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Abstract

In this paper, we generalize [8, Theorem 4.1] to be applicable to the classes of
(almost) weakly/nearly (co)-k-monotone functions and discuss some applications
and open problems.

1 Introduction and Main Results

Let Sr(zn) be the space of all piecewise polynomial functions (ppf’s) of degree r (order
r+ 1) with the knots zn := (zi)

n
0 , −1 =: z0 < z1 < . . . < zn−1 < zn := 1. In other words,

we say that s ∈ Sr(zn) if, on each interval (zi, zi+1), 0 ≤ i ≤ n− 1, s is in Πr, where Πr

denotes the space of algebraic polynomials of degree ≤ r.
For a partition zn := {z0, . . . , zn| − 1 =: z0 < z1 < · · · < zn := 1}, let Jj := [zj , zj+1]

with zj := −1, j < 0, and zj := 1, j > n, and |J | := meas J .
Given an absolute constant ∆ we say that zn is “∆-quasi-uniform” if ∆(zn) :=

max0≤j≤n−1 |Jj|/min0≤j≤n−1 |Jj| ≤ ∆, and denote by U∆
n the class of all such partitions.

(Note that U1
n consists of only one partition which is the uniform partition of [−1, 1]

into n subintervals of equal lengths.)
We also use the notation tn = (ti)

n
0 , where ti := − cos (πi/n), 0 ≤ i ≤ n, for the

Chebyshev partition of [−1, 1].
As usual, Lp(J), 0 < p ≤ ∞, denotes the space of all measurable functions f on

J such that ‖f‖Lp(J) < ∞, where ‖f‖Lp(J) :=
(∫

J
|f(x)|p dx

)1/p
if 0 < p < ∞, and

‖f‖L∞(J) := ess supx∈J |f(x)|, and write Lp := Lp[−1, 1] and ‖ · ‖p := ‖ · ‖Lp[−1,1]. We
say that a function f is in the Sobolev Space Wν(Lp) if it has an absolutely continuous
(ν − 1)st derivative such that f (ν) ∈ Lp.

The kth symmetric difference is ∆k
h(f, x, J) :=

∑k
i=0

(
k
i

)
(−1)k−if(x − kh/2 + ih), if

x ± kh/2 ∈ J , and ∆k
h(f, x, J) := 0, otherwise. The kth modulus of smoothness of a
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function f ∈ Lp(J) is defined by

ωk(f, t, J)p := sup
0<h≤t

‖∆k
h(f, ·, J)‖Lp(J) ,

and ωk(f, t)p := ωk(f, t, [−1, 1])p.
The (usual) Ditzian-Totik modulus kth modulus of smoothness (see [3]) is

ωϕk (f, t)p := sup
0<h≤t

‖∆k
hϕ(·)(f, ·)‖p ,

where ϕ(x) :=
√

1 − x2.
We also need the weighted Ditzian-Totik kth modulus of smoothness of a function

f ∈ Lp[−1, 1], 0 < p ≤ ∞, which we define as

ωϕk (f, t)W,p := sup
0<h≤t

∥∥W (·, kh/2)∆k
hϕ(·)(f, ·)

∥∥
p
.

where W is some weight function. Note that ∆k
hϕ(x)(f, x, [−1, 1]) is defined to be identi-

cally 0 if x 6∈ Dkh/2, where

Dδ := {x | 1 − δϕ(x) ≥ |x|} \ {±1} =

{
x | |x| ≤ 1 − δ2

1 + δ2

}
,(1.1)

and so W should only be defined on Dkh/2.
In this paper, we use weighted moduli with the weights (see [8, 12])

W1(x, kh/2) := ϕν(x) and W2(x, µ) := ϕν(|x| + µϕ(x)) ,

and denote
ωϕk,ν(f, t)p := ωϕk (f, t)W1,p = sup

0<h≤t

∥∥ϕν(·)∆k
hϕ(·)(f, ·)

∥∥
p

and
ω̄ϕk,ν(f, t)p := ωϕk (f, t)W2,p = sup

0<h≤t

∥∥ϕν(| · | + khϕ(·)/2)∆k
hϕ(·)(f, ·)

∥∥
p
.

Also, note that

ωϕ0,ν(f, t)p = ω̄ϕ0,ν(f, t)p = ‖ϕνf‖p and ωϕk,0(f, t)p = ω̄ϕk,0(f, t)p = ωϕk (f, t)p .

Clearly,
ω̄ϕk,ν(f, t)p ≤ ωϕk,ν(f, t)p .(1.2)

We also emphasize that ϕνf ∈ Lp does NOT imply that ωϕk,ν(f, t)p < ∞ (consider

f(x) = (1 + x)−1/p, k = ν = 1 for 0 < p < ∞, and f(x) = (1 + x)−1, ν = 2, k = 1 for
p = ∞). At the same time, if ϕνf ∈ Lp, then ω̄ϕk,ν(f, t)p <∞.

Given a set (usually, an interval) J , let M(J) be a “constraints class” of functions
defined on J . For example, M(J) could be the class of all monotone or convex functions
on J , or the class of functions changing their k-monotonicity the given number of times,
or a class of functions satisfying some interpolation conditions, or having their range
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restricted on J , or some class of functions having certain other shape characteristics on
various subsets of J , etc. If J is an interval we abuse the notation and omit parantheses
in this notation, i.e., M[a, b] := M([a, b]).

Let Jλ := {x/λ | x ∈ J} and, in particular, [a, b]λ := [a/λ, b/λ]. Given a constraints
class M(J) and a parameter λ > 0, we denote by [M(J)]λ the class of all functions which
are defined on Jλ and such that

f ∈ M(J) if and only if fλ ∈ [M(J)]λ ,

where fλ := f(λ·). Hence, since (fλ)1/λ ≡ f , the above is equivalent to:

f ∈ [M(J)]λ if and only if f1/λ ∈ M(J) .

For example, if M2(J) denotes the class of all convex functions on J , then [M2(J)]λ =
M2(Jλ) is the class of all convex functions on Jλ. Note, however, that, in general,
[M(J)]λ 6= M(Jλ). For example, if M̃1/4[−1, 1] is the set of all functions which are

defined on [−1, 1] and have an inflection point at 1/4, then functions in
[
M̃1/4[−1, 1]

]

1/2

have their inflection points at 1/2 while functions from M̃1/4

(
[−1, 1]1/2

)
= M̃1/4[−2, 2]

still have their inflection points at 1/4.
In order to unify the statements for different partitions, following [8, (4.1)], we define

wm(g(ν), t)p :=

{
ωm(g(ν), t)p , if zn ∈ U∆

n ,
ωϕm,ν(g

(ν), t)p , if zn = tn .
(1.3)

The following theorem is our main result.

Theorem 1.1 Let n,m, ν ∈ N, m′ ∈ N0, m
′ + ν ≥ m, n ≥ m′ + ν − 1, f ∈ Lp[−1, 1],

0 < p ≤ ∞, and let Wν ⊂ Wν(Lp) be some class of functions such that f(µ·) =: fµ ∈ Wν

whenever f ∈ W
ν and µ > 0. Also, for τ ≥ 0, let λ := 1−τ/n2 be such that 1/2 ≤ λ ≤ 1.

Additionally, let ∆ ∈ R and zn be either a ∆-quasi-uniform or the Chebyshev partition
of [−1, 1] into n intervals, i.e., zn ∈ U∆

n or zn = tn.
Suppose that the following assumptions are satisfied.

Assumption 1: for some r ∈ N, there exists s ∈ Sr(zn) ∩ M[−λ, λ] ∩ Wν such
that

‖f − s‖
Lp[−1,1] ≤ c1wm(f, n−1)p .

Assumption 2: for any function g ∈ Wν ∩ [M[−λ, λ]]λ there exists a polynomial
qn ∈ Πn ∩ [M[−λ, λ]]λ, such that

‖g − qn‖Lp[−1,1] ≤ c2n
−νwm′(g(ν), n−1)p .

Then there exists a polynomial pn ∈ Πn ∩ M[−λ, λ] such that

‖f − pn‖Lp[−1,1] ≤ cwm(f, n−1)p ,

where c depends on c1, c2, τ, r,m,m
′, ν, p, and also on ∆ if zn ∈ U∆

n .

3



Remark. Because of (1.2), Theorem 1.1 in the case zn = tn also holds for wm(g(ν), t)p :=
ω̄ϕm,ν(g

(ν), t)p.

Throughout this paper, c(γ1, γ2, . . .) denote positive constants which depend only on
the parameters γ1, γ2, . . . (note that c(p, . . .) depends on p only as p → 0) and which
may be different on different occurrences. At the same time, cµ denote positive constants
which are fixed throughout the paper.

2 Auxiliary Results

Theorem 2.1 ([8, 9]) Let zn be either a ∆-quasi-uniform or the Chebyshev partition of
[−1, 1] into n intervals, i.e., zn ∈ U∆

n or zn = tn, and let s ∈ Sr(zn)∩Cm[−1, 1], r ∈ N,
0 ≤ m ≤ r − 1. Then, for any 1 ≤ k ≤ r + 1, 1 ≤ ν ≤ min{k,m+ 1} and 0 < p ≤ ∞,
we have

n−νwk−ν(s
(ν), n−1)p ∼ wk(s, n

−1)p ,(2.4)

with equivalence constants depending only on r, ∆ (if zn ∈ U∆
n ) and p as p→ 0.

The following lemma is rather well known and can be found in [1, Theorems A.4.1
and A.4.10], for example.

Lemma 2.2 (Remez inequality) For any q ∈ Πn and a set A such that meas{[−1, 1]\
A} ≤ s ≤ 1/2 the following inequalities hold:

‖q‖
C[−1,1] ≤ e5n

√
s ‖q‖

C(A)

and

‖q‖
Lp[−1,1] ≤

(
1 + e8pn

√
s
)1/p

‖q‖
Lp(A) , 0 < p <∞ .

Corollary 2.3 For any q ∈ Πn, a set A such that meas{[−1, 1] \ A} ≤ s ≤ 1/2, and
0 < p ≤ ∞,

‖q‖
Lp[−1,1] ≤ 21+1/pe8n

√
s ‖q‖

Lp(A) .

In particular, for any 0 < τ ≤ n2/4,

‖q‖
Lp[−1,1] ≤ c(τ, p) ‖q‖

Lp[−1+τ/n2,1−τ/n2] .(2.5)

Lemma 2.4 Suppose that f ∈ Lp[−1, 1], 0 < p ≤ ∞, τ ≥ 0, λ := 1 − τt2 is such that
λ ≥ 1/2, and fλ(x) := f(λx). Then,

ωϕk (fλ, t)p ≤ c(τ, p)ωϕk (f, t)p .(2.6)

We remark that the condition λ ≥ 1/2 is not essential and 1/2 can be replaced by
any positive constant c0 (the constant c in (2.6) will then depend on c0 as well). It also
immediately follows from the definition that the statement of this lemma holds for the
usual kth modulus, i.e., ωk(fλ, t)p ≤ c(p)ωk(f, t)p.
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Proof. In the proof, it is more convenient to work with the Ivanov moduli which are
equivalent to the Ditzian-Totik moduli. Recall that, the Ivanov modulus of smoothness
is defined by (see [5, 6])

τk(f, ψ(t))p,p := ‖ωk(f, ·, ψ(t, ·))p‖p ,

where

ωk(f, x, ψ(t, x))pp :=
1

2ψ(t, x)

∫ ψ(t,x)

−ψ(t,x)

|∆k
h(f, x+ kh/2, [−1, 1])|p dh

with ψ(t, x) := tϕ(x) + t2. It is known (see [15] and [2]) that, for all 0 < p ≤ ∞,
τk(f, ψ(t))p,p ∼ ωϕk (f, t)p with equivalence constants depending only on k and p.

Changing variables we have

τk(fλ, ψ(t))pp,p =

∫ 1

−1

∫ ψ(t,x)

−ψ(t,x)

1

2ψ(t, x)
|∆k

h(fλ, x+ kh/2, [−1, 1])|p dh dx

=

∫ 1

−1

∫ ψ(t,x)

−ψ(t,x)

1

2ψ(t, x)
|∆k

λh(f, λx+ kλh/2, [−1, 1])|p dh dx

=

∫ λ

−λ

∫ λψ(t,x/λ)

−λψ(t,x/λ)

1

2λ2ψ(t, x/λ)
|∆k

h(f, x+ kh/2, [−1, 1])|p dh dx .

Now, λψ(t, x/λ) = t
√
λ2 − x2+λt2 ≤ ψ(t, x). It is also a simple exercise to show that, for

λ = 1 − τt2 such that λ ≥ 1/2, λ2ψ(t, x/λ) ≥ c(τ)ψ(t, x) for all x ∈ [−λ, λ]. Therefore,

τk(fλ, ψ(t))pp,p ≤ c(τ)

∫ 1

−1

∫ ψ(t,x)

−ψ(t,x)

1

2ψ(t, x)
|∆k

h(f, x+ kh/2, [−1, 1])|p dh dx

= c(τ)τk(f, ψ(t))pp,p ,

which completes the proof. �

3 Proof of Theorem 1.1

In the case τ = 0, the statement of the theorem immediately follows from [8, Theorem
4.1], since [M(J)]1 = M(J). Hence, we only need to consider the case τ > 0.

Assumption 1 guarantees that there exists s ∈ Sr(zn) ∩ M[−λ, λ] ∩ Wν is such that

‖f − s‖
Lp[−1,1] ≤ c1wm(f, n−1)p .

Consider the function sλ := s (λ·). The same proof as in [8, Section 3.3] shows that (2.4)
is valid with s replaced by sλ.

Now, since sλ ∈ Wν ∩ [M[−λ, λ]]λ, Assumption 2 implies that there exists a polyno-
mial qn ∈ Πn ∩ [M[−λ, λ]]λ such that

‖sλ − qn‖Lp[−1,1] ≤ c2n
−νwm′(s

(ν)
λ , n−1)p ≤ cwm′+ν(sλ, n

−1)p ≤ cwm′+ν(s, n
−1)p ,
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where the last inequality follows from Lemma 2.4 and the remark after its statement.
Hence, recalling that m′ + ν ≥ m, we have

‖sλ − qn‖Lp[−1,1] ≤ cwm(s, n−1)p .

Therefore, for pn := qn(·/λ), using the fact that [[M(J)]λ]1/λ = M(J) we have pn ∈
Πn ∩ M[−λ, λ], and

‖s− pn‖Lp[−λ,λ] = λ1/p ‖sλ − qn‖Lp[−1,1] ≤ cwm(s, n−1)p .

Suppose now that a polynomial Pn ∈ Πn is such that

‖s− Pn‖Lp[−1,1] ≤ cwm(s, n−1)p

(a polynomial of best approximation to s will do). Then, by the Remez inequality (2.5),

‖Pn − pn‖Lp[−1,1] ≤ c(τ, p) ‖Pn − pn‖Lp[−λ,λ] ,

and hence

‖s− pn‖Lp[−1,1] ≤ c ‖s− Pn‖Lp[−1,1] + c ‖Pn − pn‖Lp[−1,1]

≤ c ‖s− Pn‖Lp[−1,1] + c ‖Pn − pn‖Lp[−λ,λ]

≤ c ‖s− Pn‖Lp[−1,1] + c ‖Pn − s‖
Lp[−λ,λ] + c ‖s− pn‖Lp[−λ,λ]

≤ c ‖s− Pn‖Lp[−1,1] + c ‖s− pn‖Lp[−λ,λ]

≤ cwm(s, n−1)p ≤ cwm(f, n−1)p ,

where in the last inequality we used Assumption 1 and standard inequalities for moduli
of smoothness. Finally,

‖f − pn‖Lp[−1,1] ≤ c ‖f − s‖
Lp[−1,1] + c ‖s− pn‖Lp[−1,1] ≤ cwm(f, n−1)p ,

which completes the proof of the theorem.

4 Weak Co-k-monotone Polynomial Approximation

Given k ≥ 0 and an interval I, a function f is said to be k-monotone on I if its kth
divided differences [x0, . . . , xk]f are nonnegative for all choices of (k+ 1) distinct points
x0, . . . , xk in I. We denote the class of all k-monotone functions on I by M

k(I).
Let Yσ, σ ≥ 1, be the set of all collections Yσ := {yi}σi=1, such that yσ+1 := −1 <

yσ < . . . < y1 < 1 =: y0, and Y0 := {∅}. Let Mk(Yσ) denote the collection of all functions
f that change k-monotonicity at the points in Yσ, and are k-monotone in [y1, 1], i.e.,

M
k(Yσ) :=

{
f | (−1)if ∈ M

k[yi+1, yi], 0 ≤ i ≤ σ
}
.

(Note that M
k(Y0) = M

k[−1, 1].) If f ∈ Ck(−1, 1), then f ∈ M
k(Yσ) if and only if

f (k)(x)Π(x) ≥ 0, x ∈ (−1, 1) ,
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where Π(x) :=
∏σ

i=1(x−yi). We say that functions f and g are “co-k-monotone” if they
both belong to the same class Mk(Ys) (note that it is possible for a function to belong
to more than one class Mk(Ys), for example, f ≡ 0 is in Mk(Ys) for all sets Ys).

For an interval [a, b], we also denote

M
k(Yσ)[a, b] :=

{
f | (−1)if ∈ M

k ([yi+1, yi] ∩ [a, b]) , 0 ≤ i ≤ σ
}
,

and note that Mk(Yσ) = Mk(Yσ)[−1, 1].
We now introduce the notions of “(weakly) almost”, “(weakly) nearly” and “weakly

co-k-monotone” functions (see also [4] where somewhat similar notions were introduced
for (co)positive and intertwining approximation).

Let ρn(x) := ψ(1/n, x) = n−1ϕ(x) + n−2, β ≥ 0, τ ≥ 0, and denote

Ji(n, β) := (yi − βρn(yi), yi + βρn(yi)) ∩ [−1, 1] , 1 ≤ i ≤ σ ,

J0(n, τ) :=
(
1 − τn−2, 1

]
, Jσ+1(n, τ) :=

[
−1,−1 + τn−2

)
,

and
O(n, τ, β, Yσ) := ∪σi=1Ji(n, β) ∪ J0(n, τ) ∪ Jσ+1(n, τ) .

We say that functions f and g are “almost co-k-monotone” or “weakly almost
co-k-monotone” if they have the same k-monotonicity on [−1, 1] \O(n, 0, β, Yσ) or on
[−1, 1] \O(n, τ, β, Yσ), respectively.

Given f ∈ M
k(Yσ) we denote the class of all “weakly almost co-k-monotone”

functions with f by Mk
wa(n, τ, β, Yσ), i.e.,

M
k
wa(n, τ, β, Yσ) :=

{
f | (−1)if ∈ M

k ([yi+1, yi] \O(n, τ, β, Yσ)) , 0 ≤ i ≤ σ
}
,

and the class of all “almost co-k-monotone” functions with f by

M
k
a(n, β, Yσ) := M

k
wa(n, 0, β, Yσ) .

In particular, we say that a function g is “weakly co-k-monotone” with f ∈
Mk(Yσ) if f and g are co-k-monotone on [−1 + τn−2, 1 − τn−2], and denote

M
k
w(n, τ, Yσ) := M

k
wa(n, τ, 0, Yσ) = M

k(Yσ)[−1 + τn−2, 1 − τn−2] .

We say that a function g is “nearly co-k-monotone” with f ∈ Mk(Yσ) if there exists

Ỹσ = {ỹi}σi=1 ∈ Yσ such that

|ỹi − yi| ≤ βρn(yi) , 1 ≤ i ≤ σ ,(4.7)

and g ∈ Mk(Ỹσ). Given f ∈ Mk(Yσ) we denote the class of all nearly co-k-monotone
functions with f by Mk

n(n, β, Yσ), i.e.,

M
k
n(n, β, Yσ) :=

{
f | f ∈ M

k(Ỹσ) for some Ỹσ = {ỹi}σi=1 s.t. (4.7) holds
}
.
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Finally, we say that g is “weakly nearly co-k-monotone” with f ∈ M
k(Yσ) if there

exists Ỹσ = {ỹi}σi=1 ∈ Yσ such that (4.7) is satisfied and g ∈ Mk(Ỹσ)[−1+τn−2, 1−τn−2],
i.e.,

M
k
wn(n, τ, β, Yσ)

:=
{
f | f ∈ M

k(Ỹσ)[−1 + τn−2, 1 − τn−2] for some Ỹσ = {ỹi}σi=1 s.t. (4.7) holds
}
.

Here are some of the properties of the above classes:

• Mk
a(n, β, Yσ) ( Mk

wa(n, τ, β, Yσ) and Mk
n(n, β, Yσ) ( Mk

wn(n, τ, β, Yσ) if τ > 0, with
“(” becoming “=” if τ = 0;

• Mk
a(n, 0, Yσ) = Mk

n(n, 0, Yσ) = Mk
w(n, 0, Yσ) = Mk(Yσ);

• M
k(Yσ) ( M

k
n(n, β, Yσ) ( M

k
a(n, β, Yσ) for β > 0 and σ > 0;

• Mk(Yσ) ( Mk
w(n, τ, Yσ) ( Mk

wn(n, τ, β, Yσ) ( Mk
wa(n, τ, β, Yσ) for τ > 0, β > 0 and

σ > 0;

• if σ = 0, then Mk
a(n, β, Y0) = Mk

n(n, β, Y0) = Mk[−1, 1] and Mk
wa(n, τ, β, Y0) =

Mk
wn(n, τ, β, Y0) = Mk

w(n, τ, Y0).

Open Problem Let 0 < p ≤ ∞, Yσ ∈ Yσ, σ ≥ 1, and let f ∈ Mk(Yσ). Suppose that a
spline or a polynomial p is such that p ∈ Mk

wa(n, τ, β, Yσ) for some τ ≥ 0 and β > 0.
Does there exist a spline or a polynomial q such that q ∈ Mk

wn(n, τ, β, Yσ) and

‖f − q‖
Lp[−1,1] ≤ c ‖f − p‖

Lp[−1,1] ?

Note that if τ = 0, the above becomes an open problem involving Mk
a(n, β, Yσ)

and Mk
n(n, β, Yσ), i.e., the classes of almost co-k-monotone and nearly co-k-monotone

functions, respectively.

5 Corollaries and applications

For f ∈ Lp, 0 < p ≤ ∞, let

E(f,F)p := inf
s∈F

‖f − s‖
Lp[−1,1] ,

be the error of Lp-approximation of f by elements from the set F ⊂ Lp on [−1, 1].
In particular,

Ẽ
(k)
r (f, zn, J)p := E(f, Sr(zn) ∩ M

k(J) ∩ Cr−1)p

and
E(k)
n (f, J)p := E(f,Πn ∩ M

k(J))p
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are, respectively, the errors of Lp-approximation of f on [−1, 1] by splines from Sr(zn)∩
Cr−1 (i.e., having maximum smoothness without becoming polynomials) and by poly-
nomials of degree ≤ n, which are k-monotone with f on J ⊆ [−1, 1].

We now state a corollary of Theorem 1.1. For simplicity, we only state it for
the classes defined in Section 4 with σ = 0 (i.e., for “weakly k-monotone” classes
M

k
w(n, τ, Y0) = M

k[−1 + τn−2, 1 − τn−2]) and note that similar results hold for other
classes introduced in the previous section. Additionally, we let Wν := Wν(Lp) and
zn = tn (and so wm(g(ν), t)p := ωϕm,ν(g

(ν), t)p) and emphasize that these restrictions are
only used in order to simplify the statement.

Taking into account that
[
Mk(J)

]
λ

= Mk(Jλ) and [−λ, λ]λ = [−1, 1], the following
is an immediate consequence of Theorem 1.1.

Corollary 5.1 (Weak k-monotone approximation) Let n,m, ν ∈ N, m′ ∈ N0, m
′+

ν ≥ m, n ≥ m′ + ν − 1, f ∈ Lp[−1, 1], 0 < p ≤ ∞. Also, for τ ≥ 0, let λ := 1− τ/n2 be
such that 1/2 ≤ λ ≤ 1.

Suppose that the following assumptions are satisfied.

Assumption 1: for some r ∈ N, there exists s ∈ Sr(tn) ∩ Mk[−λ, λ] ∩ Wν(Lp)
such that

‖f − s‖
Lp[−1,1] ≤ c1ω

ϕ
m(f, n−1)p .

Assumption 2: for any function g ∈ Wν(Lp) ∩ Mk[−1, 1],

E(k)
n (g, [−1, 1])p ≤ c2n

−νωϕm′,ν(g
(ν), n−1)p .

Then
E(k)
n (f, [−λ, λ])p ≤ cωϕm(f, n−1)p ,

where c = c(c1, c2, τ, r,m,m
′, ν, p).

The following theorems follows from [10, Theorem 1.1] and [7, Theorems 3-4].

Theorem 5.2 ([10]) Let f ∈ Mk[−1, 1] ∩ Lp, 0 < p ≤ ∞, k = 1, 2, and r ≥ k + 1.
Then, there exists a constant τ = τ(r) > 0, such that for every n ∈ N,

Ẽ
(k)
r (f, tn, [−1 + τn−2, 1 − τn−2])p ≤ cωϕk+2(f, 1/n)p,(5.8)

where c are constants independent of f and n which may depend on r and on p as p→ 0.

Theorem 5.3 ([7]) Let m ∈ N, k = 1, 2, ν ∈ N, ν ≥ 2k + 1, and f ∈ Mk[−1, 1] ∩
C[−1, 1] ∩ Cν(−1, 1) be such that

∥∥ϕνf (ν)
∥∥
∞ <∞. Then for every n ≥ m+ ν − 1,

E(f,Πn ∩ M
k[−1, 1])C[−1,1] ≤ c(m, ν)n−νω̄ϕm,ν(f

(ν), n−1)∞ .

Corollary 5.4 (see [13, 14]) Let f ∈ M
k[−1, 1] ∩ C, k = 1, 2. Then, there exists an

absolute constant τ > 0, such that for every n ≥ k + 1,

E(k)
n (f, [−1 + τn−2, 1 − τn−2])∞ ≤ cωϕk+2(f, 1/n)∞.(5.9)
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For n ≥ 2k + 1, Corollary 5.4 immediately follows from Theorems 5.2 and 5.3 and
Corollary 5.1 with m′ = 1, ν = 2k+1, m = k+2 and r = 2k+2. For k+1 ≤ n < 2k+1,
Corollary 5.4 becomes the usual unconstained Jackson type estimate if one requires that
τ is sufficiently large (τ ≥ 16 will do).

We also note that it is possible to use this approach to obtain similar results for
(weakly) almost/nearly co-k-comonotone polynomial approximation (with σ ≥ 1 and
k = 1, 2) in L∞ by constructing piecewise polynomial functions (having minimal order
and smoothness), smoothing them preserving needed constrains using the approach from
[11] (and hence verifying Assumption 1 in Theorem 1.1), and then applying Theorem 1.1
(with Assumption 2 verified using known results on (pure) co-k-comonotone polynomial
approximation of smooth functions).
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