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On Multivariate Adaptive Approximation

Y. K. Hu, K. A. Kopotun, and X. M. Yu

Abstract. Recently, A. Cohen, R. A. DeVore, P. Petrushev, and H. Xu investigated
nonlinear approximation in the spaceBV(R2). They modified the classical adaptive
algorithm to solve related extremal problems. In this paper, we further study the modified
adaptive approximation and obtain results on some extremal problems related to the
spacesVr

σ,p(R
d) of functions of “Bounded Variation” and Besov spacesBα(Rd).

1. Introduction

Nonlinear approximation has been investigated extensively in recent years. In the uni-
variate case, because of the simplicity of the real line topology, free knot spline approxi-
mation is widely used in numerical computations. But in the multivariate case, generating
good free spline approximants is a more complicated and difficult task and is still under
research. However, there is the so-called Adaptive Approximation that works well in
multidimensional spaces and is practically easy to implement. Its main disadvantage
is that it gives a slightly lower than the best approximation order. Recently, A. Cohen,
R. DeVore, P. Petrushev, and H. Xu [7] successfully introduced a splitting and merg-
ing method to modify adaptive approximation, and showed that their method produces
near-minimizers to the extremal problems related to the spaceBV(R2). In this paper, we
shall explore their method to show that this new modified adaptive approximation gen-
erates near-minimizers to some extremal problems in the spacesVr

σ,p(R
d) of functions

of “bounded variation” and Besov spacesBα(Rd).
If X0 andX1 are quasi-normed spaces continuously embedded in a Hausdorff space

X, then theK -functional for all f ∈ X0+ X1 is defined as

K ( f, t, X0, X1) := inf
f= f0+ f1

{‖ f0‖X0 + t | f1|X1

}
,

where‖·‖X0 is a (quasi)norm inX0, and| · |X1 is a (semi)norm or (semiquasi)norm inX1.
The extremal problem we are interested in is as follows. For a givenf ∈ X0+ X1, and
a parametert > 0, find a functionf1 ∈ X1 with f0 := f − f1 ∈ X0 which attains the
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infimum in the definition ofK ( f, t, X0, X1). Such a functionf1 is called a minimizer.
A function g ∈ X1 with f − g ∈ X0 is called a near minimizer if

‖ f − g‖X0 + t |g|X1 ≤ C inf
f= f0+ f1

{‖ f0‖X0 + t | f1|X1

}
.

The problem of finding a minimizer or a near minimizer is closely related to the charac-
terization ofK -functionals, interpolation spaces, and approximation spaces.

The interpolation space(X0, X1)θ,q, 0< θ < 1, 0< q ≤ ∞, consists of all functions
f ∈ X0+ X1 such that| f |(X0,X1)θ,q <∞, where

| f |(X0,X1)θ,q :=


(∫ ∞

0

[
t−θK ( f, t, X0, X1)

]q dt

t

)1/q

, 0< q <∞,
sup
t>0

t−θK ( f, t, X0, X1), q = ∞.

The approximation spaceAαq(X, {Mn}n∈N), α > 0, 0< q ≤ ∞, consists of allf ∈ X
such that

| f |Aαq (X,{Mn}n∈N) :=


( ∞∑

n=1

[
nαE( f,Mn)X

]q 1

n

)1/q

, 0< q <∞,
sup
n≥1

nαE( f,Mn)X, q = ∞,

is finite. HereE( f,Mn)X = infg∈Mn ‖ f − g‖X is the error for approximation from the
manifold Mn ⊂ X, n ∈ N. TheseMn are usually required to satisfy the assumptions:

(i) M0 = {0};
(ii) Mn ⊂ Mn+1;

(iii) aMn = Mn for anya 6= 0;
(iv) Mn + Mn ⊂ Mcn with c := c({Mn});
(v)

⋃∞
n=0 Mn is dense inX; and

(vi) any f ∈ X has a best approximation from eachMn.

The following result is due to DeVore and Popov [17], and shows that if the Jackson and
Bernstein inequalities are satisfied for the spacesX andY (Y ⊆ X), then the approxi-
mation spacesAαq(X, {Mn}n∈N) can be characterized as interpolation spaces betweenX
andY.

Theorem A. Suppose that for a pair of spaces X,Y we have

E( f,Mn)X := inf
g∈Mn

‖ f − g‖X ≤ Cn−λ| f |Y, f ∈ Y (Jackson inequality)

and

|g|Y ≤ Cnλ‖g‖X, g ∈ Mn, n ∈ N (Bernstein inequality).

Then for0< α < λ and0< q ≤ ∞:

Aαq(X, {Mn}n∈N) = (X,Y)α/λ,q .
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In this paper, we deal withX = L p andY = Vr
σ,p or Bα. After reviewing the spaceBα,

we shall introduce in this section some notation for piecewise polynomial functions on
dyadic rings. These piecewise polynomial functions are used forMn. In the next section,
we define the spacesVr

σ,p and the moduli of smoothnessWr , and discuss some of their
basic properties. In Section 3 we study the approximation on a ring, which is the key step
to obtaining a Jackson inequality. After presenting briefly the description of the modified
adaptive algorithm in Section 4, and discussing the properties of multivariate free splines
on ring partitions in Section 5, we establish the Jackson inequality and the Bernstein
inequality forVr

σ,p (in Section 6) and forBα (in Section 7). In the last section, we provide
a brief discussion of wavelet decompositions and related approximation spaces.

If 0 < α < r and 0< p,q ≤ ∞, then the Besov spaceBαq (L p, Ä), Ä ⊆ Rd, is the
set of all functionsf ∈ L p(Ä) such that

| f |Bαq (L p,Ä) :=


(∫ ∞

0

[
t−αωr ( f, t, Ä)p

]q dt

t

)1/q

, 0< q <∞,
sup
t>0

t−αωr ( f, t, Ä)p, q = ∞,

is finite. (Here,ωr is the usualr th modulus of smoothness.) The quantity| · |Bαq (L p,Ä) is
a semi-(quasi)norm forBαq (L p, Ä), and the (quasi)norm forBαq (L p, Ä) is defined by

‖ · ‖Bαq (L p,Ä) := ‖ · ‖L p(Ä) + | · |Bαq (L p,Ä).

Also, forα > 0 and 0< p ≤ ∞, we define

Bα(Ä) := Bα,p(Ä) := Bασ (Lσ ,Ä) with 1/σ = α/d + 1/p,

andBα := Bα([0, 1)d). DeVore and Popov [16] proved

Theorem B. If 0< α < β, 0< p <∞, andσ = (α/d+1/p)−1, then(L p, Bβ)α/β,σ
= Bα.

Besov spaces have the following properties:

Bαq (L p) ⊆ Bα
′

q′ (L p′) if

α > α′, p = p′,
α = α′, q < q′, p = p′,
α = α′, q = q′, p > p′.

It also follows from Theorem B thatBα ⊆ Bα
′
if α > α′.

Let Dk(Rd), k ∈ Z, denote the collection of all dyadic cubes inRd of side length 2−k,
i.e.,

Dk(Rd) := {[l12−k, (l1+ 1)2−k)× · · · × [ld2−k, (ld + 1)2−k) | l i ∈ Z, 1≤ i ≤ d
}
,

and letD(Rd) be the collection ofall dyadic cubes inRd,

D(Rd) :=
⋃
k∈Z

Dk(Rd).
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It will also be convenient to denote

Dk(Ä) := {I ∈ Dk(Rd) | I ⊆ Ä}
and

D(Ä) :=
⋃
k∈Z

Dk(Ä) =
{
I ∈ D(Rd) | I ⊆ Ä}.

We will say thatR= I \J is adyadic ringif I , J ∈ D(Rd) (with J possibly empty) and
J ( I . The set of all dyadic rings will be denoted by

D(Rd) := {R= I \J | I , J ∈ D(Rd), andJ ( I
}
,

and

D(Ä) := {R ∈ D(Rd) | R⊆ Ä}.
Given a dyadic ringR= I \J we denoteR¢ := I andR¤ := J. This notation turns out
to be rather convenient later in the paper. Also, we note that a dyadic ringR is a cube if
and only if R= R¢, and will say that dyadic cubes aredegeneratedyadic rings.

It will also be convenient to denote the class of all (finite) partitions ofÄ ∈ D(Rd)

into dyadic rings byπr (Ä), i.e.,

πr (Ä) :=
{
{Ri }i∈3 | |3| <∞, Ri ∈ D(Ä), Ri ∩ Rj = ∅ if i 6= j ,

⋃
i∈3

Ri = Ä
}
.

Also, let5r−1 denote the set of all algebraic polynomials of total degree< r , and let
6n,r (Ä) be the set of all piecewise polynomial functionsSof order≤ r on partitions in
πr (Ä) consisting of not more thann dyadic rings, i.e.,

6n,r (Ä) :=
{

S
∣∣S(x) = ν∑

i=1

pi (x)χRi (x), {Ri }νi=1 ∈ πr (Ä), ν ≤ n, pi ∈ 5r−1

}
.(1.1)

In all of the above, ifÄ is equal to [0, 1)d then it will be omitted. For example,D :=
D([0, 1)d), πr := πr ([0, 1)d),6n,r := 6n,r ([0, 1)d), etc.

2. Spaces of Functions of “Bounded Variation”

Given a cubeI , let len(I ) denote its sidelength. For example, ifI ∈ Dk, then len(I ) =
2−k. Then, for any cubeI , vol(I ) = len(I )d, where, as usual, vol(Ä) denotes the
measure ofÄ. If R is a dyadic ring (R ∈ D), then we define len(R) := len(R¢), and
hence vol(R) ∼ vol(R¢) = len(R¢)d. In fact, vol(R¢) ≥ vol(R) ≥ (1−2−d) vol(R¢).

For f ∈ L p([0, 1)d), 0 < σ < p, andr ∈ N, let Vr
σ,p denote the set of functions

f ∈ L p([0, 1)d), for which the “variation over rings”

| f |Vr
σ,p

:= sup
{Ri }i∈3∈πr

(∑
i∈3

ωr ( f, len(Ri ), Ri )
σ
p

)1/σ
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is finite. We note that, ifσ ≥ p, thenVr
σ,p = L p. This is the reason for the restriction

σ < p.
Also, for f ∈ L p([0, 1)d), 0 < σ < p, β := 1/σ − 1/p, andr ∈ N, we define a

modulus

Wr ( f, t)σ,p := sup
0<h≤t

sup
{Ri }ni=1∈πh

r

hβ
(

n∑
i=1

ωr ( f, len(Ri ), Ri )
σ
p

)1/σ

,

where the second sup is taken over all partitions of [0, 1)d consisting “of about 1/h
rings”:

πh
r := {{Ri }ni=1 ∈ πr | n ≤ [1/h] + 1

}
.

This modulus is a generalization of the univariate modulusÄ( f, t)σ,p of R. A. DeVore and
X. M. Yu [19]. It is also a modification and generalization of the univariate characteristic
κs,p(n, f ) of Pekarskii [23].

Let Ef (R)p denote the rate ofL p-approximation of a functionf defined in a region
R (which can be a cube, a ring, a rectangular solid inRd, etc.) by polynomials of total
degree< r , i.e., Ef (R)p := E( f,5r−1)L p(R) = infP∈5r−1 ‖ f − P‖L p(R).

Remark. Because of the equivalence (see Lemma 1)

Ef (R)p ∼ ωr ( f, len(R), R)p

for any dyadic ringR, the moduliωr in the above definitions can be replaced byEf (R)p.
For example,

Wr ( f, t)σ,p ∼ sup
0<h≤t

sup
{Ri }ni=1∈πh

r

hβ
(

n∑
i=1

Ef (Ri )
σ
p

)1/σ

.

We now mention some of the important properties of the modulusWr ( f, t)σ,p which
are used later in this paper. First of all, it immediately follows from the definition that
Wr ( f, t)σ,p is a nondecreasing function oft such that

Wr ( f + g, t)σ,p ≤ C
(
Wr ( f, t)σ,p +Wr (g, t)σ,p

)
and

Wr ( f,Mt)σ,p ≤ M1/σ−1/pWr ( f, t)σ,p, M ≥ 1.

Also,

Wr ( f, t)σ,p ≤ C‖ f ‖L p for all f ∈ L p([0, 1)d).(2.1)

Indeed, using H¨older’s inequality, we have

Wr ( f, t)σ,p ≤ C sup
0<h≤t

sup
{Ri }ni=1∈πh

r

hβ
(

n∑
i=1

‖ f ‖σL p(Ri )

)1/σ

≤ C sup
0<h≤t

sup
{Ri }ni=1∈πh

r

hβn1/σ−1/p

(
n∑

i=1

‖ f ‖p
L p(Ri )

)1/p

≤ C‖ f ‖L p .
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Also, for anyg ∈ Vr
σ,p:

Wr (g, t)σ,p ≤ tβ |g|Vr
σ,p
,(2.2)

since

Wr (g, t)σ,p = sup
0<h≤t

sup
{Ri }ni=1∈πh

r

hβ
(

n∑
i=1

ωr (g, len(Ri ), Ri )
σ
p

)1/σ

≤ tβ sup
{Ri }ni=1∈πr

(
n∑

i=1

ωr (g, len(Ri ), Ri )
σ
p

)1/σ

= tβ |g|Vr
σ,p
.

3. Approximation on a Ring

We say that a rectangular solid is regular if the ratio of lengths of any two of its sides is
between1

4 and 4. LetR be a dyadic ring. We shall show thatR can be represented as a
union of regular dyadic rectangular solids,R=⋃µ

i=1 ri , µ = µ(R), such that:

1. 1≤ µ ≤ 2d.
2. One of the children ofR¢ (see Section 4 for the definition of a child) is contained

in all thoseri which satisfy vol(ri ) ≥ 1
2 vol(R¢). We denote this child byr0 and

call it “the root of the union.” All thoseri containing it are called branches.
3. Any ri (i = 1, . . . , µ) in the union is either a branch or is intersecting a branchr j

with vol(ri ∩ r j ) ≥ 1
2 vol(ri ).

Lemma 1. Let R be a dyadic ring inRd. Then there exists a representation of R as
a union of regular dyadic rectangular solids, R = ⋃µ

i=1 ri , such that the above three
conditions are satisfied. Moreover, for all 0< p ≤ ∞:

Ef (R)p ≤ C
µ∑

i=1

ωr

(
f, d
√

vol(ri ), ri )p ≤ Cωr ( f, d
√

vol(R), R
)

p
,

where C is a constant which depends only on r, d, and p and is independent of R.

Proof. Without loss of generality, we may assume thatR¢ = [0, 1)d and thatR¤ =
[a1,a1 + 2−k)× [a2,a2 + 2−k)× · · · × [ad,ad + 2−k) with ai ≥ 0 andai + 2−k ≤ 1

2,
i = 1,2, . . . ,d. By rotating the coordinate axes if necessary, we may also assume that
0 ≤ a1 ≤ a2 ≤ · · · ≤ ad. Notice that for eachi = 1,2, . . . ,d, we have eitherai = 0 or
ai ≥ 2−k.

Defineri := [0,1)×· · ·×[0,1)×[ai+2−k,1)×[0,1)×· · ·×[0,1) for i = 1,2, . . . ,d,
andrd+i := [0, ci,1)×· · ·×[0, ci,i−1)×[0,ai )×[ai+1,ai+1+ci,i+1)×· · ·×[ad,ad+ci,d)

for i = 1,2, . . . ,d, where

ci, j :=
{

max
(
2(aj + 2−k),ai

)
, j < i,

max(2−k+1,ai ), j > i .
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Note that ifai = 0, thenrd+ν = ∅ for all ν = 1, . . . , i . In particular, ifk = 1, then
rd+i = ∅ for all i = 1, . . . ,d. Keeping that in mind, everywhere below we assume that
k ≥ 2 (the casek = 1 can be treated similarly and, in fact, is much simpler).

We are going to prove that the union
⋃2d

i=1 ri is a desired expression ofR. It is apparent
that we have the first two conditions satisfied withr0 = [ 1

2,1)× · · · × [ 1
2,1) as its root

andri , i = 1,2, . . . ,d, as its branches. From the definitions ofri andrd+i , we also see
that all of them are regular dyadic rectangular solids.

We now show thatR = ⋃2d
i=1 ri . Let x = (x1, x2, . . . , xd) ∈ R. Then there exists at

least onei such that eitherai +2−k ≤ xi < 1, or 0≤ xi < ai and 0≤ xj < aj +2−k for
all j 6= i . In the former case, we havex ∈ ri . For the latter case, leti0 := max{i | 0 ≤
xi < ai and 0≤ xj < aj +2−k for all j 6= i }. By the definition ofrd+i (i = 1,2, . . . ,d),
we havex ∈ rd+i0 because 0≤ xi0 < ai0, aj ≤ xj < aj + 2−k for all j = i0 + 1, . . . ,d
and ci0, j ≥ aj + 2−k for all j < i0. It is easy to see, on the other hand, that allri

(i = 1,2, . . . ,2d) are subsets ofR (note that allci, j for j < i do not exceed 1 by the
assumptionai + 2−k ≤ 1

2 and allci, j for j > i do not exceed12). Therefore, we have

R=⋃2d
i=1 ri .

It remains to show that for each nonempty rectangular solidrd+i , i = 1, . . . ,d, there
exists a branchr j with vol(rd+i ∩ r j ) ≥ 1

2 vol(rd+i ). (It is easy to see that the solidrd+i ,

i = 1, . . . ,d is not a branch since vol(rd+i ) = ai
∏i−1
ν=1 ci,ν

∏d
ν=i+1 ci,ν ≤ ai <

1
2.)

Assume thatrd+i 6= ∅. From the definitions ofr j andrd+i , we have vol(rd+i ∩ r j ) ≥
1
2 vol(rd+i ) if j 6= i . Indeed, we haverd+i ∩ r j = [0, ci,1)× · · · × [0, ci,i−1)× [0,ai )×
[ai+1,ai+1 + ci,i+1)× · · · × [aj + 2−k,aj + ci, j )× · · · × [ad,ad + ci,d), if j > i ; and
rd+i ∩ r j = [0, ci,1)× · · · × [aj + 2−k, ci, j )× · · · × [0, ci,i−1)× [0,ai )× [ai+1,ai+1+
ci,i+1)×· · ·×[ad,ad+ci,d), if j < i . Sinceci, j ≥ 2−k+1 for j > i andci, j ≥ 2(aj+2−k)

for j < i , so vol(rd+i ∩ r j ) ≥ 1
2 vol(rd+i ) and then the third condition is satisfied.

Now let us estimateEf (R)p using the above decomposition ofR into ri . The case
p = ∞ is trivial, and so we assume that 0< p < ∞. Let Pri ∈ 5r−1 denote a
polynomial of bestL p-approximation tof on ri , i.e., Ef (ri )p = ‖ f − Pri ‖L p(ri ).

Since we have

Ef (R)
p
p ≤ ‖ f − Pr0‖p

L p(R)

≤
µ∑

i=1

‖ f − Pr0‖p
L p(ri )

,

if we can show for eachi (i = 1,2, . . . , µ) that

‖ f − Pr0‖L p(ri ) ≤ C
µ∑

j=1

Ef (r j )p,

then

Ef (R)
p
p ≤ C

µ∑
i=1

Ef (ri )
p
p

≤ C
µ∑

i=1

ωr ( f, vol(ri )
1/d, ri )

p
p.
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The inequalityEf (ri )p ≤ Cωr ( f, vol(ri )
1/d, ri )p (used in the last estimate) can easily

be obtained from the multidimensional Whitney theorem for a unit cube using the affine
transformationT : ri → [0, 1)d and taking into account thatri is a regular solid.

Now, if ri is a branch, then

‖ f − Pr0‖L p(ri ) ≤ C
[‖Pr0 − Pri ‖L p(ri ) + ‖ f − Pri ‖L p(ri )

]
≤ C

[‖Pr0 − Pri ‖L p(r0) + Ef (ri )p
]

≤ C
[‖ f − Pr0‖L p(r0) + ‖ f − Pri ‖L p(r0) + Ef (ri )p

]
≤ C

[
Ef (r0)p + Ef (ri )p

] ≤ C Ef (ri )p,

becauser0 ⊂ ri and vol(r0) = 2−d ≥ 2−d vol(ri ).
If ri is not a branch, by what is proved, there exists a branchr j such that vol(ri ∩ r j ) ≥

1
2 vol(ri ). Then, we have

‖ f − Pr0‖L p(ri ) ≤ C
[‖Pr0 − Pri ‖L p(ri ) + ‖ f − Pri ‖L p(ri )

]
≤ C

[‖Pr0 − Pri ‖L p(ri∩r j ) + Ef (ri )p
]

≤ C
[‖ f − Pr0‖L p(ri∩r j ) + ‖ f − Pri ‖L p(ri∩r j ) + Ef (ri )p

]
≤ C

[‖ f − Pr0‖L p(r j ) + Ef (ri )p
] ≤ C

[
Ef (r j )p + Ef (ri )p

]
.

The proof is now completed.

To emphasize thatri andµ correspond to a particular ringR we will use the notation
r R

i andµR. Also, if R is a cube (degenerate ring) we denoteµR := 1 andr R
1 := R.

Corollary 2. Let R be a dyadic ring. Then, for 0< α < r and0< p <∞, we have

Ef (R)p ≤ C
µR∑
i=1

Ef (r
R
i )p ≤ C

µR∑
i=1

| f |Bα(r R
i )
≤ C| f |Bα(R).

Corollary 2 immediately follows from Lemma 1 and the following Lemma C:

Lemma C (DeVore and Popov [16], see also [9]).Let1/σ = α/d+1/p, then Bαp (Lσ )
↪→ L p, that is, for all f ∈ Bαp (Lσ ), ‖ f ‖L p ≤ C‖ f ‖Bαp (Lσ ). In particular, ‖ f ‖L p ≤
C‖ f ‖Bαq (Lσ ) for all 0< q ≤ p. Moreover, for each I∈ D(Rd) and f ∈ Bα(I ):

Ef (I )p ≤ C| f |Bα(I ), 0< α < r.

4. Description of Algorithm

We will use the algorithm developed by Cohen, DeVore, Petrushev, and Xu [7] to con-
struct piecewise polynomial functions satisfying Jackson inequalities in the spacesVr

σ,p
and Bα (see Sections 6 and 7). For completeness, we describe the algorithm in this
section. First, we recall some definitions. LetI be a dyadic cube (I ∈ D). Then:

• If I ∈ Dk, thenJ is the parent ofI if and only if J ∈ Dk−1 and I ⊆ J.
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• J is a child of I if and only if I is the parent ofJ.
• I andJ are brothers if and only if they have the same parent.
• J is a descendent ofI if and only if J ∈ D andJ ( I .
• J is an ancestor ofI if and only if I is a descendent ofJ.

Let8 denote a nonnegative set function defined on the algebraA that consists of all
subsets of [0, 1)d formed by finite unions and intersections of rings fromD and their
complements. We assume that8 has the following properties:

(i) 8 is subadditive:8(R1) + 8(R2) ≤ 8(R1 ∪ R2) for R1, R2 ∈ A such that
R1 ∩ R2 = ∅;

(ii) 8(R)→ 0 uniformly as vol(R)→ 0.

The set function8(R) usually depends on the error of approximation off on R. For
instance, we can choose8(R) to beEf (R)

p
p.

Given a parameterε > 0, we defineϒε to be the set of cubesI ∈ D such that8(I ) > ε,
and we callϒε a tree which means that wheneverI ∈ ϒε andI 6= [0, 1)d, then its parent
also belongs toϒε. Note thatϒε has finite cardinality because of the second condition
on8. Inϒε, we have three different types of cubes:

(i) The setFε of final cubesconsists of the elementsI ∈ ϒε with no child inϒε.
(ii) The setNε of branching cubesconsists of the elementsI ∈ ϒε with more than

one child inϒε.
(iii) The setCε of chaining cubesconsists of the elementsI ∈ ϒε with exactly one

child inϒε.

Moreover, the setCε can be divided inton maximal chains Ck such thatCε =
⋃n

k=1 Ck

with Ck = {I0, . . . , Im−1}, m = m(k), where each cubeIi+1 is a child of Ii , i =
0, . . . ,m− 2, I0 is not a child of a chaining cube, andIm−1 is not a parent of a chaining
cube. For a setS, let |S| denote its cardinality. We have (see [7])

|Nε| ≤ |Fε| − 1 and n ≤ 2|Fε| − 1.

Now, let us describe how to construct a partitionPε of [0, 1)d into ringsRwith8(R) ≤ ε.
In fact, we havePε = P1

ε ∪ P2
ε ∪ P3

ε , whereP1
ε is the collection of all childrenJ of

the final cubesI ∈ Fε andP2
ε is the collection of the childrenJ of the branching

cubesI ∈ Nε such thatJ /∈ ϒε. The collectionP3
ε consists of good rings (or cubes)

generated from the maximal chainsCk = {I0, . . . , Im−1}, m = m(k), k = 1, . . . ,n, by
the following recursion algorithm. Note that the last cubeIm−1 of Ck always contains
exactly one childIm fromϒε which is in eitherFε orNε. So, for eachCk, we first define
0= j0 < j1 < · · · < jp = m in such a way that, assumingji < m is chosen, we choose
ji+1 as follows:

(i) if 8(I ji \Im) ≤ ε, then ji+1 := m and the algorithm terminates;
(ii) if 8(I ji \I ji+1) > ε, then ji+1 := ji + 1; and

(iii) otherwise, ji+1 is chosen such that8(I ji \I ji+1) ≤ ε and8(I ji \I ji+1+1) > ε.

Then the setP3
ε consists of, from each maximal chainCk:

(i) all rings I ji \I ji+1 such that8(I ji \I ji+1) ≤ ε;
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(ii) the children ofI ji that differ from I ji+1 for all i such that8(I ji \I ji+1) > ε (which
is possible only in the caseji+1 := ji + 1).

It is shown in [7] that thisPε is a partition of [0, 1)d satisfying the following theorem.

Theorem D. Letε > 0 be such thatϒε 6= ∅. Then, there exist a partitionPε of [0, 1)d

into disjoint rings such that8(K ) ≤ ε if K ∈ Pε, and a set̃Pε of pairwise disjoint rings
such that8(K ) > ε if K ∈ P̃ε, and |Pε| ≤ 8|P̃ε|. (In particular, we can choosePε to
be the partition produced by the algorithm above.)

This theorem not only gives a partition of [0, 1)d into disjoint good rings, but it also
shows that the number of good rings in the partition is controlled by the number of certain
bad rings that are pairwise disjoint. The latter is more important to the estimation of the
approximation degree.

5. Multivariate Free Splines on Ring Partitions

It is easy to see that6n,r are nonlinear manifolds, i.e., the sum of two functions from6n,r

does not have to lie in6n,r . However, as shown in the two lemmas below, the sum belongs
to6Cn,r . This will be shown viaSn,r (I ), the set of allSsuch thatS=∑n

i=1 piχIi , where
Ii ⊆ I are dyadic cubes (which are not necessarily disjoint) andpi ∈ 5r−1.

Lemma 3. If n ∈ N and I ∈ D(Rd), then Sn,r (I ) ⊆ 6N,r (I ) for some N≤ (n −
1)2d + n + 1 < n(2d + 1). That is, if S(x) = ∑n

i=1 pi (x)χIi (x), where{Ii }ni=1 is a
collection of n(distinct but not necessarily disjoint) dyadic cubes contained in I, and
pi ∈ 5r−1, then it can be represented as

S(x) =
N∑

j=1

qj (x)χRj (x), {Rj }Nj=1 ∈ πr (I ), qj ∈ 5r−1.(5.1)

Proof. We use induction onn. It is trivial to verify the result forn = 1, that is,
S1,r (I ) ⊆ 62,r (I ). Now we suppose the result is valid for allI ∈ D(Rd) and alln,
1≤ n < n.

Let S(x) = ∑n
i=1 pi (x)χIi (x), where{I1, . . . , In} is a collection of distinct cubes in

I , and let̃I be the smallest dyadic cube inD(I ) that contains
⋃

i I i . The following two
cases are possible:

Case1: Ĩ coincides with one ofIi , say, Ĩ = In.
Then the cubesI1, . . . , In−1 are contained iñI and

S(x)− pn(x) =
n−1∑
i=1

pi (x)χIi (x) for x ∈ Ĩ .

Thus, we can use the induction hypothesis forSn−1,r ( Ĩ ) to conclude that, forx ∈ Ĩ ,

S(x)− pn(x) =
Ñ∑

j=1

qj (x)χRj (x), {Rj }Ñj=1 ∈ πr ( Ĩ ),
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whereÑ ≤ (n− 2)2d + n. Now, if Ĩ ( I , then

S(x) = 0 · χI \̃I (x)+
Ñ∑

j=1

(
qj (x)+ pn(x)

)
χRj (x)

for anyx ∈ I , and{Rj }Ñj=1 ∪ {I \ Ĩ } ∈ πr (I ). If Ĩ = I , then

S(x) =
Ñ∑

j=1

(qj (x)+ pn(x))χRj (x)

for anyx ∈ I , and{Rj }Ñj=1 ∈ πr (I ). In both of these casesN ≤ Ñ + 1 ≤ (n− 2)2d +
n+ 1≤ (n− 1)2d + n+ 1.

Case2: Ĩ ) Ii , i = 1, . . . ,n.
Then each of the cubesIi , i = 1, . . . ,n, is contained in one of the children of̃I . Let

C1, . . . ,Cm, 2≤ m≤ 2d, be the children of̃I containing at least one ofIi , i = 1, . . . ,n
(m cannot be 1 since, otherwise,̃I would not be the smallest cube containing

⋃
i I i ),

and letCm+1, . . . ,C2d be the children of̃I having empty intersection with
⋃

i I i . For
eachk = 1, . . . ,m, denote the number of cubesIi , 1 ≤ i ≤ n, contained inCk by
nk. Then

∑m
k=1 nk = n, and, sincem ≥ 2 andnk ≥ 1, we conclude thatnk ≤ n − 1

for all k = 1, . . . ,m. Thus, we can use the induction hypothesis for each ofSnk,r (Ck),
k = 1, . . . ,m, and conclude that

n∑
j=1

pj (x)χI j (x) =
m∑

k=1

lk∑
j=1

qk, j (x)χRk, j (x)

for anyx ∈ I , wherelk ≤ (nk − 1)2d + nk + 1 and{Rk, j }lkj=1 ∈ πr (Ck). Now,

S̃(x) =
2d−m∑
k=1

0 · χCm+k(x)+
m∑

k=1

lk∑
j=1

qk, j (x)χRk, j (x)

for anyx ∈ Ĩ (actually anyx ∈ I ). Note that
⋃m

k=1{Rk, j }lkj=1 ∪
⋃2d−m

k=1 {Cm+k} ∈ πr ( Ĩ )
and, thus,

S(x) =
{

S̃(x), if Ĩ = I ,

S̃(x)+ 0 · χI \̃I (x), if Ĩ ( I .

In the casẽI ( I ,
⋃m

k=1{Rk, j }lkj=1 ∪
⋃2d−m

k=1 {Cm+k} ∪ {I \ Ĩ } ∈ πr (I ). Thus,

N ≤ 2d −m+ 1+
m∑

k=1

lk

≤ 2d −m+ 1+
m∑

k=1

((nk − 1)2d + nk + 1)

= 2d −m+ 1+ (n−m)2d + n+m

= (n−m+ 1)2d + n+ 1≤ (n− 1)2d + n+ 1,

which completes the proof of the lemma.
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Lemma 4. If m,n, r ∈ N,and I ∈ D(Rd), then6m,r (I )+6n,r (I ) ⊆ 6(2d+1)(m+n),r (I ).

Proof. It can be readily verified that6n,r ⊆ Sn,r and Sn,r + Sm,r ⊆ Sn+m,r . These
inclusions and Lemma 3 immediately imply that

6n,r +6m,r ⊆ Sn,r + Sm,r ⊆ Sn+m,r ⊆ 6(2d+1)(n+m),r .

The following lemma shows that any functionf ∈ L p(I ), I ∈ D, has a best approxi-
mant from the manifold6n,r . Its proof is the same as that of Lemma 6.1 of [7].

Lemma E. For each f ∈ L p(I ) and n∈ N there exists g∈ 6n,r (I ) such that‖ f −
g‖L p(I ) = E( f, 6n,r )L p .

6. Adaptive Approximation in Vr
σ,p

Theorem 5. Let 0 < σ < p < ∞, β := 1/σ − 1/p, and r ∈ N. Then for f ∈
L p([0, 1)d) and t> 0 we have

K ( f, tβ, L p,Vr
σ,p) = inf

g∈Vr
σ,p

{‖ f − g‖L p + tβ |g|Vr
σ,p

} ∼Wr ( f, t)σ,p.

In the cased = 1, a version of this theorem was proved in [19]. Note that, ifd = 1, then
a partition of [0,1] into rings is just a regular partition into intervals. Theorem 5 is an
immediate corollary of the following result:

Theorem 6. Let0< σ < p <∞, β := 1/σ − 1/p, and r ∈ N. Then:

(i) for any f ∈ L p([0, 1)d) and n∈ N there exists g∈ 6n,r such that

‖ f − g‖L p ≤ CWr ( f,1/n)σ,p (Jackson inequality);(6.1)

(ii) for any g∈ 6n,r we have

|g|Vr
σ,p
≤ CnβWr (g,1/n)σ,p (Bernstein inequality).(6.2)

Theorem 6 will be proved in Sections 6.1 and 6.2.

Proof of Theorem 5. First of all, for anyg ∈ Vr
σ,p, using (2.1) and (2.2) we have

Wr ( f, t)σ,p ≤ C
(
Wr ( f − g, t)σ,p +Wr (g, t)σ,p

)
≤ C

(‖ f − g‖L p + tβ |g|Vr
σ,p

)
.

Hence, taking infimum over allg ∈ Vr
σ,p, we obtain

Wr ( f, t)σ,p ≤ C K( f, tβ, L p,Vr
σ,p).
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Now, suppose that Theorem 6 is proved. Lett > 0 and choosen := [1/t ] + 1. Then
Theorem 6 and inequality (2.1) imply that there existsg ∈ 6n,r such that

tβ |g|Vr
σ,p
≤ C(tn)βWr (g,1/n)σ,p
≤ CWr (g,1/n)σ,p
≤ C

(
Wr (g− f,1/n)σ,p +Wr ( f,1/n)σ,p

)
≤ C

(‖g− f ‖L p +Wr ( f,1/n)σ,p
)

≤ CWr ( f,1/n)σ,p,

and, therefore,

K ( f, tβ, L p,Vr
σ,p) ≤ ‖ f − g‖L p + tβ |g|Vr

σ,p

≤ CWr ( f,1/n)σ,p ≤ CWr ( f, t)σ,p.

Corollary 7. Let0< σ < p <∞, β := 1/σ − 1/p, and n, r ∈ N. Then:

(i) E( f, 6n,r )L p ≤ Cn−β | f |Vr
σ,p

for any f ∈ Vr
σ,p; and

(ii) |g|Vr
σ,p
≤ Cnβ‖g‖L p for any g∈ 6n,r .

Proof. The statement (i) immediately follows from (6.1) and (2.2), and (ii) is a conse-
quence of (6.2) and (2.1).

The following is a consequence of the above corollary and Theorems A and 5.

Corollary 8. Let 0 < σ < p < ∞, β := 1/σ − 1/p, r ∈ N. Then, for 0 < α < β

and0< q ≤ ∞,

Aαq(L p, {6n,r }n∈N) =
(
L p,Vr

σ,p

)
α/β,q

.(6.3)

Corollary 9. Let 0 < σ < p < ∞ and r ∈ N. Then, for 0 < α < 1/σ − 1/p and
0< q <∞, we have

Aαq(L p, {6n,r }n∈N) =
{

f ∈ L p([0, 1)d)

∣∣∣∣ ∫ ∞
0

[
t−αWr ( f, t)σ,p

]q dt

t
<∞

}
.

Corollary 10 (q = ∞). Let0< σ < p <∞and r ∈ N.Then, for 0< α < 1/σ−1/p:

E( f, 6n,r )L p = O(n−α) ⇐⇒ Wr ( f, t)σ,p = O(tα).

The following corollary shows that there existsg ∈ 6n,r (in fact, the piecewise
polynomial functiong that we construct in Section 6.1 will do), which is a near-minimizer
for the K -functionalK ( f,n−β, L p,Vr

σ,p).

Corollary 11. Let 0 < σ < p < ∞, β := 1/σ − 1/p, and r ∈ N. Then for f ∈
L p([0, 1)d) and n∈ N there exists g∈ 6n,r such that

‖ f − g‖L p + n−β |g|Vr
σ,p
≤ C K( f,n−β, L p,Vr

σ,p).
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Proof. Using Theorem 5 witht = 1/n, Theorem 6, and the properties ofWr we
conclude that there existsg ∈ 6n,r such that

‖ f − g‖L p + n−β |g|Vr
σ,p
≤ ‖ f − g‖L p + CWr (g,1/n)σ,p
≤ ‖ f − g‖L p + CWr (g− f,1/n)σ,p + CWr ( f,1/n)σ,p
≤ C‖ f − g‖L p + CWr ( f,1/n)σ,p

≤ CWr ( f,1/n)σ,p ≤ C K( f,n−β, L p,Vr
σ,p).

6.1. Jackson Inequality for Vrσ,p

First of all, we show that any set of (pairwise) disjoint rings and cubes can be comple-
mented to a partition of [0, 1)d in πr .

Lemma 12. LetRbe a collection of pairwise disjoint dyadic rings and cubes contained
in a dyadic cube I, and let |R| denote its cardinality. Then there exists a partition
TR(I ) of I into dyadic rings(TR(I ) ∈ πr (I )) such thatR ⊆ TR(I ) and |TR(I )| ≤
(2d + 2)|R| − 2d + 1 (and, therefore, |TR(I )| ≤ 2d+1|R|).

Proof. The idea of the proof of this lemma is similar to that of Lemma 3. Clearly the
statement is true for a cubeI ∈ D if and only if it is true for I = [0, 1)d. We proceed
by induction on|R|. If |R| = 1, thenR = {K }. Now we chooseTR := TR([0, 1)d) ={
[0, 1)d\K , K

}
(if K is a cube, i.e.,K = K¢), andTR =

{
[0, 1)d\K¢, K , K¤

}
(if K

is a nondegenerate ring,K = K¢\K¤). Clearly,|TR| ≤ 3.
Now suppose that the lemma is proved for all collectionsR such that|R| ≤ N, and

considerR such that|R| = N + 1, N ≥ 1, andI = [0, 1)d. For a setÄ ⊆ [0, 1)d

denoteR(Ä) = {K ∈ R | int(K ) ∩ int(Ä) 6= ∅}. Let Q be the smallest dyadic cube in
D(I ) that contains

⋃
R∈R R. We have the following two possible cases similar to those

in Lemma 3.

Case1: Q coincides withR¢ for someR ∈ R.
SinceR(R¤) = R\{R} containsN cubes and rings fromR we can use the induction

hypothesis to conclude that there exists a partitionTR(R¤)(R¤) of R¤ such that

|TR(R¤)(R¤)| ≤ (2d + 2)|R(R¤)| − 2d + 1≤ (2d + 2)N − 2d + 1.

Now, TR := TR(R¤)(R¤) ∪ {R} ∪ {[0, 1)d\R¢} is a desired partition of [0, 1)d, and

|TR| = 2+ |TR(R¤)(R¤)| ≤ (2d + 2)(N + 1)− 2d + 1.

Case2: Q ) R¢, ∀ R ∈ R.
By the assumption ofQ, at least two of its 2d children Iν , ν = 1,2, . . . ,2d, contain

members ofR in this case, therefore|R(Iν)| ≤ N for any 1≤ ν ≤ 2d, and we can use
the induction hypothesis to construct partitionsTR(Iν )(Iν) of Iν as follows:

• if R(Iν) 6= ∅, then letTR(Iν )(Iν) be a partition ofIν containingR(Iν) and such
that |TR(Iν )(Iν)| ≤ (2d + 2)|R(Iν)| − 2d + 1 (its existence is guaranteed by our
induction hypothesis); and



On Multivariate Adaptive Approximation 463

• if R(Iν) = ∅, then we chooseTR(Iν )(Iν) := {Iν}.
Now,

TR =
{
[0, 1)d\Q} ∪ 2d⋃

ν=1

TR(Iν )(Iν)

is a partition of [0, 1)d containingR. Taking into account that∑
Iν :R(Iν )6=∅

|R(Iν)| = |R|,

we have

|TR| = 1+
2d∑
ν=1

|TR(Iν )(Iν)|

= 1+ |{Iν | R(Iν) = ∅}| +
∑

Iν :R(Iν )6=∅
|TR(Iν )(Iν)|

≤ 1+ |{Iν | R(Iν) = ∅}| +
∑

Iν :R(Iν )6=∅

(
(2d + 2)|R(Iν)| − 2d + 1

)
≤ 1+ |{Iν | R(Iν) = ∅}| − (2d − 1) |{Iν | R(Iν) 6= ∅}| + (2d + 2)|R|
≤ (2d + 2)|R| − 2d + 1,

since|{Iν | R(Iν) 6= ∅}| ≥ 2 and|{Iν | R(Iν) = ∅}| + |{Iν | R(Iν) 6= ∅}| = 2d.

Proof of (6.1). Let8(R) = Ef (R)
p
p, ε = n−1Wr ( f,1/n)p

σ,p (without loss of gener-
ality we can assume thatWr ( f,1/n)σ,p 6= 0, sinceWr ( f, t)σ,p = 0 only if f ∈ 5r−1),
and letPε be a partition produced by the algorithm described in Section 4. We use The-
orem D to show that|Pε| ≤ Cn. Suppose that|Pε| ≥ n (otherwise, we are done). Since
the set̃Pε (see Theorem D) consists of pairwise disjoint rings and cubes contained in
[0, 1)d, we can use Lemma 12 to enlargẽPε to TP̃ε , a partition of [0, 1)d into dyadic
rings such that

|P̃ε| ≤ |TP̃ε | ≤ 2d+1|P̃ε|.
If we denote|P̃ε| = N and |TP̃ε | = Ñ, then N ≤ Ñ ≤ 2d+1N. Now, note that the
inequalities|Pε| ≥ n (our assumption above) and|Pε| ≤ 8N (Theorem D) imply that
Ñ ≥ N ≥ n/8. Recalling thatEf (Q)

p
p > ε for Q ∈ P̃ε, we have

N = |P̃ε| ≤ ε−σ/p
∑
Q∈P̃ε

Ef (Q)
σ
p ≤ ε−σ/p

∑
Q∈T

P̃ε

Ef (Q)
σ
p

≤ Cε−σ/pNβσ sup
{Qi }̃Ni=1∈πr

Ñ−βσ
Ñ∑

i=1

Ef (Qi )
σ
p

≤ Cε−σ/pNβσ sup
0<h≤1/Ñ

sup
{Qi }ni=1∈πh

r

hβσ
n∑

i=1

Ef (Qi )
σ
p

≤ Cε−σ/pNβσWr ( f,1/Ñ)σσ,p ≤ Cε−σ/pNβσWr ( f,1/n)σσ,p ≤ Cnσ/pNβσ ,

which impliesN ≤ Cn, sinceβ = 1/σ − 1/p.
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Defineg by

g(x) := PIi (x) for x ∈ Ii ,

whereIi ∈ Pε, andPIi are bestL p approximants tof on Ii from polynomials of degree
< r . Theng ∈ 6Cn,r and

‖ f − g‖p
L p
=

∑
Ii∈Pε
‖ f − PIi ‖p

L p(Ii )
≤ ε|Pε|

≤ Cnε ≤ CWr ( f,1/n)p
σ,p,

which implies (6.1).

6.2. Bernstein Inequality for Vrσ,p

Let g ∈ 6n,r be a piecewise polynomial function of order≤ r defined on a partition
Pg = {Ri }ni=1 ∈ πr , i.e., for eachRi ∈ Pg, g|Ri ∈ 5r−1. In the following lemma we
show that, for any finite ring partitionP = {Qi }i∈3 ∈ πr of [0, 1)d, if

3g := {i ∈ 3 | Eg(Qi )p 6= 0
}
,

then|3g| ≤ 2n. More precisely, we prove

Lemma 13. LetP ∈ πr be given. For any Q∈ P with Eg(Q)p 6= 0, there exists an
R ∈ Pg that satisfies one of the two conditions below:

(i) Q¢ ) R¢ and Q∩ R 6= ∅; and
(ii) R¢ ⊇ Q¢ ) R¤ 6= ∅ and Q¤ 6⊇ R¤.

Moreover, any given R∈ Pg corresponds to at most one ring Q satisfying(i), and at
most one Q satisfying(ii). Therefore,

∣∣{i | Eg(Qi )p 6= 0, Qi ∈ P
}∣∣ ≤ 2|Pg|.

Proof. We shall repeatedly use the fact that two dyadic cubes are either disjoint or one
is contained in the other. We fixQ such thatEg(Q)p 6= 0. BecausePg ∈ πr , there exists
R ∈ Pg such thatQ¢ ∩ R¢ ⊇ Q ∩ R 6= ∅ andQ 6⊆ R, thus eitherQ¢ ) R¢, which
is (i); or R¢ ⊇ Q¢. In the latter case, fromQ 6⊆ R we know Q¢ ∩ R¤ 6= ∅, and in
particularR¤ 6= ∅; from Q ∩ R 6= ∅ we knowQ¢ 6⊆ R¤. ThereforeQ¢ ) R¤. From
Q 6⊆ R again, we knowQ¤ 6⊇ R¤, which gives (ii).

For the uniqueness of the ringQ in (i), we fix R ∈ Pg and suppose there are two such
ringsQ andQ′. SinceQ¢∩Q′¢ ⊇ R¢ 6= ∅, one of them contains the other. Without loss
of generality, we assumeQ¢ ⊇ Q′¢. SinceQ ∩ Q′ = ∅, we haveQ¤ ⊇ Q′¢ ) R¢;
but Q¤ cannot containR¢, for Q ∩ R 6= ∅. This contradiction shows the ring in (i) is
unique.

For the uniqueness of (ii), we suppose there are two ringsQ andQ′ ∈ P both satisfying
(ii) for the same ringR. Similar to the above, sinceQ¢∩Q′¢ ⊇ R¤ 6= ∅, we can assume
Q¢ ⊇ Q′¢. FromQ ∩ Q′ = ∅ we derive

R¢ ⊇ Q¢ ) Q¤ ⊇ Q′¢ ) R¤,

which contradicts the factQ¤ 6⊇ R¤.
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Proof of (6.2). Now, letP = {Qi }i∈3 ∈ πr be an arbitrary finite partition of [0, 1)d

into dyadic rings. We consider its subset{Qi }i∈3g
, whose cardinality|3g| ≤ 2n by

Lemma 13. According to Lemma 12 there exists a partitionTP,g such that{Qi }i∈3g
⊆

TP,g and

|TP,g| ≤ 2d+1|3g| ≤ 2d+2n.

Now, denotingh := 1/(2d+2n), we have

|g|Vr
σ,p
∼ sup
P∈πr

(∑
i∈3

Eg(Qi )
σ
p

)1/σ

= sup
P∈πr

(∑
i∈3g

Eg(Qi )
σ
p

)1/σ

≤ sup
P∈πr

 ∑
R∈TP,g

Eg(R)
σ
p

1/σ

≤ sup
π∈πh

r

(∑
R∈π

Eg(R)
σ
p

)1/σ

≤ Cnβ sup
π∈πh

r

hβ
(∑

R∈π
Eg(R)

σ
p

)1/σ

≤ CnβWr (g, h)σ,p

≤ CnβWr (g,1/n)σ,p,

which is the inequality (6.2).

7. Adaptive Approximation in the Besov SpaceBα

In this section, we develop results for the Besov spacesBα, which were defined on
page 451.

Theorem 14(Jackson Inequality).For every f ∈ Bα, 0< α < r , 0< p <∞,

E( f, 6n,r )L p ≤ Cn−α/d| f |Bα .

Theorem 15(Bernstein Inequality).Let g∈ 6n,r , i.e.,g =∑R∈P pRχR,whereP ∈ πr

with |P| ≤ n, and pR ∈ 5r−1. Also, let 0< p <∞ and0< α < min{r,d/(d − 1)p}.
Then

|g|Bα ≤ Cnα/d‖g‖L p .

Corollary 16. Let 0 < p < ∞ and let 0 < α < min{r,d/(d − 1)p}. Then, for
0< γ < α/d and0< q ≤ ∞,

Aγq (L p, {6n,r }n∈N) =
(
L p, Bα

)
dγ /α,q

.

This corollary can be restated as follows:

Corollary 16′. Let 0 < p < ∞ and let0 < β < min{r/d,1/(d − 1)p}. Then, for
0< γ < β and0< q ≤ ∞,

Aγq (L p, {6n,r }n∈N) =
(
L p, Bdβ

)
γ /β,q.
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We can now characterize the interpolation spaces
(
L p, Bα

)
λ/α,q in terms of the mod-

ulusWr ( f, t)σ,p. The following result immediately follows from Corollaries 9 and 16,
and Theorem B:

Corollary 17. Let 0 < σ < p < ∞, r ∈ N, 1/σ = α/d + 1/p, and 0 < α <

min{r,d/(d − 1)p}. Then for0< λ < α and0< q <∞:

(
L p, Bα

)
λ/α,q
=
{

f ∈ L p([0, 1)d)

∣∣∣∣ ∫ ∞
0

[
t−λ/dWr ( f, t)σ,p

]q dt

t
<∞

}
.

In particular, if q = τ = (λ/d + 1/p)−1, then

(
L p, Bα

)
λ/α,τ
= Bλ =

{
f ∈ L p([0, 1)d)

∣∣∣∣ ∫ ∞
0

[
t−λ/dWr ( f, t)σ,p

]τ dt

t
<∞

}
,

and, thus,∫ ∞
0

[
t−λWr ( f, td)σ,p

]τ dt

t
<∞ ⇐⇒

∫ ∞
0

[
t−λωr ( f, t)τ

]τ dt

t
<∞.

Using Corollaries 10 and 16 one can also get a similar statement in the caseq = ∞.

7.1. Proof of the Jackson Inequality for Bα

Without loss of generality we can assume that| f |Bα 6= 0. Let8(R) = Ef (R)
p
p, σ =

(α/d+ 1/p)−1, andε = n−p/σ | f |pBα . Also, letPε be a partition of [0, 1)d produced by
the algorithm of Section 4. Then|Pε| ≤ 8|P̃ε| (see Theorem D), wherẽPε is a set of
pairwise disjoint dyadic rings such that for allR ∈ P̃ε,8(R) > ε.

We now estimate|P̃ε|. If R ∈ P̃ε, then 1< ε−σ/pEf (R)σp , and using Corollary 2 we
have the following estimates:

|P̃ε| ≤ ε−σ/p
∑
R∈P̃ε

Ef (R)
σ
p ≤ Cε−σ/p

∑
R∈P̃ε

µR∑
i=1

| f |σBα(r R
i )
,(7.1)

where, ifR ∈ P̃ε is a cube, thenµR := 1 andr R
1 := R.

We will now show that

∑
R∈P̃ε

µR∑
i=1

| f |σBα(r R
i )
≤ C| f |σBα ,(7.2)

which together with (7.1) implies that|Pε| ≤ 8|P̃ε| ≤ Cε−σ/p| f |σBα ≤ Cn.
To prove (7.2) note that ifQ is a regular solid then the following holds (see DeVore

[8, ineq. (4.5)], for example, keeping in mind that the result for a regular solid follows
from that for a cube by a change of variables):

ωr ( f, t, Q)σσ ∼ t−d
∫

[−t,t ]d

∫
Q(rs)
|1r

s( f, x)|σ dx ds,
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whereQ(h) := {x | [x, x + h] ⊆ Q} and1r
s is the usualr th difference. Thus, taking

into account that according to Lemma 1 eachx ∈ R belongs to at mostµ ≤ 2d regular
solidsr R

i , we have

∑
R∈P̃ε

µR∑
i=1

| f |σBα(r R
i )
=

∑
R∈P̃ε

µR∑
i=1

∫ ∞
0

t−ασ−1ωr ( f, t, r R
i )

σ
σ dt

=
∫ ∞

0
t−ασ−1

∑
R∈P̃ε

µR∑
i=1

ωr ( f, t, r R
i )

σ
σ

 dt

≤ C
∫ ∞

0
t−ασ−1

∑
R∈P̃ε

µR∑
i=1

t−d
∫

[−t,t ]d

∫
r R

i (rs)
|1r

s( f, x)|σ dx ds

 dt

≤ C
∫ ∞

0
t−ασ−1

(
t−d

∫
[−t,t ]d

∫
[0,1)d(rs)

|1r
s( f, x)|σ dx ds

)
dt

≤ C
∫ ∞

0
t−ασ−1ωr ( f, t, [0, 1)d)σσ dt ≤ C| f |σBα .

Thus,|Pε| ≤ Cn, and definingg(x) := PIi (x), for x ∈ Ii , whereIi ∈ Pε, andPIi are
bestL p approximants tof on Ii from polynomials of degree< r (hence,g ∈ 6Cn,r ),
we have

‖ f − g‖p
L p
=
∫

[0,1)d
| f − g|p =

∑
R∈Pε

∫
R
| f − g|p =

∑
R∈Pε

Ef (R)
p
p

≤
∑
R∈Pε

ε = ε|Pε| ≤ Cnε ≤ Cn1−p/σ | f |pBα .

Thus,

E( f, 6n,r )L p ≤ ‖ f − g‖L p ≤ Cn−α/d| f |Bα .

7.2. Proof of the Bernstein Inequality for Bα

The following proof is somewhat similar to the proofs that were used in [15] and [9].
We denoteaR(x) := pR(x)χR(x) and note that

‖g‖p
L p
=
∫

[0,1)d
|g(x)|p dx =

∑
R∈P

∫
R
|g(x)|p dx

=
∑
R∈P

∫
R
|aR(x)|p dx =

∑
R∈P
‖aR‖p

L p(R)
.

To estimate|g|σBα we first show that

ωr (g, t)
σ
σ = ωr

(∑
R∈P

aR, t

)σ
σ

≤ C
∑
R∈P

ωr (aR, t)
σ
σ .(7.3)
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Note that this inequality is trivial ifσ ≤ 1, since, in this case,
∥∥∑ fi

∥∥σ
Lσ
≤ ∑ ‖ fi ‖σLσ .

For generalσ , we letx, h ∈ Rd be fixed. Then

1r
h(g, x) =

r∑
i=0

(−1)r−i

(
r

i

)
g(x + ih)

=
r∑

i=0

(−1)r−i

(
r

i

)∑
R∈P

aR(x + ih)

=
r∑

i=0

(−1)r−i

(
r

i

) ∑
R∈P,R∩{x+ih:0≤i≤r }6=∅

aR(x + ih)

= 1r
h(g̃, x),

wherẽg(x) =∑R∈P̃ aR(x), P̃ := {R ∈ P, R∩ {x + ih : 0≤ i ≤ r } 6= ∅}. Now, using
the observation that

∣∣P̃∣∣ ≤ r + 1, we have∣∣1r
h(g, x)

∣∣σ = ∣∣1r
h(g̃, x)

∣∣σ = ∣∣∣∑
R∈P̃

1r
h(aR, x)

∣∣∣σ
≤ C(r, σ )

∑
R∈P̃

∣∣1r
h(aR, x)

∣∣σ ≤ C
∑
R∈P

∣∣1r
h(aR, x)

∣∣σ .
Therefore, integrating the last inequality over [0, 1)d, taking the supremum overh: |h| ≤
t , and using the inequality suph

(∑
fi
) ≤∑ suph fi , we obtain (7.3).

We now fix R ∈ P andh ∈ Rd, and denote

D(R, r, h) := {x ∈ [0, 1)d | {x, . . . , x + rh} ∩ R 6= ∅, {x, . . . , x + rh} ∩ RC 6= ∅} ,
whereRC denotes the complement ofR (RC = [0, 1)d\R). Then

vol (D(R, r, h)) ≤ C min{vol(R), vol(∂R)|h|} ≤ C min{vol(R), vol(R)1−1/d|h|}.
Also, ∣∣1r

h(aR, x)
∣∣ ≤ 2r

{|aR(x)| + · · · + |aR(x + rh)|, x ∈ D(R, r, h),
0, otherwise.

Thus,

ωr (aR, t)
σ
σ = sup

|h|≤t

∫
[0,1)d

∣∣1r
h(aR, x)

∣∣σ dx ≤ sup
|h|≤t

∫
D(R,r,h)

∣∣1r
h(aR, x)

∣∣σ dx

≤ 2rσ (r + 1)σ sup
|h|≤t

∫
D(R,r,h)

‖aR‖σL∞ dx

≤ C‖aR‖σL∞ sup
|h|≤t

vol(D(R, r, h))

≤ C‖aR‖σL∞(R) min{vol(R), vol(R)1−1/dt}.
Now, vol(R) ∼ vol(R¢), and, hence, for any polynomialpr of total degree< r ,
‖pr ‖L p(R) ∼ ‖pr ‖L p(R¢) and

‖pr ‖L∞(R) ≤ ‖pr ‖L∞(R¢) ≤ C(vol(R¢))−1/p‖pr ‖L p(R¢) ≤ C(vol(R))−1/p‖pr ‖L p(R)
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(see Ditzian [20], for example). Thus,

ωr (aR, t)
σ
σ ≤ C(vol(R))−σ/p min

{
vol(R), vol(R)1−1/dt

}‖aR‖σL p(R),

and using (7.3) and the fact thatασ < 1 (this inequality is equivalent toα < d/(d−1)p)
we have

|g|σBα =
∫ ∞

0
t−ασ−1ωr (g, t)

σ
σ dt ≤ C

∑
R∈P

∫ ∞
0

t−ασ−1ωr (aR, t)
σ
σ dt

≤ C
∑
R∈P

∫ ∞
0

t−ασ−1(vol(R))−σ/p min
{
vol(R), vol(R)1−1/dt

}‖aR‖σL p(R) dt

≤ C
∑
R∈P

(vol(R))−σ/p‖aR‖σL p(R)

×
(

vol(R)1−1/d
∫ vol(R)1/d

0
t−ασ dt + vol(R)

∫ ∞
vol(R)1/d

t−ασ−1 dt

)
≤ C

∑
R∈P

(vol(R))1−σ/p−ασ/d‖aR‖σL p(R) = C
∑
R∈P
‖aR‖σL p(R).

Finally, sinceσ < p, and using H¨older’s inequality, we have

|g|Bα ≤ C

(∑
R∈P
‖aR‖σL p(R)

)1/σ

≤ C |P|1/σ−1/p

(∑
R∈P
‖aR‖p

L p(R)

)1/p

≤ Cnα/d‖g‖L p .

8. Wavelet Decompositions

Letφ ∈ Ws
∞(R

d) be a compactly supported function which has the following properties:

• φ is refinable, i.e.,

φ(x) =
∑
j∈Zd

cjφ(2x − j ).(8.1)

• φ satisfies the Strang–Fix conditions of orderr :

φ̂(0) = 1, φ̂(2π j ) = 0, j ∈ Zd, j 6= 0,
Dνφ̂(2π j ) = 0, j ∈ Zd, j 6= 0, |ν| < r.

(8.2)

• The shifts ofφ are locally linearly independent, i.e.,

∀ Q ∈ D the functionsφ(· − j ),(8.3)

j ∈ 3Q =
{

j ∈ Zd | meas({x|φ(x − j ) 6= 0} ∩ Q) > 0
}
,

are linearly independent overQ.
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Define

6̃n(φ) =
{

f | f =
∑
I∈D

aI φI such that|{aI | aI 6= 0}| ≤ n

}
,

where we use the usual indexing of the translates of dyadic dilates ofφ by dyadic cubes,
i.e.,φI (x) := φ(2kx − j ), whereI = j 2−k + 2−k[0, 1)d.

Theorem F (DeVore, Jawerth, and Popov [11]).If φ ∈ Ws
∞(R

d) is a compactly sup-
ported function satisfying(8.1)–(8.3),then, for each0< α < min{r, s} and f ∈ Bα,

E( f, 6̃n(φ))L p = inf
g∈̃6n(φ)

‖ f − g‖L p ≤ Cn−α/d| f |Bα , 0< p <∞.

Theorem G (Jia [21]). Let φ be a compactly supported function in Ws
∞(R

d), s ∈ N.
Suppose thatφ is refinable, and its shifts are locally linearly independent. Then, for
0< α < s and0< p ≤ ∞:

| f |Bα ≤ Cnα/d‖ f ‖L p for all f ∈ 6̃n(φ),

where C is a constant depending only onφ and p when p is small.

We remark that the above result was proved in [21] for finitely generated shift-invariant
spaces. The following result now follows from Theorems G, F, and A:

Theorem H. Letφ ∈ Ws
∞(R

d), s ∈ N, be a compactly supported function satisfying
(8.1)–(8.3).Also, let 0 < p < ∞ and0 < α < min{r, s}. Then, for 0 < γ < α/d and
0< q ≤ ∞, we have

Aγq (L p, {6̃n(φ)}n∈N) =
(
L p, Bα

)
dγ /α,q

.

Thus, in particular, for q = τ = (γ + 1/p)−1, we have

Aγτ (L p, {6̃n(φ)}n∈N) =
(
L p, Bα

)
dγ /α,τ

= Bdγ .

From Corollaries 8, 16, and Theorem H we obtain the following:

Corollary 18. Letφ ∈ Ws
∞(R

d), s ∈ N, be a compactly supported function satisfying
(8.1)–(8.3) (i.e., φ is a refinable function having locally linearly independent shifts
and satisfying the Strang–Fix conditions of order r). Also, let 0 < σ < p < ∞,
β = 1/σ − 1/p, and β < min{r/d, s/d,1/(d − 1)p}. Then, for 0 < γ < β and
0< q ≤ ∞:

Aγq (L p, {6n,r }n∈N) = Aγq (L p, {6̃n(φ)}n∈N) =
(
L p, Bdβ

)
γ /β,q =

(
L p,Vr

σ,p

)
γ /β,q

.

In particular, for q = τ = (γ + 1/p)−1, we have

Aγτ (L p, {6n,r }n∈N)= Aγτ (L p, {6̃n(φ)}n∈N)=
(
L p, Bdβ

)
γ /β,τ
= (L p,Vr

σ,p

)
γ /β,τ
=Bdγ .
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We now restate this corollary in somewhat more standard and easier-to-use form (we
chooseα = dβ andλ = dγ ).

Corollary 18′. Letφ ∈ Ws
∞(R

d), s ∈ N, be a compactly supported function satisfying
(8.1)–(8.3) (i.e., φ is a refinable function having locally linearly independent shifts
and satisfying the Strang–Fix conditions of order r). Also, let 0 < σ < p < ∞,
1/σ = α/d+1/p,andα < min{r, s,d/(d−1)p}.Then, for 0< λ < α and0< q ≤ ∞,

Aλ/dq (L p, {6n,r }n∈N) = Aλ/dq (L p, {6̃n(φ)}n∈N) =
(
L p, Bα

)
λ/α,q =

(
L p,Vr

σ,p

)
λ/α,q

.

In particular, for q = τ = (λ/d + 1/p)−1, we have

Aλ/dτ (L p, {6n,r }n∈N)= Aλ/dτ (L p, {6̃n(φ)}n∈N)=
(
L p,Vr

σ,p

)
λ/α,τ
= (L p, Bα

)
λ/α,τ
=Bλ.

In other words,

f ∈ Bλ ⇔
∞∑

n=1

[
nλ/d E( f, 6n,r )L p

]τ 1

n
<∞,

⇔
∞∑

n=1

[
nλ/d E( f, 6̃n(φ))L p

]τ 1

n
<∞,

⇔
∫ ∞

0

[
t−λ/αK ( f, t, L p,Vr

σ,p)
]τ dt

t
<∞,

⇔
∫ ∞

0

[
t−λ/dWr ( f, t)σ,p

]τ dt

t
<∞.

The inequalityα < d/(d − 1)p is sharp and cannot be removed. The reason for this
is that the spaces(L p,Vr

σ,p)λ/α,τ contain certain piecewise polynomials (though not all
of them) ifα > d/(d − 1)p, and, at the same time, for theseα, the spacesBα contain
no characteristic functions (see the next section for more details). We also note that this
somewhat anomalous situation does not exist in the univariate case (see also [15] for
discussions).

8.1. Remarks

Lemma 19. Let r ∈ N, 0< α < r , and1/σ = α/d + 1/p. Then, for f ∈ Bα,

| f |Vr
σ,p
≤ C| f |Bα .(8.4)

Proof. For any partition{Ri }i∈3 ∈ πr using Lemma 1, Corollary 2, and (7.2) we have

∑
i∈3

ωr ( f, len(Ri ), Ri )
σ
p ≤ C

∑
i∈3

Ef (Ri )
σ
p ≤ C

∑
i∈3

µRi∑
ν=1

| f |σ
Bα(r

Ri
ν )
≤ C| f |σBα .

Therefore, taking sup over all partitions inπr , we obtain (8.4).
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The inequality (8.4) immediately implies that

K ( f, t, L p,Vr
σ,p) ≤ C K( f, t, L p, Bα),

hence, (
L p, Bα

)
θ,q
⊆ (L p,Vr

σ,p

)
θ,q

for 0< θ < 1 and 0≤ q ≤ ∞. In particular, for 0< λ < α andq = τ = (λ/d+1/p)−1,(
L p, Bα

)
λ/α,τ
= Bλ ⊆ (L p,Vr

σ,p

)
λ/α,τ

.

The proof of the following lemma is rather straightforward and will be omitted.

Lemma I. Let Q ⊆ [0, 1)d be a cube, and let aQ(x) := pr (x)χQ(x) (i.e., aQ is a
piecewise polynomial function on[0, 1)d). Then

aQ ∈ Bαq (Lτ ) ⇔
{
ατ < 1, if 0 < q <∞,
ατ ≤ 1, if q = ∞.

In particular, for 0< p <∞,

aQ ∈ Bα ⇔ α <
d

(d − 1)p
.

Obviously, the spaceVr
σ,p contains some piecewise polynomial functions (e.g.,

χ[0,1/2)d(x)). In fact, it contains all piecewise polynomial functions on dyadic ring par-
titions.

Thus, it follows from Lemmas 19 and I that, if 1/σ = α/d+1/p andα ≥ d/(d−1)p,
then

Bα ( Vr
σ,p.

Also, if α > d/(d − 1)p, 1/σ = α/d + 1/p, d/(d − 1)p ≤ λ < α, and τ =
(λ/d + 1/p)−1, then

Aλ/dτ (L p, {6̃n(φ)}n∈N) = Bλ (
(
L p,Vr

σ,p

)
λ/α,τ
= Aλ/dτ (L p, {6n,r }n∈N).(8.5)

(This, in particular, shows that the conditionα < d/(d − 1)p in Corollary 18(18′) is
sharp and cannot be removed.)

Thus, on the one hand, we know that

Aλ/dτ (L p, {6̃n(φ)}n∈N) ⊆ Aλ/dτ (L p, {6n,r }n∈N),

which means that the error of approximation from the manifold{6n,r }n∈N is not worse
than the error of approximation from{6̃n(φ)}n∈N. On the other hand, the error of ap-
proximation by elements of{6n,r }n∈N can be essentially better (smaller) than the error of
approximation by elements of{6̃n(φ)}n∈N since, in the caseq = τ , there exist functions
(e.g., characteristic functions of dyadic rings and their liner combinations) such that

∞∑
n=1

[nλ/d E( f, 6̃n(φ))L p ]
τ 1

n
= ∞ and

∞∑
n=1

[nλ/d E( f, 6n,r )L p ]
τ 1

n
<∞.
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