Er(R)f < CY Ei(r)h
i=1

n
CY o (f,volr)™?, 1.
i=1

IA
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The inequalityEs (1), < Co (f, vol(ri)v/d, ri)p (used in the last estimate) can easily
be obtained from the multidimensional Whitney theorem for a unit cube using the affine
transformatioriT: r; — [0, 1)¢ and taking into account that is a regular solid.

Now, if rj is a branch, then

” f - Pr(]”Lp(r\) S C[” Pfo - Pl’i ”Lp(l’i) + ” f - Pl'i ”Lp(l’i)]
C[lIP, = PrllL,ro + Er (ri)p]
ClIf = ProllLyio + I = Pyll,eo + Ef (ridp]

C[Ef(ro)p + Ef(ri)p] < CE;(ri)p,

IAIA

IA

becauseg C r; and volrg) = 279 > 2-9vol(r;).
If r is not a branch, by what is proved, there exists a brapsach that valr; Nrj) >
2 vol(rj). Then, we have

If = PoliL,ey < ClIP, — Prll,en + 11 E = Prill,en ]
= C[”Pro - P oo + Es (ri)p]
= C[”f = PollLomnrg + 1 = Prille,mnr) + Ef(ri)p]
< C[lIf = PollL,a,) + Et (ri)p] < C[Ef (rj)p + Es (ri)p] .
The proof is now completed. ]

To emphasize that andu correspond to a particular rinig we will use the notation
rRanduR. Also, if Ris a cube (degenerate ring) we denpfe:= 1 andrf} := R.

Corollary 2. Let R be a dyadic ringThenfor0 <« <r and0 < p < oo, we have
uR uR
Er(Rp <CY Er(r)p <CY Iflgqr < Clflaum-
i=1 i=1

Corollary 2 immediately follows from Lemma 1 and the following Lemma C:

Lemma C (DeVore and Popov [16], see also [9Det1l/oc = «/d +1/p, then B (L,)
< Lyp, thatis forall f € Bg(Lo), [ fll,, < Cllfllggw,). In particular, | fll., <

C|f lBe(L,) forall 0 < q < p. Moreoverfor each | e D(RY) and f € B*(l):

Ef(|)p§C|f|Ba(|), O<a<r.

4. Description of Algorithm

We will use the algorithm developed by Cohen, DeVore, Petrushev, and Xu [7] to con-
struct piecewise polynomial functions satisfying Jackson inequalities in the sgages

and B* (see Sections 6 and 7). For completeness, we describe the algorithm in this
section. First, we recall some definitions. Lldbe a dyadic cubel (e D). Then:

e If | € Dg, thenJ is the parent of if and only if J € Dx_; andl C J.
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J is a child ofl if and only if | is the parent of].

I andJ are brothers if and only if they have the same parent.
Jis adescendent dfifand only if 3 e DandJ C I.

J is an ancestor of if and only if | is a descendent af.

Let @ denote a nonnegative set function defined on the algdtiteat consists of all
subsets of [0 1)? formed by finite unions and intersections of rings fr@mand their
complements. We assume thiahas the following properties:

(i) @ is subadditive:®(R;) + ®(Ry) < ®(Ri U Ry) for Ry, R, € A such that
RINR, =0,
(i) ®(R) — 0 uniformly as vo{R) — 0.

The set functiord (R) usually depends on the error of approximationfobn R. For
instance, we can choos®(R) to beE; (R)S.

Given a parameter > 0, we definéX, to be the set of cubdse D suchthatb(l) > &,
and we callY, a tree which means that wheneves Y, andl # [0, 1)¢, then its parent
also belongs tér,. Note thatY, has finite cardinality because of the second condition
on®. In T, we have three different types of cubes:

(i) The setF, of final cubesconsists of the elementse T, with no child inY,.
(i) The setN; of branching cubesonsists of the elementse Y, with more than
one child inY,.
(iii) The setC, of chaining cubesonsists of the elementse Y, with exactly one
child in T,.

Moreover, the sef, can be divided intaen maximal chains ¢such that, = ULl Ck
with Cx = {lo,..., Im_1}, m = m(k), where each cub& _; is a child of I;, i =
0,...,m—2,lgis nota child of a chaining cube, ahg_; is not a parent of a chaining
cube. For a se§, let |S| denote its cardinality. We have (see [7])

Nel <|Fel—1 and n<2/F|-1

Now, let us describe howto construct a partitRrof [0, 1)¢ intoringsRwith ®(R) < «.

In fact, we haveP, = P! U P? U P2, whereP? is the collection of all childrer) of
the final cubed ¢ F, and 7382 is the collection of the childred of the branching
cubesl € N, such that] ¢ Y.. The collectionP? consists of good rings (or cubes)
generated from the maximal chai@g = {lo, ..., In_1}, m=m(k), k=1,...,n, by
the following recursion algorithm. Note that the last cuhe; of Cyx always contains
exactly one child ,, from Y, which is in eitherF, or ;. So, for eaclCy, we first define
0= jo < j1 <--- < jp =minsuchaway that, assuming < mis chosen, we choose
ji+1 as follows:

(i) if @(j\Im) < ¢, thenji;1 := mand the algorithm terminates;
(i) if ®(I;\lj+1) > &, thenji;1 ;= ji +1; and
(iii) otherwise, ji;1 is chosen such thak (I \1;,,) < e and®(l\1j,,+1) > .

Then the se‘Pg3 consists of, from each maximal chaiy:

(i) allrings1j\Ij.,, such thatb(1j\1j,,,) <¢;

Ji+1
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(i) the children ofl;, that differ froml;,,, for alli such thatb(l1;\1j,,) > & (which
is possible only in the casg,1 ;= ji + 1).

It is shown in [7] that thisP, is a partition of [Q 1)¢ satisfying the following theorem.

Theorem D. Lete > Obe such thal’, # #. Then there exist a partitiorP, of [0, 1)d
into disjoint rings such tha® (K) < ¢ if K € P, and a sefP; of pairwise disjoint rings
such thatd(K) > ¢ if K € P, and|P,| < 8|P|. (In particular, we can choos®, to
be the partition produced by the algorithm abgve

This theorem not only gives a partition of,[@)? into disjoint good rings, but it also
shows that the number of good rings in the partition is controlled by the number of certain
bad rings that are pairwise disjoint. The latter is more important to the estimation of the
approximation degree.

5. Multivariate Free Splines on Ring Partitions

Itis easy to see thai, , are nonlinear manifolds, i.e., the sum of two functions ffBm

does not have to lie i, ;. However, as shown in the two lemmas below, the sum belongs
to Zcn,r. This will be shown vie§, ; (1), the set of allSsuch thatS = Zi“:l pi x1,, where

li € | are dyadic cubes (which are not necessarily disjoint) gnd I, _;.

Lemma3. Ifn e Nand | € D(RY), then §,(1) € =y, () for some N< (n —
D29 +n+1<n@+1). Thatis if S(X) = >, pi(X)xi,(X), where{l;}l_, is a
collection of n(distinct but not necessarily disjointlyadic cubes contained in &nd
pi € I1,_4, then it can be represented as

N
G.1) S =) qOxg), (R} emd), g el
j=1

Proof. We use induction om. It is trivial to verify the result forn = 1, that is,
Sir(1) € 5, (). Now we suppose the result is valid for alle D(RY) and allm,
l1<n<n

Let S(x) = S P (X)), (X), where{ly, ..., In} is a collection of distinct cubes in
I, and letl be the smallest dyadic cubeln(l) that containg J; I;. The following two
cases are possible:

Casel: | coincides with one ofi, say,r=~ln.
Then the cube$y, ..., I,_1 are contained i and

n—1

SO = pa) = Y p0x, () for xel.
i=1

Thus, we can use the induction hypothesisSgor; (IN) to conclude that, fox e T,

~

N ~ ~
S(X) — pa(¥) = > g OOxrR (0, (R} € m (D),
=1

J
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whereN < (n —2)2¢ + n. Now, if I C I, then

SO =0 1,700 + Y (G () + Pa(X)) xR (X)
j=1
foranyx € I, and(R; }jN~=1U (N} em (). 1f T =1, then
S = D@ () + Pa)) xR, (X)
j=1

foranyx € I, and{RJ —, € 7 (1). In both of these casd$ < N+1< (n—2)29 +
n+1< (n—1)2d+n+1.

Case2: 12l,i=1,....n ~

Then each of the cubds i =1, ..., n, is contained in one of the children bf Let
Ci,...,Cm,2<m< 29 bethe children of containing at least one d¢f,i = 1,.
(m cannot be 1 since, otherwisk would not be the smallest cube contamUa I )
and letCpy1, ..., Cx be the children of having empty intersection withJ; I;. For
eachk = 1,..., m, denote the number of cubés 1 < i < n, contained inCy by
Nk. ThenZE":1 ng = n, and, sincean > 2 andng > 1, we conclude thaty < n—1
forallk = 1,..., m. Thus, we can use the induction hypothesis for eac8,0f(Cy),
k=1,...,m, and conclude that

n m_ Ik
Y P00x 00 =D Y i (xR, (X
j=1 k=1 j=1

foranyx € |, wherely < (ng — )29 +n + 1 and{R j }}k:l € 1 (Cy). Now,

29_m m i
SO =D 0 xcu )+ Y ) G (xR (X)
k=1 k=1 j=1

for anyx € 1 (actually anyx € 1). Note that ' ;{Rcj 1 U U ™Cniid € m (D)
and, thus,

§(x), fl~:
S0 = S(x)+0- X, if I'c

Inthe casd C I, ULy {Rej 1, U U2 ™ Conic U (1\T} € 7 (1). Thus,

m
2d—m+1+Zlk
k=1

N

IA

IA

m
29—m+ 1+ (- D2 +ne+1)
k=1

=2 _—m+1+mm-m22+n+m
=M-m+D2+n+1<n-D2+n+1,

which completes the proof of the lemma. ]
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Lemma4. Ifm,n,r e N,and | € D(RY),thenZm, (1) +Znr(1) C X2y 1ymeny.r (1)-

Proof. It can be readily verified tha,, € S,y and S,y + Snr € Svimr. These
inclusions and Lemma 3 immediately imply that

Zn,r + 2m,r - Sh,r + Sﬂ,r - Sn+m,r - 2:(Zd-f-l)(n-y-m),ro n

The following lemma shows that any functidne Ly(l), | € D, has a best approxi-
mant from the manifol&,, , . Its proof is the same as that of Lemma 6.1 of [7].

LemmaE. Foreach fe Ly(l)and ne N there exists g= =, (I) such that|| f —
g”Lp(I) = E(f’ Z:n,r)Lp-

6. Adaptive Approximationin V; ,

Theorem5. Let0 <o < p < 00,8 :=1/o —1/p,and r € N. Then for f e
Lp([0, 1)%) and t > O we have

K(f,tﬂ,Lp,V;,p>=glgt {If =g, +tP1glv:,} ~ Wi (. o p.
o,p
Inthe casal = 1, a version of this theorem was proved in [19]. Note that, 4 1, then

a partition of [Q 1] into rings is just a regular partition into intervals. Theorem 5 is an
immediate corollary of the following result:

Theorem 6. LetO<o < p<oo,B:=1/0c —1/p,andr e N. Then
(i) forany f e Ly([0, 1)%) and ne N there exists g =, such that

(6.1) If —gll,, <CWi(f,1/n),, (Jackson inequalify
(ii) forany ge X, we have

(6.2) 19lve, < cr®w, (g, 1/n),p (Bernstein inequality

Theorem 6 will be proved in Sections 6.1 and 6.2.

Proof of Theorem 5. First of all, for anyg € V! , using (2.1) and (2.2) we have

.p’

Wi (f, Dop

IA

CWi(f =g, )6p+ Wi (G D)op)
C(If —gl, +t’Ighv,)-

IA

Hence, taking infimum over af} € V; , we obtain

Wf(f5 t)a,p S CK(f5 tﬁv Lp5 V(;’p)‘
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Now, suppose that Theorem 6 is proved. tet 0 and choos@ := [1/t] + 1. Then
Theorem 6 and inequality (2.1) imply that there exipts X, ; such that

Ctn)’ Wi (g, 1/n)s p

CWr (9, 1/n)o.p

CWr(@— f,1/n)gp + Wi (f,1/n)g )
C(llg— fliL, + Wi (f,1/n)yp)

CWi (£, 1/n)g,p,

tﬂlglv;_p

INIA TN TN IA

and, therefore,

Kt Lo, Vo) < If =g, +tPlglve,
< CWi (£, 1/n)p < TV (f, t)gp. m

Corollary 7. LetO<o <p<o0,B:=1/c —1/p,andnr € N. Then

(i) E(f, Znr), <CnP|fly forany fe V] ;and

(i) Iglvr, < Cr|igllL, forany ge Zn,.

,p’

Proof. The statement (i) immediately follows from (6.1) and (2.2), and (ii) is a conse-
guence of (6.2) and (2.1). ]

The following is a consequence of the above corollary and Theorems A and 5.

Corollary8. LetO<o < p<o0o,B:=1/c —1/p,r € N.Thenfor0 < o < 8
and0 < q < oo,

(6_3) Ag(Lp, {En,r}neN) = (LP’ V;,p)a/ﬁ,q '

Corollary9. LetO <o < p<ooandre N.ThenforO <« < 1/c —1/p and
0 < g < oo, we have

/ [t—“wr(f,t)a,p]q$ < oo}.
0

Ag(l—pv {Znrlnen) = {f € Lp([O, 1)d)

Corollary 10 (q = 00). LetO <o < p <ooandr e N.ThenforO <o < 1/0—1/p:
E(f» 2n,r)Lp = O(n_a) — Wr(f,t)o.p = O(ta)-

The following corollary shows that there exiggse X, (in fact, the piecewise
polynomial functiorg that we constructin Section 6.1 will do), which is a near-minimizer
for the K-functional K (f, n™”, L, V) p)-

Corollary 11. Let0 <o < p < 00,8 :=1/oc —1/p,andr € N. Then for f e
Lo([O, 1)%) and ne N there exists g X, such that

If —glle, +nlglv:, < CK(f.n 7, Ly VI ).



462 Y. K. Hu, K. A. Kopotun, and X. M. Yu

Proof. Using Theorem 5 with = 1/n, Theorem 6, and the properties Bf, we
conclude that there existse X, such that

If—gl, +nPlglv:, < [If —gllL, + CWi (@, 1/N)ep
If—glle, +CWi(@— f,1/N)p+ CWi(f,1/N)6p
C” f— g”Lp +CWr(f’ 1/n)a,p

CWi (f,1/n), p < CK(f, n*ﬁ,Lp,v(;p). u

IAIATA

IA

6.1. Jackson Inequality for ¥/,

First of all, we show that any set of (pairwise) disjoint rings and cubes can be comple-
mented to a partition of [01)¢ in 7, .

Lemma 12. LetR be acollection of pairwise disjoint dyadic rings and cubes contained
in a dyadic cube ] and let|R| denote its cardinalityThen there exists a partition
Tr (1) of I into dyadic rings(7r (1) € n; (1)) such thatR C 7z (1) and |7z (1)] <

(29 4+ 2)|R| — 2% + 1 (and, therefore [Tx ()| < 29+ R)).

Proof. The idea of the proof of this lemma is similar to that of Lemma 3. Clearly the
statement is true for a cubee D if and only if it is true forl = [0, 1)4. We proceed

by induction onR|. If |R| = 1, thenR = {K}. Now we choosdz, := T ([0, 1)?) =

{0, DA\K, K} (if K isacube, i.eK = Kg), andZr = {[0, D%\Kg, K, K} (if K

is a nondegenerate ring, = Kg\Kp). Clearly,|7z| < 3.

Now suppose that the lemma is proved for all collectihsuch thaiR| < N, and
considerrR such thatR| = N+ 1, N > 1, andl = [0, 1)¢. For a set2 < [0, 1)¢
denoteR(Q2) = {K € R | int(K) Nint(R) # @}. Let Q be the smallest dyadic cube in
D(l) that containg Jr. R. We have the following two possible cases similar to those
in Lemma 3.

Casel: Q coincides withRg for someR € R.
SinceR(Rg) = R\{R} containsN cubes and rings frorR we can use the induction
hypothesis to conclude that there exists a partifigpr)(Ro) of Rg such that

1 Tr(ry) (RO < (Y +2)IR(Ro)| — 20 +1< (2 +2N - 20 + 1.
Now, Tr = Trry)(Ro) U {R} U{[O, 1)%\ Ry} is a desired partition of [01)¢, and
TRl = 2+ |Trry)(RO)| < (22 4+ 2)(N +1) — 29 4- 1.

Case2: Q2O Rmy,YReR.

By the assumption o®, at least two of its 2 childrenl,, v = 1,2, ..., 24, contain
members ofR in this case, thereforgR (1,)| < N forany 1< v < 24, and we can use
the induction hypothesis to construct partitidhs,,(l,) of 1, as follows:

o if R(l,) # 9, then letTr(,(l,) be a partition ofl, containingR(l,) and such
that |7Trq,, (1) < (24 + 2)|R(1,)| — 29 + 1 (its existence is guaranteed by our
induction hypothesis); and
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e if R(l,) =@, then we choos&xr,(l,) := {l.}.
Now,
2d
= {10, D\Q} U | J Tra,y (1)
v=1
is a partition of [Q 1) containingR. Taking into account that
> IRUDI=IRI,
LR (1)
we have

2d

Trl = 1+ Y [Tra, (W)

v=1
=1+ |[{L IR =B+ > [Tray()l
1,:R(1,)#9D
< I+HL IR =B+ > (@ +2IRM)I-2+1)

1,7 R(1,)#£0
T+ IR =B — @ =D {1, | R(,) # B} + (2 + 2R
2 +2IR| - 20 +1,

sincel{l, | R(1,) # #}| = 2 and|{l, | R(1,) = @} + [{I, | R(1,) # 0} = 2°. u

=
=

Proof of (6.1). Let ®(R) = Ef(R)}, e = n™W;(f, 1/n)¥ , (without loss of gener-
ality we can assume thaw; (f, 1/n), , # 0, sinceW; (f,t), p = 0only if f e I1;_y),

and letP, be a partition produced by the algorithm described in Section 4. We use The-
orem D to show thaP,| < Cn. Suppose tha®,| > n (otherwise, we are done). Since
the setP, (see Theorem D) consists of pairwise disjoint rings and cubes contained in
[0, 1)¥, we can use Lemma 12 to enlar@e to 7% , a partition of [Q 1)¢ into dyadic

rings such that

Pl < 1T | < 227471,
If we denote|7;| = N and |75 | = N, thenN < N < 29*IN. Now, note that the

inequalities|P:| > n (our assumptlon above) an@;| < 8N (Theorem D) imply that
N > N > n/8. Recalling thaEf(Q)p > ¢ for Q € P,, we have

N=[P| < e /P} " Er(Qp<e P 3 E(Qp
Qe'pe QGTN
Ce™/PNP?  sup N ﬂ“ZEf(Q.)p
QI _1€7r i=1

IA

IA

Ce /PN sup  sup h®” Z Er (Q)5
0<h<1/N {Q ), en" i=

Ce~/PNPTW, (1, 1/N)3 , < Ce™/PNPOW, (f,1/m)] , < Cnf/PNFe,

A

which impliesN < Cn, sinceg =1/ — 1/p.
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Defineg by
gx) == P, (X) for x e lj,

wherel; € P,, andP;, are besL , approximants td onI; from polynomials of degree
<r.Theng € X¢nr and

Hf—glf, = > If=PlILq, <elPl
liePe
< Cne <CWi(f,1/n)P
which implies (6.1). ]

6.2. Bernstein Inequality for }(p

Letg € X, be a piecewise polynomial function of ordegrr defined on a partition
Py = {R}., € m, i.e., for eachR € Py, gl € II;_1. In the following lemma we
show that, for any finite ring partitio® = {Q;}i, € 7 of [0, 1)9, if

Ag = {i € A | Eg(Qi)p # 0},

then|Ag4| < 2n. More precisely, we prove

Lemma 13. LetP e &, be givenFor any Q € P with E5(Q), # 0, there exists an
R € Py that satisfies one of the two conditions below

(i) Qm 2 Rgand QN R # ¢¥; and
(i) Re2Qm 2 Ro#¥and & 2 Ro.

Moreover any given Re Py corresponds to at most one ring Q satisfyifilg and at
most one Q satisfyinGi). Therefore |{i | Eq(Qi)p # 0, Qi € P}| < 2|Pyl.

Proof. We shall repeatedly use the fact that two dyadic cubes are either disjoint or one
is contained in the other. We fi@ such thatEg(Q),, # 0. Becausé®y € n;, there exists

R e PygsuchthatQe N Ry 2 QN R# JandQ ¢ R, thus eitheQm 2 Rg, which

is (i); or Rg 2 Qgm. In the latter case, fron® € R we knowQm N Rg # ¥, and in
particularRg # @; from Q N R # ¢ we knowQg € Rg. ThereforeQm 2 Rg. From

Q £ Ragain, we knowQp 2 Rg, which gives (ii).

For the uniqueness of the rir@in (i), we fix R € Py and suppose there are two such
ringsQ andQ’. SinceQmNQ’'m 2 Ry # ¥, one of them contains the other. Without loss
of generality, we assum®g 2 Q'm. SinceQ N Q' = ¥, we haveQn 2 Q'y 2 Rm;
but Qg cannot contairRg, for Q N R # @. This contradiction shows the ring in (i) is
unique.

For the uniqueness of (ii), we suppose there are two hgedQ’ € P both satisfying
(ii) for the same ringR. Similar to the above, sind@zN Q' 2 Ro # ¢, we can assume
Qm 2 Q. FromQ N Q' = ¥ we derive

Re2 Qs 2Qu2Qm2 R,
which contradicts the fadg 2 Ro. [ |
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Proof of (6.2). Now, let? = {Q;}i., € 7; be an arbitrary finite partition of [01)°
into dyadic rings. We consider its subg&i};.»,, Whose cardinalityAg| < 2n by
Lemma 13. According to Lemma 12 there exists a partifipry such thafQi}ic, <
Tpg and

| Tpgl < 2 Ag| < 22N,

Now, denotingh := 1/(292n), we have

1o 1/o
19lv;, ~ sup <Z Eg(Qi)Z) = 7§UP <Z Eg(Qi)‘,;)

Pemr \jea € \ieAq

IA

Pem \ReTpg wen' \Rex

1/o 1o
sup( Z Eg(R)‘F’,) < sup (Z Eg(R)g)

1/o
< crf suph? (Z Eg(R)‘,;> < CrPWi (g, Mo p

7T€7Trh Renr

< CW, (9. 1/n)sp,
which is the inequality (6.2). ]

7. Adaptive Approximation in the Besov SpaceB*

In this section, we develop results for the Besov spd@&swhich were defined on
page 451.

Theorem 14(Jackson Inequality)For every fe B*,0<a <r,0< p < oo,

E(f, Zno)L, < Cn /9| fge.

Theorem 15(Bernstein Inequality)Letg e X,,i.e.,9 = > g.p PrXR, WhereP e m;
with |[P| < n,and p; € I1,_;. Alsg let0 < p < oo and0 < o < min{r,d/(d — 1) p}.
Then

o/d

[9le- = Cn*™lgllL,-

Corollary 16. Let0 < p < oo and let0 < « < min{r,d/(d — 1)p}. Then for
O<y <a/dand0 < q < oo,

Ag(l-pa {En,r}neN) = (Lp, Ba)dy/a,q'
This corollary can be restated as follows:

Corollary 16’. Let0O < p < oo and let0 < 8 < min{r/d, 1/(d — 1) p}. Then for
O<y <pand0<q < oo,

Ag(Lpa {Znrlnen) = (LP’ Bdﬁ)y/ﬂﬂ'
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We can now characterize the interpolation spa(d:q)s B“)W q in terms of the mod-
ulusW; (f, t),,p. The following result immediately follows from Corollaries 9 and 16,

and Theorem B:

Corollary 17. Let0 <o < p < oo, r € N, 1/o = a/d+1/p,and0 < o <
min{r,d/(d — 1)p}. Thenfor0 < A < @ and0 < g < oc:

(Lp: BY), j0q = {f e Lp([0, DY) /OO [t*A/dWr(f,t)o,p]q$ < oo}.
’ 0

In particular, ifq =z = (A/d + 1/p) L, then

(Lp’ Ba))»/a.r = BA = {f € Lp([o’ 1)d)

/0 [t—x/dwr(f,t)a,p]f$ < oo},

and, thus

. dt
— < o0.

(o) . dt (o)
f [t Wi (f, 19, ] T <% & f [t~ o (f, )]

0 0
Using Corollaries 10 and 16 one can also get a similar statement in thqg ease.

7.1. Proof of the Jackson Inequality for’B

Without loss of generality we can assume thilts« # 0. Let ®(R) = Ef(R)B, o=
(/d +1/p)~t, ande = n=P/7| f|},. Also, letP, be a partition of [0 1) produced by
the algorithm of Section 4. ThelP.| < 8|P.| (see Theorem D), wher is a set of
pairwise disjoint dyadic rings such that for &le P., ®(R) > e.

We now estimatéP, |. If R € P,, then 1< ¢ °/PE; (R)?, and using Corollary 2 we
have the following estimates:

~ MR
(7.2) Pl <e™/P Y Ex(RF<Ce™P Y % [ F1gur,
Re’]’;g Re73; i=1

where, ifR € P, is a cube, thepR := 1 andr R := R.
We will now show that

MR
(7.2) D 2 M lgegr < ClflE.

Rep, =1

which together with (7.1) implies th#P,| < 8|75;| < Ce/P|f|g, <Cn.

To prove (7.2) note that i) is a regular solid then the following holds (see DeVore
[8, ineq. (4.5)], for example, keeping in mind that the result for a regular solid follows
from that for a cube by a change of variables):

wr(f,t,@gw*df / IAL(f, %)[° dx ds
[-t.t]9 JQ(rs)
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whereQ(h) := {x | [X, x + h] € Q} and A} is the usualth difference. Thus, taking
into account that according to Lemma 1 excé R belongs to at most < 2d regular
solidsr R, we have

Z Z'”Bw(rR) - Z
ReP, 1= ReP,
00 //«R
gm0t (Z Zwr(f,t, riR)g) dt
0 ReP, 1=1

M

/ t7 Loy (F,t, 1,9 dt

I
S~

< Cf tmeo—t / / |AL(f, x)|° dx ds
0 (zp; [-t.t]9JrR@rs)
< C/ tmoo- 1( / / |AL(T, x)[° dxds) dt
0 t,t]9J[0, 1)d4(rs)
< c/ t= Lo (f,1,[0, DI dt < C| f[Z..
0

Thus,|P:| < Cn, and definingy(x) := P, (X), for x € I;, wherel; € P, andP,, are
bestL , approximants tof on |; from polynomials of degree: r (henceg € Xcn,),
we have

||f—g||"=/ fogr=Y /|f—g|p— E((R)?
be [0, 1y¢ ReP; Z

ReP,
< Y e=¢|P| <Cne<Cn"P|fg,.
ReP,
Thus,
E(f, 2oL, < If —gllL, < Cn*/9|flg.. n

7.2. Proof of the Bernstein Inequality for’B

The following proof is somewhat similar to the proofs that were used in [15] and [9].
We denotear(x) ;= pr(X)xr(X) and note that

lglf, = /[ . |g<x)|de—Z/|g(x)|pdx
ReP
= 3 [ tarcor dx= Y- i, s
ReP ReP

To estimatgg|%. we first show that

(7.3) r (9, D)y = oy (Z aR, t) <C Z oy (@R, t)7.

ReP ReP
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Note that this inequality is trivial it < 1, since, in this casdl>" fi|] < > IIfill{ .
For generab, we letx, h € RY be fixed. Then

ARG, %) = ) (=D (:)g(erih)

i=0

= (-n™ (T) > ar(x+ih)
i=0 ReP
=) v

r (r>
i=0 I ReP,RN{x+ih:0<i<r}#0

= AL, x),

whereg(x) = ZRegaR(x),ﬁ ={ReP,RN{x+ih:0=<i <r} # @#}. Now, using
the observation thd®| < r + 1, we have

ar(X +1ih)

A" = [AL@G [ =] D Af@r 0|
ReP
< C(r.o) Y _ |Ah@r. x|  =C > |ALar. )| .
RE% ReP

Therefore, integrating the last inequality over [09, taking the supremum ovér |h| <
t, and using the inequality syg>_ fi) < Y sup, fi, we obtain (7.3).
We now fixR € P andh € RY, and denote

D(R,r,h):={xe[0, )| {x,..., X+rh)NR#W, {X,..., X +rh}NRC # ¢},
whereR® denotes the complement Bf(R® = [0, 1)?\R). Then
vol (D(R, 1, h)) < C min{vol(R), vol(dR)|h|} < C min{vol(R), vol(R)*9|hy}.

Also,
' e Jlar()| + -+ [ar(X +rh)[, X e D(R, 1, h),
|Ah(@r, 0| = 2 {0, otherwise
Thus,
o (ar. 1) = sup |A(ar, %)|” dx < sup |AL(ar, x)|” dx
lhi<t J[O, 1)d lhj<t JD(R,r,h)
< 2(r +1)? sup larll{  dx
lhi<t JD(Rr,h) =
< Cllarll{, supvol(D(R,r, h))
Ih<t
< Clarll{_ g minfvol(R), vol(R)* 4t}

Now, vol(R) ~ vol(Rg), and, hence, for any polynomigd, of total degree< r,
P llL,Ry ~ 1Py llL (R @nd

1P llLer < 1PrllLare) < COVOI(RE)) Pl pr lIL,Re) < CVOI(R) Pl prllL, R
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(see Ditzian [20], for example). Thus,
r (@, 1)7 < C(vol(R) /P min{vol(R), vol(R)* Yt} ||arl{ ().

and using (7.3) and the fact thed < 1 (this inequality is equivalent® < d/(d — 1) p)
we have

lglg. = / t=* wyr (g, 1)7 dtch/ t~ Lo (ag, )7 dt
0 0

ReP

IA

CZ/ t“’“"l(vol(R))“’/pmin{voI(R),voI(R)l‘l/dt}||aR||‘[p(R)dt
Rep Y0

C Z (VOI(R))fo/pHaRHi,,(R)
ReP

vol(R)/d 00
x vol(R)l—l/d/ t~%° dt + vol(R) t1dt
0

vol(R)/d

IA

IA

1-0/p—ao/d
C Y ol(R)™/P*/ag||] g =C Y larl{ -
ReP ReP

Finally, sinces < p, and using lélder’s inequality, we have

1/o
C (Z ||aR||ip<R))

ReP

IA

19| B«

IA

1/p
1/0-1
C|pYe-tp <Z ||aR||[’p(R)> <credg,. ]

ReP

8. Wavelet Decompositions

Letgp € WS (RY) be a compactly supported function which has the following properties:

e ¢ isrefinable, i.e.,

(8.1) P =) gp@x—j).

jezd
e ¢ satisfies the Strang—Fix conditions of order
(8.2) $O0 =1,  $@rj)=0, jez’, i#0
DY¢(2rj) = 0, jezd, j#£0, v <.
e The shifts ofp are locally linearly independent, i.e.,
(8.3) vV Q € D the functions¢ (- — j),

jeAqg={jez®| meag{x|p(x — ) #0}N Q) > 0},
are linearly independent ov€).
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Define

Sn(@)=1f1f=) ag¢ suchthatifa |a #0}| <nt,

leD

where we use the usual indexing of the translates of dyadic dilatebytlyadic cubes,
i.e., ¢ (X) == (2 — j), wherel = j27K 4+ 27¥[0, 1)d.

Theorem F (DeVore, Jawerth, and Popov [11]) ¢ € WS (RY) is a compactly sup-
ported function satisfyin8.1)}(8.3),then for eachO < « < min{r, s} and f € B¢,

E(f, Zn@), = inf [f—gll, <Cn®9flg., 0<p<oco.
geXn(¢)

Theorem G (Jia [21]). Let ¢ be a compactly supported function inSWRY), s € N.
Suppose thap is refinable and its shifts are locally linearly independerithen for
O<a<sandld < p < oc:

|flge <Cr/df|,  forall feZn@),

where C is a constant depending onlygmand p when p is small

We remark that the above result was proved in [21] for finitely generated shift-invariant
spaces. The following result now follows from Theorems G, F, and A:

Theorem H. Letg € W;(Rd), s € N, be a compactly supported function satisfying
(8.1)(8.3).Alsq, let0 < p < oo and0 < a < min{r, s}. Thenfor0 < y < «/d and
0 < q < oo, we have

Ay (Lo, (Za(@hnen) = (Lps BY) g g
Thus in particular, forq =t = (y + 1/p)~%, we have

AL (Lp, {Zn(@)nen) = (Lp. BY),, ., . = BY.

dy/a,t

From Corollaries 8, 16, and Theorem H we obtain the following:

Corollary 18. Letp € WS (RY), s € N, be a compactly supported function satisfying
(8.1)48.3) (i.e.,, ¢ is a refinable function having locally linearly independent shifts
and satisfying the Strang—Fix conditions of ordér Alsg let0 < ¢ < p < o0,

B =1/c —1/p,and B < min{r/d,s/d,1/(d — 1)p}. Thenfor 0 < y < B and
0<q<oo:

A (Lp. {Znrinen) = A (Lp, (En@)nen) = (Lp, BY) 0 o= (Lp. Vi p) o
In particular, forq =t = (y + 1/p)~%, we have

A/ (Lp, {Znrdnen) =AY (Lp, {Zn(@nen) = (Lp, BY) o = (Lp, Vi ,) . =B

)y/ﬂ,r
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We now restate this corollary in somewhat more standard and easier-to-use form (we
choosex = dB andx = dy).

Corollary 18'. Letg € WS (RY), s € N, be a compactly supported function satisfying
(8.1)(8.3) (i.e, ¢ is a refinable function having locally linearly independent shifts
and satisfying the Strang—Fix conditions of ordgr Alsg let0 < o < p < oo,
1/0 = a/d+1/p,anda < min{r,s,d/(d—1)p}. Thenfor0 < A < aand0 < q < oo,

A (L. (Enrdnen) = AV Lo Ea@nen) = (Lps BY), g = (Lo Vip), -
In particular, forq = = (A/d 4+ 1/p)~%, we have
A (L, (Znrdnen) =AY (Lp Za@nen) = (Lp. Vs p), . = (Lp. BY), ., =B

In other words

o0 . 1
feB" « ;[n”dE(f, Zn)t,] =~ < 00,
oo - . 1
& Y [WE Sa@n] S < o,
n=1
> -\ r T dt
& [tUK(f,t, Lp. V) )] T <%
0
> —x/d T dt
& [t W (f, )6 p] T <%
0

The inequalityr < d/(d — 1) p is sharp and cannot be removed. The reason for this
is that the spaced.p, V; ,)i/0,- CONtain certain piecewise polynomials (though not all
of them) ifa > d/(d — 1) p, and, at the same time, for thesethe space8“ contain
no characteristic functions (see the next section for more details). We also note that this
somewhat anomalous situation does not exist in the univariate case (see also [15] for
discussions).

8.1. Remarks
Lemma19. LetreN,O0<a <r,andl/o = a/d+ 1/p. Thenfor f € B,

(8.4) Iflv, < Clflge.

Proof. For any partition R };c, € 7y using Lemma 1, Corollary 2, and (7.2) we have

uhi
> or(f.len(R).R); < CY Er(R)p=CY Y Ifl7 « =Clflg.
ieA ieA ieA v=1 !

Therefore, taking sup over all partitions:n, we obtain (8.4). ]
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The inequality (8.4) immediately implies that
K(f,t,Lp, V; ) < CK(f,t, Lp, BY),
hence,

(LP’ Ba)e,q < (LP’ Vc;,p)e,q

for0 < 6 < 1and0< g < oco. Inparticular, forO< A < @andq =t = (A/d+1/p)~3,

(Lp, Ba))»/ot,r =B" C (Lp, V(;P)A/a,r'

The proof of the following lemma is rather straightforward and will be omitted.

Lemmal. Let Q C [0, 1) be a cubeand let (X)) == pr(X)xoX) (i.e,ag is a
piecewise polynomial function ¢, 1)¢). Then

at <1, if 0 <qg < o0,

ag € By(L,) <« {arsl, if = oo.

In particular, for 0 < p < oo,

d

aeB* & a<——7—.
N d—1p

Obviously, the space/; , contains some piecewise polynomial functions (e.g.,
X0, 1/2¢ (X)). In fact, it contains all piecewise polynomial functions on dyadic ring par-
titions.

Thus, it follows from Lemmas 19 and I that, ifé = «/d+1/pande > d/(d—1)p,
then

=

Also, if « > d/(d — p, /o = o/d +1/p,d/d —-—Dp < A < «a,andr =
(A/d +1/p)~L, then

(8.5) Ai‘/d(l-p, {in((ﬁ)}neN) = BA g- (Lp’ V;,p)

r
BY C VI .

e = AL, (Snrnen)-
(This, in particular, shows that the conditian< d/(d — 1)p in Corollary 18(18) is
sharp and cannot be removed.)

Thus, on the one hand, we know that

AL, (Zn(@)Inen) S A9 (Lp, {Znr dnen),

which means that the error of approgmation from the manifald, }nen is Not worse
than the error of approximation frofE,(¢)Inen. On the other hand, the error of ap-
proximation by elements ¢&n  }nen Can be essentially better (smaller) than the error of
approximation by elements ¢E,(¢)}nen Since, in the casg = t, there exist functions
(e.g., characteristic functions of dyadic rings and their liner combinations) such that

> ~ 1 > 1
D IMUE Sa@) s =00 and ) [NYUE(E, Baog ) < oo
n=1

n=1



On Multivariate Adaptive Approximation 473

Acknowledgments. The authors are indebted to Ron DeVore for inspirational discus-
sions, which motivated this work, during their visit to the University of South Carolina.
We are also grateful to him and to Albert Cohen for their input on the first draft of this
paper, and for providing us with copies of the manuscript [7]. Supported by NSF grant
DMS 9705638.

N

10.

11.

12.

13.
14.

15.
16.

17.

18.
19.
20.
21.
22.
23.

24.

References

C. BENNETT, R. SHARPLEY (1988): Interpolation of Operators. New York: Academic Press.

J. BERGH, J. REETRE(1974):0n the space Y (0 < p < oo). Boll. Un. Mat. Ital.,4:632—648.

M. S. BRMAN, M. Z. SOLOMJAK (1967):Piecewise polynomial approximations of functions of the classes
Wg. Math. USSR-Sb2:295-317.

Yu. BRUDNYI (1974): Spline approximation and functions of bounded variatibokl. Akad. Nauk
SSSR215518-521.

Yu. A. BRUDNYI (1970):A multidimensional analog of a theorem of Whitridat. Sb.82(124)157-170.
H. G. BURCHARD, D. F. HaLE (1975): Piecewise polynomial approximation on optimal meshles
Approx. Theory,14:128-147.

A. CoHEN, R. DEVORE, P. FETRUSHEY H. XU (to appear)Nonlinear approximation and the space
BV(R?). Amer. J. Math.

R. A. DEVORE(1987):A note on adaptive approximatioApprox. Theory Appl.3:4:74-78.

R. A. DEVORE(1989):Degree of nonlinear approximatiom: Approx. Theory VI (C. K. Chui, L. L. Schu-
maker, J. D.Ward, eds.), pp. 175-201.

R. A. DEVORE, R. HowaRD, C. A. MICCHELLI (1989):Optimal nonlinear approximatiarManuscripta
Math.,63:469-478.

R. A. DEVORE, B. BWERTH, V. A. Popov (1992): Compression of wavelet decompositioAmer. J.
Math.,114737-785.

R. A. DEVORE, G. KYRIAZIS, D. LEVIATAN, V. M. TIKHOMIROV (1993): Wavelet compression and
nonlinear n-widthsAdv. in Comput. Math.1:197-214.

R. A. DEVORE, G. G. LORENTZ(1993): Constructive Approximation. Berlin: Springer-Verlag.

R. A. DEVORE, P. FETRUSHEV X. M. Y U (1992):Wavelet approximation in the spaceRY). In: Progress
in Approximatin Theory (A. A. Gonchar, E. Saff, eds.). New York: Springer-Verlag, pp. 261-283.
R. A. DEVORE, V. A. Popov (1987):Free multivariate splinesConstr. Approx.3:239-248.

R. A. DEVORE, V. A. Popov (1988):Interpolation of Besov spacefrans. Amer. Math. Soc305397—
414.

R. A. DEVORE, V. A. Popov (1988):Interpolation spaces and nonlinear approximatiom: Functions
Spaces and Approximation (M. Cwikel, J. Peetre, Y. Sagher, H. Wallin, eds.), Lecture Notes in Mathe-
matics, New York: Springer-Verlag, pp. 191-205.

R. A. DEVORE, R. C. $1ARPLEY (1993): Besov spaces on domainsR{. Trans. Amer. Math. Soc.,
335(2)843-864.

R. A. DEVORE, X. M. Yu (1991):K -functional for Besov spaced. Approx. Theory67:38-50.

Z. DTzZIAN (1996):Polynomial approximation in h(S) for p > 0. Constr. Approx.12:241-269.

R.-Q. I (1993):A Bernstein-type inequality associated with wavelet decompos@ionstr. Approx.,
9:299-318.

P. GWALD (1990):0n the degree of nonlinear spline approximation in Besov-Sobolev sgaédgsprox.
Theory,61:131-157.

A. FEKARSKII (1986): Estimates of the derivatives of rational functions ig[£1, 1]. Mat. Zametki,
39:388-394 (English translation in Math. Not&§;212—-216).

P. ETRUSHEV (1988):Direct and converse theorems for spline and rational approximation and Besov
spacesIn: Functions Spaces and Approximation (M. Cwikel, J. Peetre, Y. Sagher, H. Wallin, eds.).
Lecture Notes in Mathematics, New York: Springer-Verlag, pp. 363-377.



474

Y. K. Hu

Department of Mathematics and Computer Science
Georgia Southern University

Statesboro, GA 30360

USA

X. M. Yu

Department of Mathematics
Southwest Missouri State University
Springfield, MO 65804

USA

Y. K. Hu, K. A. Kopotun, and X. M. Yu

K. A. Kopotun

Department of Mathematics
Vanderbilt University
Nashville, TN 37240

USA



