
MODIFIED ADAPTIVE ALGORITHMS∗

YINGKANG HU† , KIRILL A. KOPOTUN‡ , AND XIANG MING YU§

SIAM J. NUMER. ANAL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 3, pp. 1013–1033

Abstract. It is well known that the adaptive algorithm is simple and easy to program but the
results are not fully competitive with other nonlinear methods such as free knot spline approximation.
We modify the algorithm to take full advantages of nonlinear approximation. The new algorithms
have the same approximation order as other nonlinear methods, which is proved by characterizing
their approximation spaces. One of our algorithms is implemented on the computer, with numerical
results illustrated by figures and tables.

Key words. nonlinear approximation, approximation spaces, adaptive algorithms, data reduc-
tion, piecewise polynomials, splines, Besov spaces, degree of approximation, modulus of smoothness

AMS subject classifications. 41-04, 41A10, 41A15, 41A17, 41A25, 41A27

PII. S0036142999353569

1. Introduction. It is common knowledge that nonlinear approximation meth-
ods are better, in general, than their linear counterparts. In the case of splines,
nonlinear approximation puts more knots where the function to be approximated
changes rapidly, which results in dramatic improvements in approximating functions
with singularities. There are various satisfactory results on free knot spline approxi-
mation, in which knots are chosen at one’s will. Most related theorems are proved by
showing the existence of certain balanced partitions (a more accurate description will
be given later). This may cause difficulties in practice, since it is often numerically
expensive to find such balanced partitions. Then, there is so-called adaptive approx-
imation by piecewise polynomial (PP) functions, in which only dyadic intervals are
used in the partition. Adaptive approximation draws great attention because of its
simplicity in nature. As a price to pay for the simplicity, its approximation power
is slightly lower than that of its free knot counterpart. Moreover, it is not known
exactly what kind of functions can be approximated to a prescribed order; that is,
there is no characterization of adaptive approximation spaces. We point out here that
when we say adaptive algorithms in this paper, we mean those that approximate a
given (univariate) function by PP functions/splines. There are other kinds of adaptive
algorithms; some are characterized in the literature (see [10] for an example).

In this paper, we shall modify the existing adaptive algorithms in two ways.
The resulting algorithms have the same approximation power as free knot spline
approximation while largely keeping the simplicity of adaptive approximation. In the
next section, we shall state some known results on free knot spline approximation.
After describing our algorithms in section 3, in section 4 we shall give our main results,
which are parallel to those on free knot spline approximation given in the next section.
Numerical implementation and examples will be the contents of the last section.

∗Received by the editors March 17, 1999; accepted for publication (in revised form) February 9,
2000; published electronically August 29, 2000.

http://www.siam.org/journals/sinum/38-3/35356.html
†Department of Mathematics and Computer Science, Georgia Southern University, Statesboro,

GA 30460 (yhu@gasou.edu).
‡Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada R3T 2N2

(kkopotun@math.vanderbilt.edu). This author was supported by NSF grant DMS 9705638.
§Department of Mathematics, Southwest Missouri State University, Springfield, MO 65804

(xmy944f@mail.smsu.edu).

1013

1014 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

We emphasize that we consider only the univariate case in this paper. The idea
of merging cubes was initially introduced and used by Cohen et al. in their recent
paper [11] on multivariate adaptive approximation. The resulting partition consists
of rings, which are cubes with a (possibly empty) subcube removed. Their algorithm
produces near minimizers in extremal problems related to the space BV (R2). The
authors further explored this algorithm in [21]. In particular, we were able to obtain
results on extremal problems related to the spaces Vγ,p(R

d) of functions of “bounded
variation” and Besov spaces Bα(Rd). This algorithm is ready to implement for some
settings, depending on the value of p (if Lp norm is chosen) and order of local poly-
nomials (it is more difficult for r > 1), though the bookkeeping may be messy. On
the other hand, this algorithm is designed for the multivariate case. Its univariate
version would not only be much more complex than necessary, but would also produce
one-dimensional rings, that is, unions of the subintervals not necessarily neighboring,
which are unpleasant and, as it turned out, unnecessary. Our modified algorithms
take advantage of the simplicity of the real line topology, simply merging neighboring
intervals, thus resulting in partitions consisting of only intervals. These algorithms
cannot be easily generalized to multivariate setting, since a procedure of emerging
neighboring cubes may generate very complicated and undesirable sets in a partition.
This also makes it much more difficult to establish Jackson inequalities for local ap-
proximants. We refer the interested reader to [21], where one can find that the proof
of Jackson inequality on a ring is already difficult enough. For these reasons, we
strongly believe that simpler and more efficient univariate algorithms are necessary.

2. Preliminaries. Throughout this paper, when we say that f, the function to
be approximated, belongs to Lp(I), we mean f ∈ Lp(I) if 0 < p < ∞, and f ∈ C(I)
if p = ∞. If r is an integer, 0 < α < r and 0 < p, q ≤ ∞, then the Besov space
Bα
q (Lp(I)) is the set of all functions f ∈ Lp(I) such that the semi-(quasi)norm

|f |Bα
q (Lp(I)) :=

(∫ ∞

0

[
t−αωr(f, t, I)p

]q dt
t

)1/q

, 0 < q <∞,

sup
t>0

t−αωr(f, t, I)p, q = ∞,

is finite, where ωr is the usual rth modulus of smoothness. The (quasi)norm for
Bα
q (Lp(I)) is defined by

‖ · ‖Bα
q (Lp(I)) := ‖ · ‖Lp(I) + | · |Bα

q (Lp(I)).

We also define a short notation for a special case that is used frequently in the theory:

Bα(I) := Bα
γ (Lγ(I)), γ := (α+ p−1)−1.

If there is no potential confusion, especially in the case I = [0, 1], the interval I will be
omitted in the notation for the sake of simplicity. For example, Lp stands for Lp[0, 1]
and Bα for Bα[0, 1].

If X0 and X1 are quasi-normed, complete, linear spaces continuously embedded
in a Hausdorff space X, then the K-functional for all f ∈ X0 + X1 and t ≥ 0 is
defined as

K(f, t,X0, X1) := inf {‖f0‖X0 + t‖f1‖X1 | f = f0 + f1, f0 ∈ X0, f1 ∈ X1} .
This can be generalized if we replace ‖ · ‖X1 by a quasi-seminorm | · |X1 on X1:

K(f, t,X0, X1) := inf {‖f0‖X0
+ t|f1|X1

| f = f0 + f1, f0 ∈ X0, f1 ∈ X1} .

MODIFIED ADAPTIVE ALGORITHMS 1015

The interpolation space (X0, X1)θ,q , 0 < θ < 1, 0 < q ≤ ∞, consists of all functions
f ∈ X0 +X1 such that |f |(X0,X1)θ,q

<∞, where

|f |(X0,X1)θ,q
:=

(∫ ∞

0

[
t−θK(f, t,X0, X1)

]q dt
t

)1/q

, 0 < q <∞,

sup
t>0

t−θK(f, t,X0, X1), q = ∞.

When studying an approximation method, it is very revealing to know its approx-
imation spaces, which we now define. Let functions in a quasi-normed linear space X
be approximated by elements of its subsets Φn, n = 0, 1, . . . , which are not necessarily
linear but are required to satisfy the assumptions

(i) Φ0 = {0};
(ii) Φn ⊂ Φn+1;
(iii) aΦn = Φn for any a �= 0;
(iv) Φn + Φn ⊂ Φcn where c := c

({Φn}
)

does not depend on n;
(v)

⋃∞
n=0 Φn is dense in X;

(vi) Any f ∈ X has a best approximation from each Φn.
All approximant sets in this paper satisfy these assumptions. Denoting

En(f) := E(f,Φn)X := inf
ϕ∈Φn

‖f − ϕ‖X ,

we define the approximation space

Aα
q := Aα

q (X) := Aα
q (X, {Φn}), α > 0,

to be the set of all f ∈ X for which En(f) is of order n−α in the sense that the
following seminorm is finite:

|f |Aα
q

:=

(∞∑
n=1

[nαEn(f)]
q 1

n

)1/q

, 0 < q <∞,

sup
n≥1

nαEn(f), q = ∞.

The general theorem below enables one to characterize an approximation space by
merely proving the corresponding Jackson and Bernstein inequalities (see [13, sections
7.5 and 7.9], [9], and [15]).

Theorem A. Let Y := Yβ , β > 0, be a linear space with a semi-(quasi)norm | · |Y
that is continuously embedded in X. If {Φn} satisfies the six assumptions above, and
Y satisfies the Jackson inequality

En(f) ≤ Cn−β |f |Y , f ∈ Y,(2.1)

and the Bernstein inequality

|ϕ|Y ≤ Cnβ‖ϕ‖X , ϕ ∈ Φn,(2.2)

then for all 0 < α < β, 0 < q ≤ ∞, the approximation space

Aα
q

(
X, {Φn}

)
= (X,Y)α/β,q.(2.3)

By a partition P = {Ii}ni=1 of the interval [0, 1] we mean a finite set of subin-
tervals whose union ∪ni=1Ii = [0, 1], where Ii := [xi, xi+1), i = 1, 2, . . . , n − 1,
In := [xn, xn+1], and x1 := 0 < x2 < · · · < xn < 1 =: xn+1. The (nonlinear)

1016 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

spaces Σn,r of all PP functions of order r on [0, 1] with no more than n > 0 pieces
are defined by

Σn,r := Σn,r[0, 1] := {S | S(x) =
∑
I∈P

PI(x)χI(x), |P| ≤ n},

where PI are in Pr−1, the space of polynomials of degree < r, and χI are the charac-
teristic functions on I. Σ0,r is defined as {0}. These Σn = Σn,r, with r fixed, satisfy
all assumptions (i)–(vi) on {Φn} (see p. 3). The degree of best approximation of a
function f by the elements of Σn,r is denoted by σn,r(f)p := E(f,Σn,r)p.

Remark. Some authors use the notation Σ(n−1)r,r in place of Σn,r, since PP
functions can be viewed as special kinds of splines with each interior break point xi,
i = 2, . . . , n, considered as a knot of multiplicity r. Also in use is PPn,r. Following
general notation in nonlinear approximation, we use the first subscript for the number
of coefficients in the approximant. See [13], [14], [17], [26]. Strictly speaking, all n-
piece PP function of order r only form a proper subset of the free knot spline space
Σ(n−1)r,r, but this subset has the same approximation power in Lp as the whole space
(see Theorem 12.4.2 of [13]).

In his 1988 paper [23] (also see [24] and [13, section 12.8]), Petrushev charac-
terized the approximation space Aα

q (Lp, {Σn,r}∞0) using the Besov spaces; see the
following theorem.

Theorem B. Let 0 < p <∞, n > 0, and 0 < α < r. Then we have

σn,r(f)p ≤ Cn−α|f |Bα ≤ Cn−α‖f‖Bα , f ∈ Bα,(2.4)

and

‖S‖Bα ≤ Cnα‖S‖p, S ∈ Σn,r.(2.5)

Therefore for 0 < q ≤ ∞ and 0 < α < β < r

Aα
q (Lp) := Aα

q (Lp, {Σn,r}∞0) = (Lp,B
β)α/β,q.(2.6)

In particular, if γ := (α+ p−1)−1,

Aα
γ (Lp) = (Lp,B

β)α/β,γ = Bα.(2.7)

The inequality (2.4) can be proved by finding a balanced partition P = {Ii}ni=1

according to the function

G(x) :=

∫ 1

0

∫ ∞

0

t−αγ−2χ[0, t](s)χ[0, 1−rs](x)|∆r
s(f, x)|γ dsdt(2.8)

in the sense that ∫
Ii

G(x) dx =

∫
Ij

G(x) dx, i, j = 1, . . . , n,(2.9)

(see [13] for details of the proof). In fact, many Jackson-type inequalities can be
proved by showing the existence of a balanced partition (see, e.g., Theorems 12.4.3,
5, and 6 in [13], Theorem 1.1 in [19], and parts of Theorems 2.1 and 4.1 in [17]). We
state here Theorem 12.4.6 of [13], given by Burchard [8] in 1974 for the case p = ∞
(see also de Boor [3]).

MODIFIED ADAPTIVE ALGORITHMS 1017

Theorem C. Let r and n be positive integers, and let γ := (r + p−1)−1. Let
f ∈ Lp[0, 1], 1 ≤ p ≤ ∞. If f ∈ Cr(0, 1) with |f (r)(x)| ≤ ϕ(x), where ϕ ∈ Lγ is a
monotone function, then

σn,r(f)p ≤ Crn
−r‖ϕ‖γ .(2.10)

Let f ∈ Lp[0, 1], 0 < γ < p ≤ ∞, α := γ−1 − p−1, and r := [α] + 1. Let Vγ,p be the
space of functions f ∈ Lp[0, 1] for which the variation

|f |Vγ,p := sup
P

(∑
I∈P

ωr(f, |I|, I)γp
) 1

γ

is finite, where the sup is taken over all finite partitions P of [0, 1]. Following [17]
(see also Brudnyi [7] and Bergh and Peetre [1]), we define a modulus of smoothness
for f ∈ Vγ,p by

Ω(f, t)γ,p := sup
0<h≤t

sup
|P|≤[h−1]+1

hα

(∑
I∈P

ωr(f, |I|, I)γp
) 1

γ

.(2.11)

The following theorem, which is due to DeVore and Yu [17], provides characterization
of Aα

q (Lp, {Σn,r}∞0) using interpolation spaces involving Vγ,p.
Theorem D. Let 0 < p ≤ ∞, 0 < α < r, and γ := (α + p−1)−1. Then for

approximation by elements from {Σn,r}∞0 , we have the Jackson inequality

σn,r(f)p ≤ Cn−α|f |Vγ,p , f ∈ Vγ,p,(2.12)

and the Bernstein inequality

|S|Vγ,p
≤ Cnα‖S‖p, S ∈ Σn,r.(2.13)

Therefore

Aα
q (Lp) := Aα

q (Lp, {Σn,r}∞0) = (Lp,Vσ,p)α/β,q.

In particular, if p <∞,

Aα
γ (Lp) = (Lp,Vσ,p)α/β,γ = Bα.

The Jackson inequality (2.12) follows from the definition of Ω(f, t)γ,p and the existence
for any f ∈ Vγ,p of an S ∈ Σn,r with n := [t−1] + 1 such that

‖f − S‖p ≤ CΩ(f, t)γ,p,(2.14)

which can be proved (see [17]) by showing the existence of a balanced partition P =
{Ii}ni=1 such that

ωr(f, |Ii|, Ii)p = ωr(f, |Ij |, Ij)p, i, j = 1, . . . , n,

and then defining S by

S(x) :=
n∑
i=1

Pi(x)χIi(x),(2.15)

where Pi are best Lp approximations to f on Ii from the space Pr−1.

1018 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

3. Adaptive algorithms.

3.1. The original adaptive algorithm. More than likely it will be hard to
find an exactly balanced partition numerically. An algorithm of this sort by Hu
[20], for instance, uses two nested loops (there is another level of loop that increases
the number of knots). This is probably one of the reasons why much attention is
paid to adaptive approximation, which selects break points by repeatedly cutting the
intervals into two equal halves, and produces PP functions with dyadic break points,
which can be represented by finite binary numbers of the form m · 2−k, 0 ≤ k < ∞,
0 ≤ m ≤ 2k. Denote the spaces of such PP functions by Σd

n,r and their approximation

errors E(f,Σd
n,r)p by σd

n,r(f)p. We now describe the original adaptive algorithms in
the univariate setting.

Let E be a nonnegative set function defined on all subintervals of [0, 1] which
satisfies

E(I) ≤ E(J) if I ⊆ J ;(3.1)

E(I) → 0 uniformly as |I| → 0.(3.2)

Given a prescribed tolerance ε > 0, we say that an interval I is good if E(I) ≤ ε;
otherwise it is called bad. We want to generate a partition G := G(ε, E) of [0, 1] into
good intervals. If [0, 1] is good, then G = {[0, 1]} is the desired partition; otherwise
we put [0, 1] in B, which is a temporary pool of bad intervals. We then proceed with
this B and divide every interval in it into two equal pieces and test whether they are
good, in which case they are moved into G, or bad, in which case they are kept in B.
The procedure terminates when B = ∅ (and, hence, all resulting intervals are good
and are in G), which is guaranteed to happen by (3.2).

The set function E(I) usually depends on the function f that is being approxi-
mated and measures the error of approximation of f on I, such as

∫
I
G(x) dx in (2.9),

thus will be called the (error) measure of I throughout this paper. In the simplest
case, E(I) is taken as the local approximation error of f on I ⊆ [0, 1] by polynomials
of degree < r:

E(I) := Er(f, I)p := inf
P∈Pr−1

‖f − P‖Lp(I),(3.3)

and the corresponding approximant on G is defined by (2.15). This gives an error

‖f − S‖Lp[0, 1] ≤ |G|1/p ε,

where |G| is the number of intervals in G. One can estimate in different ways

an(f)p := an(f, E)p := inf |G|1/p ε,(3.4)

where the infimum is taken over all ε > 0 such that |G| = |G(ε, E)| ≤ n. See Birman
and Solomjak [2] and DeVore [12] for estimates for functions f in Sobolev spaces.
Other estimates can be found in Rice [25], de Boor and Rice [6], and DeVore and
Yu [18] and the references therein. We only mention the following two results.

Theorem E (see [18, Theorem 5.1]). Let r = 1, 2, . . . , γ := r−1, and f ∈ C[0, 1].
If f ∈ Cr(0, 1) with |f (r)(x)| ≤ ϕ(x), where ϕ ∈ Lγ is a monotone function such that∫

I

ϕ(x)γdx ≤ C1n
−1 if |I| ≤ 2−n,(3.5)

MODIFIED ADAPTIVE ALGORITHMS 1019

where C1 is an absolute constant, then we have

an(f)∞ ≤ Cn−r‖ϕ‖γ .(3.6)

Note that compared with Theorem C with p = ∞, its free knot counterpart, this
theorem has an extra requirement (3.5) on ϕ.

Theorem F (see [18, Corollary 3.3]). Let 0 < p < ∞, α > 0, and q > γ :=
(α+ p−1)−1. Then for f ∈ Bα

σ(Lq), 0 < σ ≤ ∞, we have

an(f)p ≤ Cn−α|f |Bα
σ (Lq).(3.7)

Since |f |Bα = |f |Bα
γ (Lγ) ≤ |f |Bα

σ (Lq), we see (3.7) is weaker than (2.4), which is for free
knot spline approximation. The reason for this is not hard to see: adaptive algorithms
not only select break points from a smaller set of numbers (that is, the set of all finite
binary numbers), but they also do it in a special order. Consider f(x) =

√
x on [0, 1]

as an example, a good free knot approximant will have most knots very close to 0 (see
examples in [20] and Table 5.2 later in this paper). However, an adaptive algorithm
needs at least n− 1 knots, 2−1, 2−2, . . . , 21−n, before it can put one at 2−n and thus
needs more knots than a free knot spline algorithm. Although one classifies adaptive
approximation as a special kind of free knot spline approximation (since the knots
sequence depends on the function to be approximated), one is far from free when
choosing knots. It is considered “more restrictive” (DeVore and Popov [14]) than free
knot spline approximation.

We should point out that all theorems mentioned in this subsection are of a
Jackson-type, that is, so-called direct theorems. Bernstein inequalities (closely related
to inverse theorems, sometimes referred to also as inverse theorems themselves) for free
knot splines, such as (2.5) and (2.13), are valid for all splines, including PP functions
produced by adaptive algorithms. The problem is that all Jackson inequalities for
the original adaptive algorithms are not strong enough to match those Bernstein
inequalities in the sense of Theorem A. From this point of view, Theorems E and
F are weaker than they look. We do not know exactly what kind of functions can
be approximated by the original adaptive algorithms to a prescribed order, that is,
we can not characterize their approximation spaces Aα

q . They do not fully exploit the
power of nonlinear approximation, and sometimes they generate too many intervals,
many of which may have an error measure much smaller than ε.

As mentioned above, there are two major aspects in which adaptive approximation
is different from free knot spline approximation: (a) a smaller set of numbers to choose
knots from and (b) a special, and restrictive, way to select knots from the set. It turns
out that (b) is the reason for its drawback. Although it is also the reason why adaptive
approximation is simple (and we want to keep it that way), it does not mean we have to
keep all the knots it produces. In this paper, we modify the usual adaptive algorithm
in two ways. The idea is that of splitting AND merging intervals/cubes used in a
recent paper by Cohen et al. [11]. The two new algorithms generate partitions of
[0, 1] with fewer dyadic knots which are nearly balanced in some sense. In section 4,
we prove that they have the same approximation order as that of free knot splines.

3.2. Algorithm I. We start with the original adaptive procedure with some
ε > 0, which generates a partition G = {I ′i}N

′
i=1 of [0, 1] into good intervals. The

number N ′ may be much larger than it has to be. To decrease it, we merge some
of the intervals I ′i. We begin with I ′1 and check the union of I ′1 and I ′2. If it is still
a good interval, that is, if its measure E(I ′1 ∪ I ′2) ≤ ε, we add I ′3 to the union and

1020 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

check whether E(I ′1∪I ′2∪I ′3) ≤ ε, and we proceed until we find the largest good union
I ′1 ∪ · · · ∪ I ′k in the sense that

E(I ′1 ∪ · · · ∪ I ′k) ≤ ε

but

E(I ′1 ∪ · · · ∪ I ′k+1) > ε or k = N ′.

We name I ′1 ∪ · · · ∪ I ′k as I1. If k < N ′, we continue with I ′k+1 and find the next
largest good union as I2. At the end of this procedure, we obtain a modified partition
consisting of N ≤ N ′ good intervals P = {Ii}Ni=1 for which each union Ji := Ii ∪ Ii+1

is bad,

E(Ji) = E(Ii ∪ Ii+1) > ε, i = 1, 2, . . . , N − 1.

This partition is considered nearly balanced. For the size of N we have

N ≤ 1 + 2 · [N/2] ≤ 1 + 2

[N/2]∑
i=1

E(J2i−1)

ε
.(3.8)

3.3. Algorithm II. Our second algorithm generates a nearly balanced partition
in another way. It does not make heavy use of prescribed tolerance ε; rather, it merges
intervals with relatively small measures while dividing those with large ones. As in
the ordinary adaptive algorithms, we start with dividing [0, 1] into two intervals I1
and I2 of equal length. However, this is where the similarity ends. We then compare
measures E(I1) and E(I2) and divide the interval with larger measure into two equal
pieces. In the case of equal measure, we divide, rather randomly, the one on the left.
Now we have three intervals and are ready for the three-step loop below.

Step 1. Assume there is currently a partition {Ii}ki=1 and Ij has the largest
measure among all Ii. If E(Ij+1) < M := θmaxi E(Ii) = θE(Ij), where 0 < θ < 1
is a fixed parameter, we check the union of Ij+1 ∪ Ij+2 to see whether its measure
E(Ij+1 ∪ Ij+2) < M . If so, add the next interval Ij+3 into the union and check its

measure again. We continue until we get a largest union ∪j+m1

i=j+1Ii whose measure is
less than M, and replace this union by the intervals it contains. Then, if j +m1 < k,
we find the next largest union ∪j+m1+m2

i=j+m1+1Ii in the same manner and replace these
intervals by their union. Furthermore, we do the same to the intervals to the left of
Ij (but keep Ij intact). In this way we obtain a new partition with (the old) Ij still
having the largest measure. This partition is nearly balanced in the sense that the
measure of the union of any two consecutive new intervals is no less than θmaxi E(Ii)
(because these new intervals were largest unions of old intervals). At the end of this
step we renumber the new intervals and update the value of k.

Step 2. Check whether the new partition produced in Step 1 is satisfactory using
an application-specific criterion, for instance, whether k has reached a prescribed value
n or the error is reduced to a certain level. If not, continue with Step 3; otherwise
define the final spline by (2.15) and terminate the algorithm.

Step 3. Divide the interval with the largest measure (Ij) into two equal pieces,
renumber the intervals, update the values of k and M, and then go back to Step 1.

Remark. In Step 1, if Il and Il+1 are the two newest intervals (two “brothers”
with equal length), one needs only to check Il−1 ∪ Il if l − 1, l �= j, and/or Il+1 ∪ Il+2

if l + 1, l + 2 �= j, since other unions of two consecutive intervals have measures no

MODIFIED ADAPTIVE ALGORITHMS 1021

less than the value of M in the previous iteration, which is, in turn, no less than the
current M . We stated it in the way above only because it shows the purpose of the
step more clearly.

It should be pointed out that one needs to be careful about the stopping criterion
in Algorithm II. For example, if it is applied to the characteristic function f(x) =
χ[

√
2/2, 1](x) with E(I) = ωr(f, |I|, I)p, p < ∞, after two iterations we will always

have k = 3 and E(I1) = E(I3) = 0. The break point
√

2/2 in this example can be
replaced by any number in (0, 1) which does not have a finite binary representation
such as 0.4. If k ≥ n = 4 is used as the sole stopping criterion, the algorithm will fall
into infinite loop. Fortunately, the error in this example still tends to 0; therefore,
infinite loop can be avoided by adding error checking in the criterion. The next lemma
shows this is the case in general.

Lemma 3.1. Let E be an interval function satisfying (3.1) and (3.2), and let
ε > 0 and n > 0 be prescribed. Then the criterion

max
i

E(Ii) ≤ ε or k ≥ n(3.9)

will terminate Algorithm II.

Proof. We show that if k never exceeds n, then maxi E(Ii) → 0 as the number

of iterations goes to ∞. Let 0 < θ < 1 be fixed. Let M̂ := θmaxi E(Ii) with the

max taken at one moment. Fix this M̂ and denote the group of all subintervals in
the partition with “large” errors by G

M̂
:= {Ii | E(Ii) ≥ M̂}. Let M := θmaxi E(Ii)

be as in Step 1, changing from iteration to iteration. We have M̂ ≥M from now on.

We first make a few observations. Since the interval currently having the largest
measure is always inG

M̂
, each iteration cuts a member ofG

M̂
. However, the algorithm

will not merge any member Ii ∈ G
M̂

with another interval because E(Ii) ≥ M̂ ≥ M
already; any union of Ii with another interval would have even larger measure by
(3.1). By (3.2), there exists η > 0 such that |Ii| > η for any Ii ∈ G

M̂
. Note all

intervals in a partition are disjoint, thus the total length of the intervals in G
M̂

is no
larger than 1, and its cardinal number |G

M̂
| ≤ 1/η.

From these observations, we conclude the following. When an iteration cuts a
member Ii of G

M̂
into two “children” of equal length, one of the three cases will

happen: (a) neither child of Ii belongs to G
M̂
, thus |Ii| > η is removed from the total

length of G
M̂

; (b) exactly one of the children belongs to it (hence having a length
> η) and the other child, with the same length |Ii|/2 > η, is removed from G

M̂
; or (c)

both children belong to it. The case (a) decreases |G
M̂
| by 1, (b) keeps it unchanged,

and (c) increases it by 1. Now one can see that at most
[
3/η
]
+1 iterations will empty

G
M̂
, since at least one third of them will be cases (a) or (b) to keep |G

M̂
| ≤ 1/η, which

will remove all the total length of G
M̂
, thus emptying it. This reduces the maximum

error maxi E(Ii) by a factor θ < 1. Repeat this enough times and the maximum error
will eventually tend to 0.

Although (3.2) does not say anything about the convergence rate of E(I) as |I| →
0, and the proof of the above lemma may make it sound extremely slow, one can expect
a fairly fast convergence in most cases. For example, in the case E(I) = ωr(f, |I|, I)p,
if f is in the generalized Lipschitz space Lip∗(α, p) := Lip∗(α,Lp[a, b]), 0 < α < r,
that is, if

|f |Lip∗ := |f |Lip∗(α,p) := sup
t>0

(t−αωr(f, t, [a, b])p) <∞,

1022 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

then for any I ⊆ [a, b]

E(I) = ωr(f, |I|, I)p ≤ ωr(f, |I|, [a, b])p ≤ |I|α|f |Lip∗ .

We feel it is safe to say that most functions in applications belong to Lip∗(α, p) with
an α reasonably away from 0, at least on subintervals not containing singularities,
thus halving an interval often reduces its error by a factor of 2α.

A natural question that may arise here is: How complex are the new algorithms?
We give brief comparisons below to answer this question. Algorithm I is straight for-
ward. It is the original adaptive algorithm with a second (merging) phase added.
This phase consists of no more than N ′ + N ≤ 2N ′ merging attempts, where N ′ is
the number of subintervals the original algorithm generates, and N that of the final
subintervals. As for Algorithm II, there are two major differences from the original
version. The first one, as mentioned in the remark after the algorithm description,
is: up to two merging attempts are made after cutting each interval. The other one
is in the book-keeping. In the original version, a vector is needed to record errors
on all intervals (or to indicate which intervals are bad), while Algorithm II keeps the
index of the interval that has the largest error E(I) in a scalar variable, in addition
to the vector containing all errors. This requires a search for the largest element in
the vector after each cutting or merging operation.

One can see from above that the new algorithms are not much more complex
in terms of programming steps. The added CPU time, in terms of the number of
arithmetic operations, results mainly from the evaluations of the error measure E(I)
required by merging operations. Our estimate is that either algorithm uses two or
three times as much CPU time as the original algorithm. More information on CPU
time will be given in section 5 together with numerical details.

4. Approximation power of the algorithms. We now show that our modified
adaptive algorithms have the full power of nonlinear approximation. More precisely,
we prove that they produce piecewise polynomials satisfying the very same Jackson
inequalities for free knot spline approximation (with possibly larger constants on the
right-hand side since the partitions are not exactly balanced). As we mentioned
earlier, the corresponding Bernstein inequalities hold true for all splines; therefore we
are really proving that the approximation spaces for the modified adaptive algorithms
are the same as those for free knot spline approximation.

We state below our results as three main theorems, parallel to Theorems B, C,
and D, respectively. In fact, we can prove most results of this kind for our algorithms,
such as Kahane’s theorems and its generalization [13, Theorems 12.4.3 and 5], but
the proofs would be too similar to the ones below.

We recall that throughout this paper, Ij denotes the interval with largest measure
among all Ii in the partition, the union of any two consecutive intervals Ji = Ii∪ Ii+1

has a measure E(Ji) > E(Ij), and Ji is called bad in Algorithm I. All PP functions
on the resulting partitions are defined by (2.15).

Theorem 4.1. Let n and r be positive integers, and let 0 < p < ∞, 0 < α < r,
and γ := (α + p−1)−1. If f ∈ Bα, then the two modified adaptive algorithms (with

(i) E(I) =
∫
I
G(x) dx and ε = n−1

∫ 1

0
G(x) dx, where G(x) is defined in (2.8) or (ii)

E(I) = Er(f, I)
γ
p and ε = n−1|f |γBα) produce PP functions S of (2.15) that satisfy

the Jackson inequality

‖f − S‖p ≤ Cn−α|f |Bα .(4.1)

MODIFIED ADAPTIVE ALGORITHMS 1023

From Theorem A we obtain the approximation space Aα
q (Lp, {Σd

n,r}∞0) as a by-
product. It turns out to be the same as Aα

q (Lp, {Σn,r}∞0), which is not surprising

since Σd
n,r is dense in Σn,r. The surprising part is that one can get such an approxi-

mant using a simple adaptive algorithm.
Corollary 4.2. Let 0 < p < ∞, 0 < q ≤ ∞, 0 < α < β < r, and γ =

(α+ p−1)−1. For approximation by PP functions in Σd
n,r, we have

Aα
q (Lp) := Aα

q (Lp, {Σd
n,r}∞0) = (Lp,B

β)α/β,q.(4.2)

In particular,

Aα
γ (Lp) = (Lp,B

β)α/β,γ = Bα.(4.3)

Proof of Theorem 4.1. The proofs of the theorem in the cases (i) and (ii) are
very similar. We only consider (i) and remark that, in the case (ii), the inequality∑[N/2]

i=1 |f |γBα(J2i−1)
≤ C|f |γBα plays the major role.

PP approximants produced by Algorithm I. Let E(I) :=
∫
I
G(x) dx, where G is as

in (2.8), and ε := n−1Mγ , where

M :=

(∫ 1

0

G(x) dx

)1/γ

.

We claim that the number N of intervals it produces is no greater than 2n+1. Indeed,
by (3.8)

N ≤ 1 + 2

[N/2]∑
i=1

E(J2i−1)

ε
≤ 1 + 2

[N/2]∑
i=1

∫
J2i−1

G(x) dx

ε

≤ 1 +
2n

Mγ

∫ 1

0

G(x) dx = 2n+ 1.

The rest of the proof of (4.1) is similar to that of (2.4) (cf. section 12.8, p. 386 of
[13]); we sketch it here for completeness. It is proved in [13] that for any f ∈ Bα[0, 1],
M is equivalent to |f |Bα[0, 1] with constants of equivalence depending only on r and
γ, and that for such an f

Er(f, I)p ≤ C|f |Bα(I) ≤ C

(∫
I

G(x) dx

)1/γ

= CE(I)1/γ .(4.4)

Define the approximant S by (2.15) and we have

‖f − S‖pp =

N∑
i=1

Er(f, Ii)
p
p ≤ C

N∑
i=1

E(Ii)
p/γ ≤ CNεp/γ

≤ cn · n−p/γMp = Cn−pαMp ≤ Cn−pα|f |pBα ;

here in the fifth step we have used the equality γ = (α+ p−1)−1, and in the last step
we have used the equivalence of M and |f |Bα .

PP approximants produced by Algorithm II. Let E(I), M, and ε be the same as
above, and use (3.9) as stopping criterion in Step 2. If the algorithm terminates due

1024 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

to maxi E(Ii) ≤ ε (thus giving less than n pieces), it is the same situation as with
Algorithm I. Otherwise we have n pieces when it terminates, and (4.1) follows:

‖f − S‖pp =

n∑
i=1

Er(f, Ii)
p
p ≤ C

n∑
i=1

(∫
Ii

G(x) dx

)p/γ

≤ Cn

(∫
Ij

G(x) dx

)p/γ
≤ Cn

(
2

n

[n/2]∑
i=1

∫
J2i−1

G(x) dx

)p/γ
≤ Cn

np/γ

(∫ 1

0

G(x) dx

)p/γ
= Cn−pαMp ≤ Cn−pα|f |pBα .

Theorem 4.3. Under the conditions of Theorem C, the modified adaptive algo-

rithms (with E(I) :=
∫
I
ϕ(x)γdx and ε := n−1

∫ 1

0
ϕ(x)γdx) produce PP approximants

S in Σd
n,r that satisfy the Jackson inequality:

σd
n,r(f)p ≤ ‖f − S‖p ≤ Cn−r‖ϕ‖γ .(4.5)

Proof of Theorem 4.3.
PP approximants produced by Algorithm I. Let

E(I) :=

∫
I

ϕ(x)γdx, M :=

(∫ 1

0

ϕ(x)γdx

)1/γ

= ‖ϕ‖γ , and ε := n−1Mγ .

Defining Pi as the Taylor polynomial for f of degree r− 1 at the point xi+1 (not best
Lp approximation), we have (see equation (4.15) in Chapter 12 of [13])

‖f − Pi‖Lp(I) ≤ C‖ϕ‖Lγ(I) = CE(I)1/γ .(4.6)

Using (4.6) in place of (4.4), then (4.5) for p < ∞ can be proved by arguments very
similar to those in the proof of Theorem 4.1 by Algorithm I. We also refer the reader
to the proof of Theorem C in [13]. For p = ∞, the estimate of N is the same and we

need only to replace
(∑N

i=1 ‖f − Pi‖pLp(Ii)

)1/p
by max1≤i≤N ‖f − Pi‖L∞(Ii):

‖f − S‖∞ = max
1≤i≤N

‖f − Pi‖L∞(Ii) ≤ C max
1≤i≤N

‖ϕ‖Lγ(Ii)

= C max
1≤i≤N

E(Ii)
1/γ ≤ Cn−1/γM = Cn−r‖ϕ‖γ .

PP approximants produced by Algorithm II. Let E(I), ε, and M be the same as
above. Use (3.9) again as the stopping criterion in Step 2. If the algorithm terminates
because maxi E(Ii) ≤ ε, it is the same situation as in Algorithm I. Otherwise, for
p <∞ we have n intervals, and

‖f − S‖pp =

n∑
i=1

‖f − Pi‖pLp(Ii)
≤ C

n∑
i=1

‖ϕ‖pLγ(Ii)
≤ Cn

(‖ϕ‖γLγ(Ij)

)p/γ
≤ Cn

 2

n

[n/2]∑
i=1

‖ϕ‖γLγ(J2i−1)

p/γ

≤ Cn1−p/γMp = Cn−rpMp,

MODIFIED ADAPTIVE ALGORITHMS 1025

where we have used the inequality (4.6) in the second step, and γ = (r + 1/p)−1 in
the last one. For p = ∞, we make similar changes to those in Algorithm I:

‖f − S‖∞ = max
1≤i≤n

‖f − Pi‖L∞(Ii) ≤ C max
1≤i≤n

‖ϕ‖Lγ(Ii) = C‖ϕ‖Lγ(Ij)

≤ C

 2

n

[n/2]∑
i=1

‖ϕ‖γLγ(J2i−1)

1/γ

≤ Cn−1/γM = Cn−rM.

Theorem 4.4. Let n and r be positive integers, and let 0 < p,≤ ∞, 0 < α < r,
and γ := (α + p−1)−1. If f ∈ Vγ,p, then the two modified adaptive algorithms (with
E(I) := Er(f, I)

γ
p and ε := n−γ/pΩ(f, 1/n)γγ,p) produce PP functions S of (2.15) that

satisfy the Jackson inequality

‖f − S‖p ≤ Cn−α|f |Vγ,p
.(4.7)

Using Theorems 4.4 and A we have the following characterization of Aα
q (Lp, {Σd

n,r}∞0).

Corollary 4.5. For approximation by PP functions in Σd
n,r we have

Aα
q (Lp) := Aα

q (Lp, {Σd
n,r}∞0) = (Lp,Vσ,p)α/β,q.

In particular, if p <∞,

Aα
γ (Lp) = (Lp,Vσ,p)α/β,γ = Bα.

Proof of Theorem 4.4. It suffices to show (2.14) since (4.7) immediately follows
from it with any t > 0 and n := [t−1] + 1 (see the end of section 2). We only prove it
for p < ∞. The case of p = ∞ can be verified by making changes similar to those in
the proof of the L∞ case in the previous theorem.

PP approximants produced by Algorithm I. Let E(I) := Er(f, I)
γ
p and

ε := n−γ/pΩ(f, t)γγ,p. From (3.8), the number N of intervals the algorithm produces
can be estimated as

N ≤ Cn.

Indeed, if N > 2n (otherwise, it’s done) we have

N ≤ 1 + 2

[N/2]∑
i=1

Er(f, J2i−1)
γ
p

n−γ/pΩ(f, t)γγ,p
≤ Cnγ/p

Ω(f, t)γγ,p

[N/2]∑
i=1

ωr(f, |J2i−1|, J2i−1)
γ
p ≤ Cnγ/pNαγ ,

where we have used the definition (2.11) of Ω(f, t)γ,p. Since 1 − αγ = γ/p, this gives
N ≤ Cn. Now (2.14) follows, since

‖f − S‖pp =

N∑
i=1

‖f − Pi‖pLp(Ii)
=

N∑
i=1

Er(f, Ii)
p
p

≤ CN
(
n−γ/pΩ(f, t)γγ,p

)p/γ ≤ CΩ(f, t)pγ,p.

PP approximants produced by Algorithm II. We set E(I) := Er(f, I)
γ
p , and use

n := [t−1] + 1 and ε := n−γ/pΩ(f, t)γγ,p in the stopping criterion (3.9). If it stops
because maxi E(Ii) ≤ ε, we have exactly the same situation as with Algorithm I, with

1026 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

the same partition; otherwise there are n intervals when it terminates. In the latter
case, we have

‖f − S‖p =

(
n∑
i=1

‖f − Pi‖pLp(Ii)

)1/p

≤ C

(
n∑
i=1

ωr(f, |Ii|, Ii)pp
)1/p

≤ Cn1/pωr(f, |Ij |, Ij)p ≤ Cn1/p

 1

n

[n/2]∑
i=1

ωr(f, |J2i−1|, J2i−1)
γ
p

1/γ

≤ Cn1/p · n−1/γ · nαΩ(f, t)γ,p = CΩ(f, t)γ,p.

5. Numerical implementation and examples. Theoretically, the two algo-
rithms have the same approximation power. However, when it comes to numerical
implementation, we prefer Algorithm II since it directly controls the number of poly-
nomial pieces n, while ε in Algorithm I is neither a power of n nor a tolerance for
‖f − S‖ (though it is closely related to both). We implemented Algorithm II on the
computer, using Fortran 90 and mainly for p = 2. The error measure used in the code
is E(I) = Er(f, I)

2
2 unless we have a better one to use, such as

∫
I
ϕγ :=

∫
I
|f (r)|γ for

the square root function in the first example in this section. The L2 norm of f on the
interval Ii = [ti, ti+1] is estimated by the composite Simpson rule for integral∫

Ii

[f(x)]2dx ≈ h

3

(
[f(x1)]

2 + 4[f(x2)]
2 + 2[f(x3)]

2 + 4[f(x4)]
2

+ · · ·+ 2[f(xnp−2)]
2 + 4[f(xnp−1)]

2 + [f(xnp)]
2
)
,

(5.1)

and its L∞ norm is estimated by

max
1≤i≤np

|f(xi)|,(5.2)

where ti = x1 < x2 < · · · < xnp = ti+1 are equally distributed nodes, np is a program
parameter roughly set as 6 times r, and h = (ti+1 − ti)/np. The best L2 polynomial
approximant on Ii, discretized by (5.1) as an overdetermined np × r system of linear
equations for the least squares method, is calculated by either QR decomposition or
singular value decomposition by calling LINPACK subroutines Sqrdc and Sqrsl, or
Ssvdc (or their double precision counterparts). The latter takes longer but we did
not see any difference in the first four or five digits of the local approximation errors
they computed; thus we did not test it extensively.

The L∞ version of algorithm is basically the same, except that we use E(I) = ‖f−
PI‖∞, estimated by (5.2). The local polynomials PI (and the global smooth splines)
are still obtained by the least squares method, that is, still best L2 approximants.
This is common in the literature, and it is justified by the fact that the best L2

polynomial approximant is also a near-best L∞ polynomial on the same interval; see
Lemma 3.2 of DeVore and Popov [16].

The number of polynomial pieces is used as the main termination criterion, while
ε in (3.9) is set to a small value mainly to protect the program from falling into infinite
loops, rather than the sophisticated ones as in proofs in the previous section. It turned
out that infinite loop is not a problem. A nonfull rank matrix in the least squares
method is a problem, which happens far before it falls into an infinite loop. This
is because if Ii is too small, the machine will have difficulties distinguishing the np

MODIFIED ADAPTIVE ALGORITHMS 1027

points needed in (5.1). Therefore, we added a third condition to protect the program
from failing: stop the program when

ti+1 − ti < np ·max(|ti|, |ti+1|) · εm.(5.3)

We also added a second part in the code, namely, finding an L2 smooth spline
approximation to the function with the knot sequence {ti}n+r

i=2−r, where the interior
knots a < t2 < t3 < · · · < tn < b are the break points of the PP function obtained
by Algorithm II, used as single knots, and the auxiliary knots are set as t2−r =
t3−r = · · · = t1 = a, and tn+1 = tn+2 = · · · = tn+r = b. Despite the fact that the
partitions are guaranteed to be good only for PP functions, they usually work well
for smooth splines, too. De Boor gave some theoretical justification in the discussion
of his subroutine Newnot [4, Chapter XII].

The least square objective function for finding this smooth spline S̄ is

nsn+1∑
j=1

wj [f(τj)− S̄(τj)]
2,(5.4)

where ns, set as 5r+1, is the number of equal pieces into which we cut each subinterval
Ii, τj are the points resulted from such cutting, and the weights wj are chosen so

that (5.4) becomes a composite trapezoidal rule for the integral
∫ b
a

[
f(x)− S̄(x)

]2
dx:

wj = (ti+1 − ti)/ns if τj ∈ (ti, ti+1); wj = (ti+1 − ti−1)/(2ns) if τj = ti for some
2 ≤ i ≤ n; w1 = (t2 − a)/(2ns) and wnsn+1 = (b− tn)/(2ns). The actual calculation
of the B-spline coefficients of

S̄(x) =

n∑
i=2−r

ciBir(x),

where Nir(x) := N(x; ti, . . . , ti+r) are the B-splines with the knot sequence {ti} scaled
so that

∑
Nir(x) ≡ 1, is done by de Boor’s subroutine L2Appr in [4, Chapter XIV].

We used the source code of all the subroutines in the book from the package PPPACK
on the Internet.

We tested our code on a SUN UltraSparc, with a clock frequency 167MHz, 128MB
of RAM, and running Solaris 2.5.1. The speed is so fast that it is not an issue here:
for finding break points, it is somewhere from 0.015 second for n = 6 to 0.1 second for
n = 30 when printing minimum amount of messages on the screen, and it is less than
10% of these for computing smooth splines. We also tested the code on a 300 MHz
Pentium II machine with 64 MB of RAM running Windows NT 4.0. The speed is at
least three times as fast. None of the problems we tested used more than 0.1 second.
(The reason for the great difference in speed may be that the SUN we used is a file
server, not ideal for numerical computation.) There is still room for improvement in
efficiency. For example, one can use a value of np, larger than what we use, at the
beginning and decrease it as n increases (and the error on each subinterval decreases).
The value of ns should be related to n, too, for the same reason.

The main cost of CPU time is the evaluation of the error measure E(I) for each
subinterval I. We use E(I) = Er(f, I)

2
2, estimated by QR decomposition, as an exam-

ple. Each such problem involves np function evaluations, and (np − r
3)r

2 arithmetic
operations required in QR decomposition, plus some more for estimating the error
from the resulting matrices. Each cutting of intervals requires two E(I) evaluations,

1028 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

Table 5.1
Approximation order of f(x) =

√
x on [0, 1].

r 1 1 2 2 3 3 4 4 5 5
n 2–60 11–60 2–60 11–60 2–60 11–60 2–60 11–60 2–60 11–60

α (L2) 1.00 1.00 1.95 1.99 2.91 2.98 3.89 4.20 4.91 5.48
α (L∞) 0.98 0.99 1.90 1.96 2.81 3.05 3.62 4.05 4.42 4.97

and each merging attempt requires one. Our numerical experiments show that a typ-
ical run resulting in n subintervals cuts intervals about 2n time. Each cutting results
in up to two attempts of merging subintervals. That gives about 8n least squares
problems, each of which involves np function evaluations plus about npr

2 arithmetic
operations. In view of the approximation order we proved in the previous section, and
the fact that np is roughly a multiple of r, we think it pays to use a relatively large r,
at least 4 or 5. For r = 5, the error will reach the machine epsilon (single precision)
when n is somewhere between 30 and 70 in most cases.

We use the square root function f(x) =
√
x to test the PP function approximation

order. This function is only in the Lipschitz space Lip(1
2 ,L∞), thus the approximation

order is only 1/2 for splines with equally spaced knots in the L∞ norm, no matter
what their order r is. By Theorem 4.3, we should have en := ‖f−Sn‖p ≤ Cn−r, where
Sn is the function consisting of n polynomial pieces computed by Algorithm II using
E(I) =

∫
I
ϕ(x)γ dx :=

∫
I
|f (r)(x)|γ dx, and we have combined ‖ϕ‖γ in the theorem

into the constant C. After the knot sequence has been found, QR decomposition is
used at the end of the program on each subinterval to estimate en. Since the error
decreases fast for r = 5, double precision had to be used in QR decomposition for
large values of n. Assume that what we actually obtain from the code is en = Cn−α,
where α is the approximation order. Since log en = logC − α log n, if we plot the
points (xn, yn) := (logn, log en) in the plane, they should form a line. Since such
a plot zigzags very much, we calculated the least squares line y = −αx + b fitting
(xn, yn) to find the order. Table 5.1 gives values of α for different r using both L2 and
L∞ norms. We should mention that the points (xn, yn) for small values of n are too
low and ruin the obvious line pattern formed by those for larger n, thus we give two
values of α, one from the points for n = 2, . . . , 60, and the other from n = 11, . . . , 60.
As can be seen from the table, the latter values are right around or even exceed r.

Remark. We tried some power of Er(f, I)p for E(I) and felt, in view of (4.6),
it would yield a better balance of subintervals, thus a higher order. But the orders so
obtained were well below r (4.46 for r = 5 and p = ∞, e.g.). The reason might be that∫
I
ϕγ is additive, but (power of) Er(f, I)p is not.
To illustrate the advantage of interval merging, we compare the original adaptive

algorithm and our modified ones with the function

f(x) =
log2(2

−m + x)

−m .

This function is in C∞, and is decreasing and convex on [0, 1] with f(0) = 1 and
f(1) ≈ −2−m/(m ln 2). We use m = 50, r = 1, and E(Ii) = E1(f, Ii)∞. Note that
E1(f, Ii)∞ = (f(xi) − f(xi+1))/2 since f is decreasing on [0, 1]. Table 5.2 shows
comparison in numbers of knots produced for the same approximation error by the
original adaptive algorithm and our Algorithm II. Both programs try to put first knots
near x = 0 where the graph is very steep. The original algorithm has to, as pointed
out early, lay down knots 2−1, 2−2, . . . , 2−23 one by one before reaching an error of

MODIFIED ADAPTIVE ALGORITHMS 1029

Table 5.2
Comparison in numbers of interior knots produced by the original and modified adaptive algo-

rithms for the same error in approximating f(x) = − log2(2
−m + x)/m.

Error 0.27 0.23 0.14 0.12 0.060 0.032
Original 23 27 36 38 44 47
Alg. II 1 2 3 5 10 15

0.27, while Algorithm II, after trying all these knots one at a time and merging all
but the last interval, puts the very first knot at 2−23.

It is interesting to watch how Algorithm II moves a knot toward a better position
in successive iterations without increasing the total number of pieces. The following
screen output shows that in iterations 1 and 2 the program moves the break point 0.5
to 0.25 and then to 0.125, while the error decreases form 0.5 to 0.47; in iterations 3–22
it moves the break point all the way to 2−23 ≈ 1.192× 10−7 with the error decreased
to 0.27. What happened internally is, in iteration 1, e.g., it cuts the interval [0, 0.5]
into [0, 0.25] and [0.25, 0.5]. Since the error on the union of [0.25, 0.5] and [0.5, 1] is
smaller than that on [0, 0.25], it then merges the two intervals into [0.25, 1]. The net
effect of these steps is moving the break point 2−1 to 2−2.

Iteration 0: # of intervals = 2, Knots & errors:

errors=

4.90000E-01 1.00000E-02

L_\infty error on [a, b] = 4.90000E-01

knots=

0.00000E+00 5.00000E-01 1.00000E+00

Iteration 1: # of intervals = 2, Knots & errors:

errors=

4.80000E-01 2.00000E-02

L_\infty error on [a, b] = 4.80000E-01

knots=

0.00000E+00 2.50000E-01 1.00000E+00

Iteration 2: # of intervals = 2, Knots & errors:

errors=

4.70000E-01 3.00000E-02

L_\infty error on [a, b] = 4.70000E-01

knots=

0.00000E+00 1.25000E-01 1.00000E+00

(Many lines deleted....)

Iteration 22: # of intervals = 2, Knots & errors:

errors=

2.70000E-01 2.30000E-01

L_\infty error on [a, b] = 2.70000E-01

knots=

0.00000E+00 1.19209E-07 1.00000E+00

1030 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

Table 5.3
Approximation errors to the Runge function on [−5, 5].

n ‖f − Sn‖2/
√
10 ‖f − S̄n‖2/

√
10 ‖f − S̄n‖∞ ‖f − S̄n‖∞ Hu ‖f − S̄n‖∞ LM

3 0.0035 0.029 0.074 0.079 0.070
5 0.00084 0.0058 0.013 0.0035 0.0032
7 0.00029 0.0039 0.0098
9 0.00011 0.00087 0.0023
11 0.000039 0.00018 0.00091 0.00086 0.00090

We now consider the infamous Runge function, which is also in C∞ but, on the
other hand, is hard to interpolate or approximate. Lyche and Mørken [22] approxi-
mated it by the knot removal algorithm, and Hu [20] approximated it by balancing
the rth derivative of the function on subintervals in two nested loops. Here and in
the rest of the paper, we use r = 4. In Table 5.3, we compare our results with those
of Lyche and Mørken (LM) [22] and Hu [20]. For the same number of knots (that is,
n − 1), we list our errors measured in ‖ · ‖2/

√
b− a for the PP function Sn and the

smooth spline S̄n, also that of S̄n measured in L∞ norm. We divide the L2 norm by√
b− a since it is more comparable to the L∞ norm, which is what LM and Hu used.

The errors by LM are estimated from figures in [22]. Because of the simple nature of
our algorithm, we only expected to compete with their results by splines with two or
three times as many knots. It turns out that our approximation errors are almost as
good as theirs, which were produced by more sophisticated methods.

By now, the reader may begin to wonder: what is the effect of the parameter
0 < θ < 1 in Step 1 of Algorithm II, used in Lemma 3.9 to guarantee the termination
of Algorithm II. We tried θ = 1 with all functions we tested, it worked excellently
except that the number of polynomial pieces went up and down a few times with the
square root function using E(I) =

∫
I
|f (r)(x)|γ dx, in which case θ = 0.9 was used

instead. It is true that in theory it might get into an infinite loop, but since our goal
is to find a nearly balanced partition, θ = 1 works better in this aspect, provided
infinite loop does not happen. It did not. As a matter of fact, sometimes we feel
the need for a value slightly larger than 1, e.g., with symmetric functions such as the
Runge function. What happens with θ ≤ 1 is that if there are two subintervals having
the same largest measure at the moment, symmetric about the center of the interval,
then the outcome of the next iteration, which processes the subinterval on the left,
will very often interfere with the processing of the subinterval on the right later. It
may not make the approximation error worse, at least not by much, it is just that the
knot sequence becomes unsymmetrical, thus unnatural and unpleasant. Furthermore,
most algorithms in the literature produce symmetric knots for symmetric functions;
it would be hard to compare our results with theirs. For these minor reasons, we
used θ = 1.01 in preparation of Table 5.3. In the next example, we consider the PP
function

f(x) =

{
x2 if x ≤ √

2/2,

1 otherwise,

which has a jump at
√

2/2. As we mentioned in the discussion before Lemma 3.1, since√
2/2 has no finite binary representation, this function can never be approximated

exactly by a PP function with dyadic break points. The program (with p = ∞) keeps
cutting and merging around the jump (since the number of pieces is always 3 after
two iterations), until it is stopped by the criterion (5.3), resulting in t2 = 0.70710659

MODIFIED ADAPTIVE ALGORITHMS 1031

500 600 700 800 900 1000 1100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

-.04

-.03

-.02

-.01

 .00

 .01

 .02

 .03

 .04

Temperature

Fig. 5.1. Titanium Heat Data (circles). The final spline (solid line) has 15 interior knots. The
errors for preapproximation (dotted) and for the final spline (dashed) use scales on the right.

and t3 = 0.70710754. The PP function matches f exactly on the computer screen
since the two points are indistinguishable. One can very well combine them into a
single break point, thus virtually reproducing f . The original adaptive algorithm, in
contrast, would put many many knots around the jump while trying to narrow the
subinterval containing the jump: 0.5, 0.75, 0.625, 0.6875, 0.71875, All these knots
are useless except the newest two.

In practice, one often wants to approximate discrete data points other than known
functions as in the previous examples. In this case, we preapproximate the points by
a spline with as many parameters as we wish to use, then apply our algorithm to this
spline. For smooth-looking data, we interpolate the data by a C1 cubic spline with
knots at the data points, using de Boor’s subroutine Cubspl in [4]. This worked very
well. We produced some sample data points from the Runge function and square root
function and applied this approach to them. It resulted in virtually the same knot
sequences as those generated by directly approximating the original functions.

In the real world, however, it is likely that the data will contain errors. If the
data points are interpolated, one can see small wiggles in the graph, which tricks the
program laying knots in areas where the curve is otherwise flat. One such example
is the Titanium Heat Data (experimentally determined), see [4, Chapter XIII], and
also LM [22] and Hu [20]. In Figure 5.1 the reader can see wiggles on both the left
and right. De Boor [4, Chapter XIV] suggests that the data be approximated by a
less smooth spline. We absolutely agree. For the same reason, we used fewer knots
for preapproximating spline in the flat parts at both ends, than we did near the high

1032 Y.-K. HU, K. A. KOPOTUN, AND X. M. YU

peak around 900◦, trying to ignore the wiggles. In fact, we used almost the same knot
sequence for preapproximating spline as in Figure 4 of [20].

Table 5.4
Approximation errors to the Titanium Heat Data.

Obtained by Order # of knots Error
De Boor 6 15 0.032

LM 4 6 0.045
Hu 4 10 0.048
Hu 4 13 0.024

Alg. II 4 11 0.070
Alg. II 4 15 0.031

Since de Boor, LM, and Hu all used L∞ norm for approximating these data, we
also used the L∞ version of our program. Figure 5.1 shows a cubic spline approxi-
mation to the Titanium Data obtained by this method. It has 15 interior knots with
an error of 0.031. Table 5.4 gives a comparison of our results with those by others on
the same data.

Acknowledgments. We are deeply indebted to Professor Ron DeVore, who
inspired us by discussing the excellent ideas in [11] during our visit to the University
of South Carolina. We want to thank him and Professors Pencho Petrushev and
Albert Cohen for providing us with drafts of their manuscript [11]. Credit is also due
to Professor Dietrich Braess, the editor of this paper, and the referees, whose opinions
and suggestions helped very much in improving the manuscript. As a matter of fact,
we reshaped the last section during the communication with them.

REFERENCES

[1] J. Bergh and J. Peetre, On the space Vp (0 < p ≤ ∞), Bol. Un. Mat. Ital. (4), 10 (1974),
pp. 632–648.

[2] M. Birman and M. Solomjak, Piecewise polynomial approximation of functions of classes
Wα

p , Mat. Sb (N.S.), 73 (1967), pp. 331–355.
[3] C. de Boor, Good approximation by splines with variable knots, in Spline Functions and

Approximation, A. Meir and A. Sharma, eds., Birkäuser, Basel, 1973, pp. 57–72.
[4] C. de Boor, A Practical Guide to Splines, 4th ed., Springer-Verlag, New York, 1987.
[5] C. de Boor and J. R. Rice, Least squares cubic spline approximation II–Variable knots, CSD

TR 21, Purdue University Report, Lafayette, IN, 1968.
[6] C. de Boor and J. R. Rice, An adaptive algorithm for multivariate approximation giving

optimal convergence rates, J. Approx. Theory, 25 (1979), pp. 337–359.
[7] Yu. Brudnyi, Spline approximation and functions of bounded variation, Dokl. Akad. Nauk

SSSR, 215 (1974), pp. 511–513.
[8] H. Burchard, Splines with optimal knots are better, Appl. Anal., 3 (1974), pp. 309–319.
[9] P. L. Butzer and K. Scherer, Jackson and Bernstein-type inequalities for families of com-

mutative operators in Banach spaces, J. Approx. Theory, 5 (1972), pp. 308–342.
[10] A. Cohen, W. Dahmen, and R. A. DeVore, Adaptive wavelet methods for elliptic operator

equations–Convergence rates, Math. Comp., to appear.
[11] A. Cohen, R. A. DeVore, P. Petrushev, and H. Xu, Nonlinear approximation and the space

BV (R2), Amer. J. Math., 121 (1999), pp. 587–628.
[12] R. A. DeVore, A note on adaptive approximation, Approx. Theory Appl., 3 (1987), pp. 74–78.
[13] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin,

1993.
[14] R. A. DeVore and V. A. Popov, Free multivariate splines, Constr. Approx., 3 (1987), pp. 239–

248.

MODIFIED ADAPTIVE ALGORITHMS 1033

[15] R. A. DeVore and V. A. Popov, Interpolation spaces and non-linear approximation, in Func-
tion Spaces and Applications, M. Cwikel, J. Peetre, Y. Sagher, and H. Wallin, eds., Lecture
Notes in Math. 1302, Springer, Berlin, 1988, pp. 191–205.

[16] R. A. DeVore and V. A. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc., 305
(1988), pp. 397–414.

[17] R. A. DeVore and X. M. Yu, K-functional for Besov spaces, J. Approx. Theory, 67 (1991),
pp. 38–50.

[18] R. A. DeVore and X. M. Yu, Degree of adaptive approximation, Math. Comp., 55 (1990),
pp. 625–635.

[19] Y.-K. Hu, Convexity preserving approximation by free knot splines, SIAM J. Math. Anal., 22
(1991), pp. 1183–1191.

[20] Y.-K. Hu, An algorithm for data reduction using splines with free knots, IMA J. Numer. Anal.,
13 (1993), pp. 365–381.

[21] Y.-K. Hu, K. A. Kopotun, and X. M. Yu, On multivariate adaptive approximation, Constr.
Approx., 16 (2000), pp. 449–474.

[22] T. Lyche and K. Mørken, A data reduction strategy for splines with applications to the
approximation of functions and data, IMA J. Numer. Anal., 8 (1988), pp. 185–208.

[23] P. Petrushev, Direct and converse theorems for spline and rational approximation and Besov
spaces, in Functions Spaces and Approximation, M. Cwikel, J. Peetre, Y. Sagher, and
H. Wallin, eds., Lecture Notes in Math. 1302, Springer, Berlin, 1988, pp. 363–377.

[24] P. P. Petrushev and V. A. Popov, Rational Approximation of Real Functions, Cambridge
Univeristy Press, Cambridge, UK, 1987.

[25] J. R. Rice, Adaptive approximation, J. Approx. Theory, 16 (1976), pp. 329–337.
[26] L. L. Schumaker, Spline Functions: Basic Theory, John Wiley, New York, 1981.

