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Abstract

In this paper, we generalize [8, Theorem 4.1] to be applicable to the classes of
(almost) weakly/nearly (co)-k-monotone functions and discuss some applications
and open problems.

1 Introduction and Main Results

Let 8,(z,) be the space of all piecewise polynomial functions (ppf’s) of degree r (order
r+ 1) with the knots z,, 1= (z;)j, =1 =: 20 < 21 < ... < 2,1 < 2z, := 1. In other words,
we say that s € 8,(z,) if, on each interval (z;, z;41), 0 <i <n —1, sis in II,., where II,
denotes the space of algebraic polynomials of degree < r.

For a partition z, := {20,...,2,| — 1 =120 < 21 < -+ < 2, := 1}, let J; := [z}, 2j41]
with z; := —1, j <0, and z; := 1, j > n, and |J| := meas J.

Given an absolute constant A we say that z, is “A-quasi-uniform” if A(z,) =
maxXo<;j<n_1|J;|/ Ming<;j<n—1|J;| < A, and denote by U2 the class of all such partitions.
(Note that Ul consists of only one partition which is the uniform partition of [—1, 1]
into n subintervals of equal lengths.)

We also use the notation t,, = (t;)j, where t; := —cos (mi/n), 0 < i < n, for the
Chebyshev partition of [—1,1].

As usual, L,(J), 0 < p < oo, denotes the space of all measurable functions f on

J such that || f||L,y < oo, where | fllr, ) = (fJ|f(x)|pda?)l/p if 0 < p < oo, and
| fllLa(ry = esssup,c;|f(x)|, and write L, := L,[-1,1] and || - ||, := || - [[L,[=1,5- We
say that a function f is in the Sobolev Space W¥(L,) if it has an absolutely continuous
(v — 1)st derivative such that f) € L,.

The kth symmetric difference is AF(f, z,J) = Zf:o (k)(—l)k_if(x — kh/2 +ih), if

i

r+kh/2 € J, and A¥(f,x,J) := 0, otherwise. The kth modulus of smoothness of a
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function f € L,(J) is defined by

wi(fot, J)y = sup. IAFCE, - |, ) s

and wk(f) t)p = wk(f7 ta [_]-7 1])13
The (usual) Ditzian-Totik modulus kth modulus of smoothness (see [3]) is

wlf(fv t)p = OS<1}1LI<)t ||Afup(,)(f7 ')Hpv

where p(z) := 1 — 22,
We also need the weighted Ditzian-Totik kth modulus of smoothness of a function
fel,[—1,1], 0 < p < oo, which we define as

Wi (f hwyp = sup ||[W (-, kh/2)AL,(f,")]

0<h<t p

where W is some weight function. Note that Afw(x)( f,z,[—1,1]) is defined to be identi-
cally 0 if x € Dy, 2, where

1) D (o 1-dpl) 2 el \ (1) = o el < T

and so W should only be defined on Dy, o.
In this paper, we use weighted moduli with the weights (see [8,12])

Wi, kh/2) = ¢"(x) and Wiz, u) = @"([z] + pep(z)) ,

and denote

Wil Dy = wi(fihwnp = sup " (VAR (£ )]

and
@f (f )y = Wi (f, Owap = sup. " (- [+ khp()/2) Ay ()]

Also, note that

Wi (o t)p = 05, (f )y = ¥ fll,  and  wio(f,t)y = &Fo(f, )y = wE (S 1), -

Clearly,
(1.2) Wiy (F)p S Wl (f, 1) -
We also emphasize that ¢”f € L, does NOT imply that wf (f,t), < oo (consider
flx)=14+2) P, k=v=1for0<p<oo,and f(z)=(1+2)"", v=2k=1for
p = 00). At the same time, if " f € L, then &} (f,t), < oo.

Given a set (usually, an interval) J, let M(J) be a “constraints class” of functions
defined on J. For example, M(.J) could be the class of all monotone or convex functions
on J, or the class of functions changing their k-monotonicity the given number of times,
or a class of functions satisfying some interpolation conditions, or having their range
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restricted on J, or some class of functions having certain other shape characteristics on
various subsets of J, etc. If J is an interval we abuse the notation and omit parantheses
in this notation, i.e., M|a, b] := M(|a, b]).

Let Jy :={z/A | x € J} and, in particular, [a,b]\ := [a/\,b/A]. Given a constraints
class M(J) and a parameter A > 0, we denote by [M(J)], the class of all functions which
are defined on Jy and such that

feM(J) ifandonlyif fe[M(J)],,
where fy := f(A\-). Hence, since (fx)i/x = f, the above is equivalent to:
feM(J)], ifandonlyif fi,\eM(J).

For example, if M?(J) denotes the class of all convex functions on J, then [M?(J)], =
M?2(Jy) is the class of all convex functions on Jy. Note, however, that, in general,

(M(J)], # M(Jy). For example, if M1/4[—1,1] is the set of all functions which are

defined on [—1, 1] and have an inflection point at 1/4, then functions in [3\7[1/4[—1, 1]] )
1/2

have their inflection points at 1/2 while functions from M1/4 ([—1, 1]1/2) = 3\7[1/4[—2, 2]
still have their inflection points at 1/4.
In order to unify the statements for different partitions, following [8, (4.1)], we define

(v) if UA
(v) — wm(g at)p> 1I 7, c n
(13) Wm(g 7t)p . { w%,,(g(y), t)p , 1f Z, = tn )

The following theorem is our main result.

Theorem 1.1 Let n,m,v € N, m' e Ng, m’+v>m, n>m'+v -1, f € L,[-1,1],
0 <p <o, and let W C W¥(LL,)) be some class of functions such that f(p-) =: f, € W”
whenever f € W* and p > 0. Also, forT >0, let \ := 1—7/n? be such that 1/2 < X\ < 1.
Additionally, let A € R and z, be either a A-quasi-uniform or the Chebyshev partition
of [=1,1] into n intervals, i.e., z, € U5 or z, = t,,.

Suppose that the following assumptions are satisfied.

ASSUMPTION 1: for some r € N, there ezists s € 8,(z,) N M[—X, A\ N WY such
that

1f = sl o1y < cwm(fin 7,
P

ASSUMPTION 2: for any function g € WY N [M[—=A\, A|], there exists a polynomial
¢n € IL, N [M[=X, A]],, such that

||g - QnHLp[_LH < Czn_”Wm/(g("), n_l)p .
Then there ezists a polynomial p,, € 11, N M[—A, \] such that
If = p”HLp[—Ll} < ewn(f, n_l)p )

where ¢ depends on ci,co, 7,7, m,m’,v,p, and also on A if z, € US.
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Remark. Because of (1.2), Theorem 1.1 in the case z,, = t,, also holds for w,,(g"),t), :=
(‘Drﬁ V(g(y)7 t)P

Throughout this paper, ¢(71, 7, . . .) denote positive constants which depend only on
the parameters 7,72, ... (note that ¢(p,...) depends on p only as p — 0) and which
may be different on different occurrences. At the same time, ¢, denote positive constants
which are fixed throughout the paper.

2 Auxiliary Results

Theorem 2.1 ([8,9]) Let z, be either a A-quasi-uniform or the Chebyshev partition of
[—1,1] into n intervals, i.e., z, € UL or z, =t,, and let s € §,(z,) NC™[—1,1], r €N,
0<m<r—1. Then, forany 1 <k <r+1,1 <v <min{k,m+ 1} and 0 < p < oo,
we have

(2.4) N Wiy (s, 07, ~ wi(s,n7),,

with equivalence constants depending only on v, A (if z, € U2 ) and p as p — 0.

The following lemma is rather well known and can be found in [1, Theorems A.4.1
and A.4.10], for example.

Lemma 2.2 (Remez inequality) For anyq € I1,, and a set A such that meas{[—1, 1]\
A} < s < 1/2 the following inequalities hold:

||q,|<c[—1,1} < e anc(A)

and

1/p
lalley o < (1) Tl 0<p< oo,

Corollary 2.3 For any q € I1,,, a set A such that meas{[—1,1] \ A} < s < 1/2, and
0<p< oo,
HqH]Lp[—l,l] < 21V pen ||qH]Lp(A) :

In particular, for any 0 < 7 < n?/4,
(2.5) lalle, 10 < <(T0) lalle, 21ar/m2 12 /n2) -

Lemma 2.4 Suppose that f € L,[-1,1], 0 < p < oo, 7 >0, A :=1— 7t? is such that
A>1/2, and f\(z) := f(A\x). Then,

(2.6) wi (fa t)p < (7, p) WE (S, )y -

We remark that the condition A > 1/2 is not essential and 1/2 can be replaced by
any positive constant ¢q (the constant ¢ in (2.6) will then depend on ¢, as well). It also
immediately follows from the definition that the statement of this lemma holds for the
usual kth modulus, i.e., wp(fi, 1), < c(p)wi(f, 1),
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Proof. In the proof, it is more convenient to work with the Ivanov moduli which are
equivalent to the Ditzian-Totik moduli. Recall that, the Ivanov modulus of smoothness
is defined by (see [5,6])

Tk(f? w(t))p,p = Hwk(fv K w(tv ))pHp )
where

1 P(t,x) )
ol vlt )] = g / o | 2 L AP

with ¥ (t,z) = te(z) + t2. Tt is known (see [15] and [2]) that, for all 0 < p < oo,
Te(f,0(t))pp ~ wi (f, ), with equivalence constants depending only on k and p.
Changing variables we have

P(t,x)
Tk(an¢(t)>£,p = / / ‘A’f(f/\,x—i—kh/z[ 171])‘pdhdx
w(m
B /_1/ () Qw (t, ) |AS (f, Az + kAR/2, [=1,1)) [P dh dx
A (t,x/N) . p
- / //\w(t:c/A 202 (t x/)\)‘Ah(f’x+kh/2= (—1,1])|P dh dx .

Now, Mp(t, 2/X) = tv/AZ — 22+ t? < 1)(t, ). Tt is also a simple exercise to show that, for
A =1—7t? such that A > 1/2, \2¢(t,2/)\) > (7)Y (t, x) for all z € [—\, A]. Therefore,

p k _ p
(OO, < o / L MG R L P
= o(7)m(f, (),

which completes the proof. O

3 Proof of Theorem 1.1

In the case 7 = 0, the statement of the theorem immediately follows from [8, Theorem
4.1], since [M(J)], = M(J). Hence, we only need to consider the case 7 > 0.
Assumption 1 guarantees that there exists s € 8,(z,) N M[—A, A] N'W” is such that

1f = sl -1y < cawm(f, n Y.

Consider the function sy := s (\:). The same proof as in [8, Section 3.3] shows that (2.4)
is valid with s replaced by s,.

Now, since sy, € W” N [M[—=A, A]],, Assumption 2 implies that there exists a polyno-
mial g, € II, N [M[—=A, A]], such that

HS)\ - QnHLp[_l,l] < C2n_VWm’(Sg\V)>n_l)p < Cwm’-i-u(S)\a n_l)p < CWm’-i-u(Sa n_l)pa
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where the last inequality follows from Lemma 2.4 and the remark after its statement.
Hence, recalling that m’ + v > m, we have

||S)\ - q"HILp[—l,l] < CWm(S, n_l)p .

Therefore, for p, := ¢u(-/A), using the fact that [[M(J)],],,, = M(J) we have p, €
I, " M[—A, A], and

_n]L—)\,)\Zl AT lnllL,[-1,1) = m>_1p-
s PHP[ ] )\/pHS (JHP[ | Sew (s,n™")
Suppose now that a polynomial P, € II,, is such that
s — PnHLp[—l,u < Wi (s,n7h),
(a polynomial of best approximation to s will do). Then, by the Remez inequality (2.5),

1P — pn”Lp[—Lu <c(rp) 1P — anLp[—,\,A] )

and hence
|s — pn”]Lp[_Ll} < cffs— Pn”]Lp[—l,l} +c|P— anLp[—l,l]
< clls = Pally, iy + ellPo = palle, oo
< clls = Ballp, i T ellPa = sl oax T ells = pally, oy
< clls = Pully, g +ells = pallo, oy
< cwn(s,n ™), <ewn(finh),,

where in the last inequality we used Assumption 1 and standard inequalities for moduli
of smoothness. Finally,

15 = pallyag < elf = sllya +ells = pally 1 < wnlFin ™)y

which completes the proof of the theorem.

4 Weak Co-k-monotone Polynomial Approximation

Given k > 0 and an interval I, a function f is said to be k-monotone on [ if its kth

divided differences [xy, ..., zx]f are nonnegative for all choices of (k+ 1) distinct points
To, ..., o, in I. We denote the class of all k-monotone functions on I by M¥(I).
Let Y,, 0 > 1, be the set of all collections Y, := {y;}7_,, such that y,4; := —1 <

Yo < ... <y1 < 1=:yp,and Yy := {0}. Let M*(Y,) denote the collection of all functions
f that change k-monotonicity at the points in Y,, and are k-monotone in [y;, 1], i.e.,

MA(Yo) == {f | (=1)'f € M*[yit1, 0], 0<i <o},
(Note that M*(Yy) = M*[—1,1].) If f € C*(—1,1), then f € M¥(Y,) if and only if
fO(@)I(z) >0, ze(-1,1),
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where II(z) := [[_,(x —y;). We say that functions f and g are “co-k-monotone” if they
both belong to the same class M*(Y,) (note that it is possible for a function to belong
to more than one class M*(Y}), for example, f = 0 is in M*(Y;) for all sets Y5).

For an interval [a, b], we also denote

MY (Yo)[a, 0] = {f | (=1)'f € M* ([yisr,mi] N [a, b)), 0 < i< o}

and note that M*(Y,) = M*(Y,)[-1, 1].

We now introduce the notions of “(weakly) almost”, “(weakly) nearly” and “weakly
co-k-monotone” functions (see also [4] where somewhat similar notions were introduced
for (co)positive and intertwining approximation).

Let p,(z) :=¢(1/n,z) =n"tp(z) +n=2 B >0, 7 >0, and denote

Ji(n, B) = (yi — Bon(Yi), yi + Bpu(vi)) N [=1,1], 1<i<o,

Jo(n, 7)== (1=mn2 1], Jopi(n,7):=[-1,—-14+7mn7?),

and
O(nu T, /67 Yo) = Ug:l']i(nu 6) U JO(nv T) U J0+1(n7 T) .

We say that functions f and g are “almost co-k-monotone” or “weakly almost
co-k-monotone” if they have the same k-monotonicity on [—1,1]\ O(n,0, 3,Y,) or on
[—1,1]\ O(n, 1, 8,Y,), respectively.

Given f € M*(Y,) we denote the class of all “weakly almost co-k-monotone”
functions with f by M*_(n,7,3,Y,), i.e.,

M\]?va(n77-767Y0> = {f ‘ (_1)Zf € Mk ([yi-l-layi] \O(n7 T?ﬁuycr)) ) 0 S l S U} )
and the class of all “almost co-k-monotone” functions with f by
Miz:(”’? ﬁ? YCT) = vaa(”? 07 67 Yo) .

In particular, we say that a function ¢ is “weakly co-k-monotone” with f €
ME(Y,) if f and g are co-k-monotone on [—1+ 7n72,1 — 7n 2], and denote

Mf‘fv(n, 7,Y,) = vaa(n, 7,0,Y,) = Mk(Yg)[—l +m 21— Tn_2] )

We say that a function g is “nearly co-k-monotone” with f € M*(Y,) if there exists
Y, ={9:}7_, € Y, such that

(4.7) 19 — il < Bpa(ys), 1<i<oc,

and g € Mk(?a) Given f € M¥(Y,) we denote the class of all nearly co-k-monotone
functions with f by M*(n, 3,Y,), i.e.,

ME(n, B,Y,) = {f | f € M*(Y,) for some Y, = {§;}7_, s.t. (4.7) holds} .



Finally, we say that g is “weakly nearly co-k-monotone” with f € M¥(Y,) if there
exists Y, = {§;}%_, € Y, such that (4.7) is satisfied and g € M*(Y,)[-1+1n"2 1—71n"2],
1.€.,

Mi‘/n(”’ 7-7 /67 YO')
= {f | f e MFY,)[=1+ 72,1 =702 for some Y, = {§;}7_, s.t. (4.7) holds} :

Here are some of the properties of the above classes:

o ME(n,3,Y,) S ME (n,7,3,Y,) and ME(n, 8,Y,) C ME_(n,7,3,Y,) if 7 > 0, with
“C” becoming “=" if 7 = 0;

o M:(n,0,Y,) = ME(n,0,Y,) = ME(n,0,Y,) = MH(Y,);
o M*(Y,) € Mi(n, 3,Y,) C ME(n, B,Y,) for >0 and o > 0;

o M¥(Y,) S ME(n,7,Y,) CME (n,71,8,Y,) CME (n,7,8,Y,) for 7 >0, 3> 0 and
o> 0;

o if 0 = 0, then ME(n, 3,Ys) = Mk(n, 3,Yy) = M¥[—1,1] and Mk, (n,7,8,Yp) =
Ml\fvn(na T?ﬁa YE]) = M‘]fv(n, T, YE])

Open Problem Let0<p<oco,Y, €Y, o>1, andlet f € M¥(Y,). Suppose that a
spline or a polynomial p is such that p € Mk _(n,7,3,Y,) for some >0 and 3 > 0.
Does there exist a spline or a polynomial q such that ¢ € M~ _(n,T,3,Y,) and

1f = Q||Lp[_1,1] <c|f _pHIL,,[—l,l] ?

Note that if 7 = 0, the above becomes an open problem involving M¥(n, 3,Y,)
and M%(n, 3,Y,), i.e., the classes of almost co-k-monotone and nearly co-k-monotone
functions, respectively.

5 Corollaries and applications
For f € L,, 0 <p < oo, let
E(f,F)p = ;gg”f - 8||]Lp[—1,1} y

be the error of L,-approximation of f by elements from the set ¥ C L, on [—1, 1].
In particular,

EW(f, 20, ) = B(f,8,(2,) N M ()N T,

and
EM(f,J)p = E(f, 1L, N M*(J)),



are, respectively, the errors of L,-approximation of f on [—1, 1] by splines from §,(z,) N
C"! (i.e., having maximum smoothness without becoming polynomials) and by poly-
nomials of degree < n, which are k-monotone with f on J C [—1,1].

We now state a corollary of Theorem 1.1. For simplicity, we only state it for

the classes defined in Section 4 with ¢ = 0 (i.e., for “weakly k-monotone” classes
ME(n,7,Ys) = MF[—1 4+ 70721 — 7n72]) and note that similar results hold for other
classes introduced in the previous section. Additionally, we let W¥ := W¥(L,) and

z, = t,, (and so w,, (g™, 1), :== w¥ (9", 1),) and emphasize that these restrictions are
only used in order to simplify the statement.

Taking into account that [M*(J)], = M*(J,) and [=A, A\ = [—1,1], the following
is an immediate consequence of Theorem 1.1.

Corollary 5.1 (Weak k-monotone approximation) Letn,m,v € N, m' € Ny, m’+
v>m,n>m'+v—1, feL,[-1,1],0 <p < occ. Also, for T >0, let \:=1—7/n* be
such that 1/2 < X <1,

Suppose that the following assumptions are satisfied.

ASSUMPTION 1: for some r € N, there exists s € 8,(t,) N MF[—X\, \] N W¥(LL,)
such that

1f = SHLP[—LH < awh(fin™),.
ASSUMPTION 2: for any function g € W*(L,) N MF[-1,1],

Er(zk) (gv [_17 1])1} < C2n—yw<p (g(”), n_l)p .

m’ v

Then
ER(f =My < et (fin™h)y,

where ¢ = c(cq, co, 7,7, My, m v, p).
The following theorems follows from [10, Theorem 1.1] and [7, Theorems 3-4].

Theorem 5.2 ([10]) Let f € MF[-1,1]NL,, 0 < p < oo, k = 1,2, and r > k + 1.
Then, there exists a constant T = 7(r) > 0, such that for everyn € N,

(5.8) EV(f b, (17072, 1= 7077)), < cwfy(f, /),
where ¢ are constants independent of f and n which may depend on r and on p asp — 0.

Theorem 5.3 ([7]) Let m € N, k = 1,2, v € N, v > 2k + 1, and f € MF[-1,1] N
C[-1,1)nC¥(—1,1) be such that Hgo”f(”)Hoo < 00. Then for everyn >m—+v —1,

E(f, 1L, N M*[~1,1])cj-11 < c(m, V)n_”@,fb,y(f(”), n e

Corollary 5.4 (see [13,14]) Let f € M*[-1,1]NC, k = 1,2. Then, there exists an
absolute constant T > 0, such that for everyn > k+1,

(5.9) E®(f,[~14+mm 31— ) < cwfio(fi1/n) .
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For n > 2k 4 1, Corollary 5.4 immediately follows from Theorems 5.2 and 5.3 and
Corollary 5.1 withm’ =1, v =2k+1, m =k+2and r =2k+2. For k+1 <n < 2k+1,
Corollary 5.4 becomes the usual unconstained Jackson type estimate if one requires that
7 is sufficiently large (7 > 16 will do).

We also note that it is possible to use this approach to obtain similar results for
(weakly) almost/nearly co-k-comonotone polynomial approximation (with ¢ > 1 and
k =1,2) in Ly by constructing piecewise polynomial functions (having minimal order
and smoothness), smoothing them preserving needed constrains using the approach from
[11] (and hence verifying Assumption 1 in Theorem 1.1), and then applying Theorem 1.1
(with Assumption 2 verified using known results on (pure) co-k-comonotone polynomial
approximation of smooth functions).
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