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Abstract. A nonnegative function w ∈ L1[−1, 1] is called a doubling weight
if there is a constant L such that w(2I) � Lw(I), for all intervals I ⊂ [−1, 1],
where 2I denotes the interval having the same center as I and twice as large
as I, and w(I) :=

∫
I
w(u) du. In this paper, we establish direct and inverse

results for weighted approximation by algebraic polynomials in the Lp, 0 < p

� ∞, (quasi)norm weighted by wn := ρn(x)
−1 ∫ x+ρn(x)

x−ρn(x)
w(u) du, where ρn(x) :=

n−1
√
1− x2 + n−2 and w is a doubling weight.

Among other things, we prove that, for a doubling weight w, 0 < p � ∞,
r ∈ N0, and 0 < α < r + 1− 1/λp, we have

(∗) En(f)p,wn
= O(n−α) ⇐⇒ ωr+1

φ (f, n−1)p,wn = O(n−α),

where λp := p if 0 < p < ∞, λp := 1 if p = ∞, ∥f∥p,w :=
( ∫ 1

−1
|f(u)|pw(u)du

) 1/p

,

∥f∥∞,w := ess supu∈[−1,1] (|f(u)|w(u)), ωr
φ(f, t)p,w := sup0<h�t

��∆r
hφ(·)(f, ·)

��
p,w

,

En(f)p,w := infPn∈Πn ∥f − Pn∥p,w, and Πn is the set of all algebraic polynomials

of degree � n− 1.
We will also introduce classes of doubling weights Wδ,γ with parameters

δ, γ � 0 that are used to describe the behavior of wn(x)/wm(x) for m � n. It turns
out that every class Wδ,γ with (δ, γ) ∈ Υ := {(δ, γ) ∈ R2 | δ � 1, γ � 0, δ+ γ � 2}
contains all doubling weights w, and for each pair (δ, γ) ̸∈ Υ, there is a doubling
weight not in Wδ,γ . We will establish inverse theorems and equivalence results
similar to (∗) for doubling weights from classes Wδ,γ . Using the fact that 1 ∈ W0,0,
we get the well known inverse results and equivalences of type (∗) for unweighted
polynomial approximation as an immediate corollary.

Equivalence type results involving related K -functionals and realization type
results (obtained as corollaries of our estimates) are also discussed.

Finally, we mention that (∗) closes a gap left in the paper by G. Mastroianni
and V. Totik [13], where (∗) was established for p = ∞ and ωr+2

φ instead of ωr+1
φ

(it was shown there that, in general, (∗) is not valid for p = ∞ if ωr+1
φ is replaced

by ωr
φ).
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1. Introduction and main results

As usual, Lp(I), 0 < p � ∞, denotes the set of all measurable on I func-
tions f equipped with the (quasi)norm ∥f∥Lp(I)

, and ∥f∥p := ∥f∥Lp[−1,1]. For

a (nonnegative) weight function w and I ⊂ [−1, 1] denote

∥f∥Lp(I),w
:=

(∫

I

��f(u)�� pw(u)du
)1/p

and

∥f∥L∞(I),w := ess supu∈I (
��f(u)��w(u)).

We also let ∥f∥p,w := ∥f∥Lp[−1,1],w. Note that ∥f∥Lp(I),w
= ∥w1/pf∥Lp(I)

if

0 < p < ∞, and ∥f∥L∞(I),w = ∥wf∥L∞(I) if p = ∞. Assuming for convenience

that w is identically zero outside [−1, 1], we recall that w is called a dou-
bling weight if there is a constant L (the so-called doubling constant of the
weight w) such that

∫

2I
w(u) du � L

∫

I
w(u) du,

for all intervals I ⊂ [−1, 1], where 2I denotes the interval having the same
center as I and twice as large as I . We note that the class of doubling weights
is quite large, for example, all generalized Jacobi weights are doubling. Also,
they are closely related to Muckenhoupt’s Ap, 1 � p < ∞, weights all of
which are contained in the so-called A∞ class of weights that assign to
a subset of an interval I ⊂ [−1, 1] a “fair” share of the weight of I . We
refer the reader to [21, Ch. V] for details on Ap and A∞ classes, their char-
acterizations and properties, and to the series of papers [13–16] for detailed
discussions of various properties of doubling weights.

Following [13–16], for a weight w ∈ L1, we set

wn(x) :=
1

ρn(x)

∫ x+ρn(x)

x−ρn(x)
w(u) du,

where ρn(x) := n−1
√
1− x2 + n−2.

If r ∈ N, the weighted modulus of smoothness is defined by

ωr
φ(f, t)p,w := sup

0<h�t
∥∆r

hφ(·)(f, ·)∥p,w
,
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where φ(x) :=
√
1− x2 and

∆r
h

(
f,x, [a, b]

)
:=




r∑
i=0

(
r

i

)
(−1)r−if(x− rh/2 + ih), if x± rh/2 ∈ [a, b],

0, otherwise,

is the rth symmetric difference, ∆r
h(f, x) := ∆r

h

(
f, x, [−1, 1]

)
.

Throughout this paper, we use the standard notation, i.e., N is the set of
all positive integers, N0 := N∪{0}, R+ := [0,∞), Πn is the set of all algebraic
polynomials of degree � n− 1, c are positive constants that may be differ-
ent even if they occur in the same line, A ∼ B means that cA � B � cA, for
some constants c that do not depend on the “important” variables (what is
“important” is usually clear from the context). We also use the notation c∗,
c∗ and ci (i ∈ N0) for constants that we need to refer to, but those stay fixed
only inside the lemmas where they are introduced (to make this explicit, we
use c∗, for example, in several statements, but none of these constants are
assumed to be the same). Additionally, En(f)p,w := infPn∈Πn

∥f − Pn∥p,w is
the rate of best weighted approximation with weight w of f by algebraic
polynomials of degree � n− 1.

The following theorem that motivated this work was proved in [13, The-
orem 1.1].

Theorem A. Let w be a doubling weight and r ∈ N. Then there is a con-
stant c∗ depending only on r and the doubling constant of w such that we
have for any f

En(f)∞,wn
� c∗ω

r
φ(f, 1/n)∞,wn

.

Conversely,

ωr+2
φ

(
f, n−1

)
∞,wn

� c∗
nr

n∑
k=1

kr−1Ek(f)∞,wk
.

It immediately follows from Theorem A that, for 0 < α < r,

(1.1) En(f)∞,wn
= O(n−α) ⇐⇒ ωr+2

φ

(
f, n−1

)
∞,wn

= O(n−α),

and it was shown in [13, p. 183] that (1.1) is no longer true if ωr+2
φ is replaced

by ωr
φ (in the case r = 1). Among other things, we show in this paper that

(1.1) holds if ωr+2
φ is replaced by ωr+1

φ (see Corollary 7.8).
In this paper, we prove direct and inverse theorems for all 0 < p � ∞.

For example, we prove that, if w is a doubling weight, r ∈ N, 0 < p � ∞ and
f ∈ Lp[−1, 1], then for every n � r,

En(f)p,wn
� cωr

φ(f, 1/n)p,wn
.
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Conversely,

ωr
φ

(
f, n−1

)
p,wn

� c

nr−1/λp

n∑
k=1

kr−1−1/λpEk(f)p,wk
, 1 � p � ∞,

and

ωr
φ

(
f, ϑn−1

)
p,wn

� c

nr−1/p

( n∑
k=1

krp−2Ek(f)
p
p,wk

)1/p

, 0 < p < 1,

where 0 < ϑ � 1 is some constant, λp := p, if p < ∞, and λ∞ := 1, if p = ∞.
This implies that, for any doubling weight w, r ∈ N, 0 < p � ∞ and f ∈

Lp[−1, 1], for 0 < α < r − 1/λp we have

En

(
f, [−1, 1]

)
p,wn

= O(n−α) ⇐⇒ ωr
φ

(
f, n−1

)
p,wn

= O(n−α).

In fact, we prove the inverse theorems in a more general way. In Sec-
tion 2, we introduce classes of doubling weightsWδ,γ with parameters δ, γ � 0
that are used to describe the behavior of wn(x)/wm(x) for m � n. It turns
out that every class Wδ,γ with (δ, γ) ∈ Υ =

{
(δ, γ) ∈ R2 | δ � 1, γ � 0, δ+ γ

� 2
}
contains all doubling weights w, and for each classWδ,γ with (δ, γ) ̸∈ Υ,

there is a doubling weight not in this class. We will establish inverse theo-
rems for doubling weights from classes Wδ,γ for all δ, γ � 0. Since positive
constants are doubling weights from the class W0,0, we get the well known
inverse results for unweighted polynomial approximation as an immediate
corollary.

The paper is organized as follows. In Section 2, we discuss several prop-
erties of weights wn and introduce classes Wδ,γ . An auxiliary result on
a polynomial partition of unity that is crucial in our proof of direct re-
sults is introduced in Section 3. In Section 4, we approximate the weights

w
1/p
n by polynomials from Πn. Section 5 is devoted to proving Jackson type

(i.e., direct) results on polynomial approximation with weights wn. Markov–
Bernstein type results are discussed in Section 6. A major part of this sec-
tion is devoted to the case 0 < p < 1 in preparation for inverse results for
these p. The inverse theorems are proved in Section 7 and, in Section 8, we
discuss some results on the equivalence of the moduli ωr

φ as well as the aver-
aged moduli ω̃r

φ and several K -functionals and Realization functionals with
weights wn.

It is also worth mentioning that it seems possible to get the Jackson-
type results in the case 1 � p � ∞ using the Jackson-Favard type inequali-
ties proved in [15,16] and equivalence of the moduli ωr

φ with weights wn and
related K -functionals that can be obtained following proofs in [7] (as was
done in [13], see also [4]). However, we opted for a different approach in this
paper that works in the case 0 < p < 1 as well.
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2. Doubling weights and their subclasses

In this section, we discuss several properties of wn that will be used in
this paper. First, we note that it was proved in [14, Lemma 7.1] that the
doubling condition is equivalent to

wn(x) � K(1 + n|x− y|+ n
��φ(x)− φ(y)

��)swn(y), n ∈ N, x, y ∈ [−1, 1],

(2.1)

with some positive constants K and s.
It immediately follows from (2.1) (see also [13, (2.3)]) that

(2.2) |x− y| � Mρn(x) =⇒ wn(x) ∼ wn(y)

with equivalence constants depending only on M and the doubling constant
of w.

We will now discuss the relations between wn and wm for different n
and m. First of all, it is evident that, for any x ∈ [−1, 1],

ρn(x) � ρm(x) � (n/m)2ρn(x) if m � n.

Therefore, since w is nonnegative we have

(2.3) wn(x) � (n/m)2wm(x), m � n.

Also, taking into account that w is doubling and using [14, Lemmas 7.1 and
2.1(vi)] we have, for m � n and M := n/m,

wm(x) � ρn(x)
−1

∫ x+M2ρn(x)

x−M2ρn(x)
w(u) du � cwn(x),

for some constant c that depends on M and the doubling constant of w.
Hence, in particular,

wn(x) ∼ wm(x), if n ∼ m.

It is rather obvious that (2.3) cannot be improved uniformly for all
x ∈ [−1, 1] (for all doubling weights w) in the sense that it is no longer

valid if (n/m)2 is replaced by (n/m)2−ε, for any ε > 0 (see also Lemma 2.1

below). At the same time, it is clear that (n/m)2 in (2.3) can be replaced by
(n/m) for x that are “far” from the endpoints of [−1, 1]. The following sim-
ple lemma makes this observation more precise and turns out to be crucial
in our proofs of the inverse theorems.
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Lemma 2.1. Let w be a doubling weight, m,n ∈ N be such that m � n,
and let

(2.4) (δ, γ) ∈ Υ :=
{
(δ, γ) ∈ R2 | δ � 1, γ � 0, δ + γ � 2

}
.

Then

(2.5)
wn(x)

wm(x)
�

( n

m

)δ
(
1 +

1

mφ(x)

)γ

, −1 � x � 1.

Moreover, if (δ, γ) ̸∈ Υ then there are doubling weights w for which (2.5) is
not valid.

Proof. Clearly, (2.5) is satisfied if m = n, and so we assume that
m � n− 1. Since ρn(x) � ρm(x), we conclude that

∫ x+ρn(x)

x−ρn(x)
w(u) du �

∫ x+ρm(x)

x−ρm(x)
w(u) du,

and hence

wn(x)

wm(x)
� ρm(x)

ρn(x)
=

n

m
· φ(x) + 1/m

φ(x) + 1/n
.

Therefore, (2.5) will be proved if we show that

L :=
φ(x) + 1/m

φ(x) + 1/n
�

( n

m

)δ−1
(
1 +

1

mφ(x)

)γ

=: R.

Now, if φ(x) � (n−m)−1, then

L � 1 +
1

mφ(x)
=

(
1 +

1

mφ(x)

)γ (
1 +

1

mφ(x)

)1−γ

�
(
1 +

1

mφ(x)

)γ

max
{
1, (n/m)1−γ} � R.

If φ(x) < (n−m)−1, then

L = 1 +
1/m− 1/n

φ(x) + 1/n
� n

m
�

( n

m

)δ+γ−1
� R.

We will now construct examples showing that (2.5) is no longer valid if
(δ, γ) ̸∈ Υ.

Let Rδ,γ(x) denote the right-hand side of (2.5). Since limx→1Rδ,γ(x) = 0
if γ < 0, it is obvious that γ has to be nonnegative for (2.5) to hold (for
example, if γ < 0, then 1 ̸∈ Wδ,γ for any δ).
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Now, let wc(x) = |x− c|−α with c ∈ [−1, 1] and 0 < α < 1. It is not dif-
ficult to see that wc is doubling and (wc)n(x) ∼ min

{
|x− c|−α, ρn(c)

−α} .
Hence, if m � n, then

(
w1

)
n

(
1− n−2

)
(
w1

)
m

(
1− n−2

) ∼
( n

m

)2α
and Rδ,γ

(
1− n−2

)
∼

( n

m

)δ+γ
.

Hence, if δ + γ < 2, then (2.5) does not hold for the doubling weights w1

with max
{
(δ + γ)/2, 0

}
< α < 1. Also,

(w0)n(0)

(w0)m(0)
∼

( n

m

)α
and Rδ,γ(0) ∼

( n

m

)δ
,

and so, if δ < 1, then (2.5) does not hold for the doubling weights w0 with
max{δ, 0} < α < 1. �

Definition 2.2. Let δ, γ � 0. We say that a doubling weight w belongs

to the class Wδ,γ
Λ if, for all m,n ∈ N such that m � n and all x ∈ [−1, 1],

(2.6) wn(x)φ(x)
γ � Λnδmγ−δρm(x)γwm(x),

for some constant Λ which may depend only on the weight w, parameters δ
and γ, and is independent of m, n and x. We also denote

Wδ,γ :=
{
w | w ∈ W

δ,γ
Λ for some Λ > 0

}
.

We remark that (2.6) with Λ = 1 is equivalent to (2.5) which is the rea-
son for Definition 2.2. Also, it is evident that Wδ1,γ1 ⊂ Wδ2,γ2 if δ1 � δ2 and
γ1 � γ2.

Remark 2.3. Lemma 2.1 implies that all doubling weights belong to

the class W
δ,γ
1 if (δ, γ) ∈ Υ, where Υ is defined in (2.4). Moreover, for any

pair (δ, γ) ̸∈ Υ, there is a doubling weight w such that w ̸∈ Wδ,γ .

Of course, there are many doubling weights belonging to the classes Wδ,γ

with (δ, γ) ̸∈ Υ. For example, any nonzero constant weight belongs to W0,0.
The weight w∗(x) = (1− x)−α, 0 < α < 1, belongs to Wδ,γ for all (δ, γ) ∈ R2

+

such that δ+ γ � 2α. The weight w∗(x) = |x|−α, 0 < α < 1, belongs to Wδ,γ

for all (δ, γ) ∈ R2
+ such that δ � α. Hence, the doubling weight W (x) :=

|x|−α(1− x)−β , 0 < α, β < 1, which is a combination of w∗ and w∗ belongs
to Wδ,γ for all (δ, γ) ∈ R2

+ such that δ � α and δ + γ � 2β.
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Following [13,14] we say that a weight w satisfies the A∗ property if there
is a constant c∗ such that, for all I ⊂ [−1, 1] and x ∈ I ,

w(x) � c∗

|I|

∫

I
w(u) du.

Then w is doubling and (2.2) implies that wm(x) ∼ wm(u) if |x− u| �
Mρm(x). Hence, if m � n, taking into account that ρn(x) � ρm(x) we
conclude that wm(x) ∼ wm(u) for |x− u| � ρn(x). Therefore, denoting
Jm(u) := [u− ρm(u), u+ ρm(u) ∩ [−1, 1], we have (see also [13, p. 189])

wn(x) =
1

ρn(x)

∫ x+ρn(x)

x−ρn(x)
w(u) du

� 1

ρn(x)

∫ x+ρn(x)

x−ρn(x)

(
c∗��Jm(u)

��
∫

Jm(u)
w(v) dv

)
du

� 1

ρn(x)

∫ x+ρn(x)

x−ρn(x)

(
c∗

ρm(u)

∫ u+ρm(u)

u−ρm(u)
w(v) dv

)
du

=
c∗

ρn(x)

∫ x+ρn(x)

x−ρn(x)
wm(u) du ∼ 1

ρn(x)

∫ x+ρn(x)

x−ρn(x)
wm(x) du ∼ wm(x).

Therefore, we can make the following assertion.

Remark 2.4. Any weight w that satisfies the A∗ property is in the class
W

0,0
Λ with the constant Λ that depends only on the doubling constant of w.

Finally, we will need the following technical lemma that will be quite
useful in the proofs of direct results (note that xi, Ii and ψi are defined at
the beginning of Section 3).

Lemma 2.5. For a doubling weight w, n ∈ N and all 1 � i � n, x ∈
[−1, 1] and y ∈ Ii, we have

(2.7) wn(x) � cψi(x)
−swn(y) and wn(y) � cψi(x)

−swn(x),

where constants c and parameter s � 0 depend only on the doubling constant
of w.

Proof. Taking into account that, for 1 � i � n− 1, |Ii| ∼ φ(xi)/n and

ψi(x)
−1 = 1 + |x− xi|/|Ii| ∼ 1 + n|x− xi|/φ(xi), and using (2.1) we have

max
{
wn(x)/wn(xi), wn(xi)/wn(x)

}
� c(1 + n|x− xi|+ n

��φ(x)− φ(xi)
��)s
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K. A. KOPOTUN8



Acta Mathematica Hungarica

POLYNOMIAL APPROXIMATION WITH DOUBLING WEIGHTS 9

� c

(
1 + n|x− xi|+

n
��x2 − x2i

��
φ(x) + φ(xi)

)s

� c

(
1 + n|x− xi|+

2n|x− xi|
φ(xi)

)s

� c

(
1 +

3n|x− xi|
φ(xi)

)s

� cψi(x)
−s, 1 � i � n− 1.

Therefore, observing that (2.2) implies that wn(u) ∼ wn(y), for u, y ∈ Ii,
1 � i � n, and ψn(x) ∼ ψn−1(x), we get (2.7). �

3. Partition of unity

First, we recall the usual setup for polynomial approximation (see
e.g. [20]). Let (xi)

n
i=0 be the Chebyshev partition of [−1, 1], i.e., xi =

cos(iπ/n), 0 � i � n, Ii := [xi, xi−1], 1 � i � n,

ψi := ψi(x) :=
|Ii|

|x− xi|+ |Ii|
, 1 � i � n.

Then, for 1 � i � n,

ti(x) :=

(
cos 2n arccosx

x− x0i

)2

+

(
sin 2n arccosx

x− x̄i

)2

is an algebraic polynomial of degree 4n− 2, where x̄i := cos(iπ/n− π/2n),
1 � i � n, x0i := cos(iπ/n−π/4n), 1 � i < n/2, and x0i := cos(iπ/n−3π/4n),
n/2 � i � n. The following properties of the Chebyshev partition will often
be used:

|Ii| ∼ ρn(x), x ∈ Ii, 1 � i � n, and |Ii| ∼ |Ii+1|, 1 � i � n− 1.

It is also convenient to denote

χi(x) := χ[xi,1](x) =

{
1, if xi � x � 1,

0, otherwise.

The crucial (obvious) property of polynomials ti, 1 � i � n, is

min{
(
x− x0i

)−2
, (x− x̄i)

−2} � ti(x) � max{
(
x− x0i

)−2
, (x− x̄i)

−2},
which implies

(3.1) ti(x) ∼
(
|x− xi|+ |Ii|

)−2

uniformly for x ∈ [−1, 1].
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There exists an absolute (positive) constant c∗ such that, for µ, ε1, ε2
∈ N0 satisfying µ � c∗max{ε1, ε2, 1},

Ti(x) := Ti(n, µ, ε1, ε2)(x) := λi

∫ x

−1
(y − xi)

ε1(xi−1 − y)ε2tµi (y) dy

is a polynomial of degree (4n− 2)µ+ ε1 + ε2 + 1, where

(3.2) λi :=

(∫ 1

−1
(y − xi)

ε1(xi−1 − y)ε2tµi (y) dy

)−1

∼ |Ii|2µ−ε1−ε2−1,

and so Ti(1) = 1 (see e.g. [11, Proposition 2]).
A proof of the following lemma is the same as that of [10, Lemma 6]. It

is based on (3.1), (3.2), the observation that

��Ti(x)− χi(x)
�� =

����
∫ x

−1
T ′
i (u) du

����, x < xi,

��Ti(x)− χi(x)
�� =

����
∫ 1

x
T ′
i (u) du

����, x > xi,

and the Dzyadyk inequality (see e.g. [8, Theorem 3, p. 262])

(3.3) ∥ρs+ν
n P (ν)

n ∥∞ � c(s, ν)∥ρsnPn∥∞, Pn ∈ Πn and s ∈ R.

Lemma 3.1. Let 1 � i � n, and let ν0, µ, ε1, ε2 ∈ N0 be such that µ �
c∗max{ν0, ε1, ε2, 1}, where c∗ is some sufficiently large absolute (positive)
constant. Then the polynomial Ti = Ti(n,µ, ε1, ε2) of degree � c(µ)n satisfies
the following inequalities for all x ∈ [−1, 1]:

��Ti(x)− χi(x)
�� � cψi(x)

µ

and

|T (ν)
i (x)| � c|Ii|−νψi(x)

µ, 0 � ν � ν0,

where constants c depend only on µ.

We note that by choosing ε1, ε2 to be 0 or 1 we can make polyno-
mials Ti(n, µ, ε1, ε2) lie either above χi−1 or below χi. Indeed, recalling
that Ti(−1) = 0 and Ti(1) = 1, inequalities T ′

i (n, µ, 1, 0)(x)(x− xi) � 0 and
T ′
i (n, µ, 0, 1)(x)(xi−1 − x) � 0 immediately imply that, for all 1 � i � n,

Ti(n, µ, 1, 0)(x) � χi(x) and Ti(n, µ, 0, 1)(x) � χi−1(x), x ∈ [−1, 1].
(3.4)
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4. Polynomial approximation of w1/p
n for 0 < p < ∞

Theorem 4.1. Suppose that w is a doubling weight. For every 0 < p
< ∞, n ∈ N and ν0 ∈ N, there exists a polynomial Qn ∈ Πn such that, for all
x ∈ [−1, 1],

(4.1) cwn(x)
1/p � Qn(x) � cwn(x)

1/p

and

(4.2) |ρn(x)νQ(ν)
n (x)| � cwn(x)

1/p, 1 � ν � ν0,

where constants c depend only on ν0, p and the doubling constant of w.

Note that, in the case ν0 = 1, Theorem 4.1 was proved in [14, (7.34)–
(7.36)].

Proof. Let Sn(x) be a piecewise constant function such that

Sn(x) = si := sup
u∈Ii

wn(u)
1/p, x ∈ Ii, 1 � i � n.

Note that (2.2) implies that wn(x)
1/p � si � cwn(x)

1/p, for all x ∈ Ii, 1 � i
� n, and so

wn(x)
1/p � Sn(x) � cwn(x)

1/p, x ∈ [−1, 1].

We observe that

Sn(x) := sn +

n−1∑
i=1

(si − si+1)χi(x), x ∈ [−1, 1],

and define

Qn(x) := sn +
n−1∑
i=1

(si − si+1)Ri(x),

where, for each 1 � i � n− 1, the polynomial Ri is defined as follows

Ri(x) :=

{
Ti+1(n, µ, 0, 1), if si − si+1 � 0,

Ti(n, µ, 1, 0), otherwise,

where µ ∈ N is sufficiently large (to be prescribed). Then (3.4) yields

Sn(x) � Qn(x), x ∈ [−1, 1],
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which implies the left-hand inequality in (4.1). Now, for each x ∈ [−1, 1],
using (2.7) and the fact that ψi+1 ∼ ψi, 1 � i � n− 1, we have

��Qn(x)− Sn(x)
�� �

n−1∑
i=1

|si − si+1| ·
��Ri(x)− χi(x)

�� � c

n−1∑
i=1

wn(xi)
1/pψi(x)

µ

� cwn(x)
1/p

n−1∑
i=1

ψi(x)
µ−s/p � cwn(x)

1/p,

since
∑n−1

i=1 ψi(x)
µ−s/p � c if µ− s/p � 2. Therefore,

Qn(x) � Sn(x) + cwn(x)
1/p � cwn(x)

1/p,

which is the right-hand inequality in (4.1).
Now, recalling that |Ii| ∼ ρn(xi), 1 � i � n, and using the inequality

ρn(x)
2 � 4ρn(y)

(
|x− y|+ ρn(y)

)
as well as (2.7) we have, for all 1 � ν � ν0,

|ρn(x)νQ(ν)
n (x)| �

n−1∑
i=1

ρn(x)
ν |si − si+1| · |R(ν)

i (x)|

� c

n−1∑
i=1

ρn(x)
νwn(xi)

1/p|Ii|−νψi(x)
µ

� cwn(x)
1/p

n−1∑
i=1

[ρn(xi)
(
|x− xi|+ ρn(xi)

)
]
ν/2|Ii|−νψi(x)

µ−s/p

� cwn(x)
1/p

n−1∑
i=1

ψi(x)
µ−s/p−ν/2 � cwn(x)

1/p,

provided µ−s/p−ν/2 � 2. Hence, we choose µ to be such that all conditions
of Lemma 3.1 are satisfied, and also µ � ν0/2 + s/p+ 2. Finally, we note
that we actually constructed a polynomial Qn of degree � c(µ)n that sat-
isfies inequalities (4.1) and (4.2). Since wn(x) ∼ wm(x) and ρn(x) ∼ ρm(x)
if n ∼ m, this completes the proof for n � n0, for some n0 ∈ N. For 1 � n
� n0, the statement of the theorem follows from the case n = 1 (by setting

Q1(x) := w1(0)
1/p, for example). �

Acta Mathematica Hungarica

K. A. KOPOTUN12



Acta Mathematica Hungarica

POLYNOMIAL APPROXIMATION WITH DOUBLING WEIGHTS 13

5. Weighted polynomial approximation: Jackson type estimates

5.1. Auxiliary results. First, we recall the well known Whitney’s
theorem (see e.g. [19, Theorem 7.1, p. 195]) that states that, if 0 < p � ∞,
f ∈ Lp[a, b] and r ∈ N, then

(5.1) Er

(
f, [a, b]

)
p
:= inf

Pr∈Πr

∥f − Pr∥Lp[a,b]
� cωr

(
f, (b− a)/r, [a, b]

)
p
,

where ωr

(
f, t, [a, b]

)
p
is the usual rth modulus of smoothness in the Lp

(quasi)norm.
We also define the averaged weighted modulus by

ω̃r
φ(f, t)p,w :=

(
1

t

∫ t

0

∫ 1

−1
w(x)|∆r

hφ(x)(f, x)|p dx dh
)1/p

=

(
1

t

∫ t

0
∥∆r

hφ(f)∥p

p,w
dh

)1/p

, 0 < p < ∞,

and for convenience denote ω̃r
φ(f, t)∞,w := ωr

φ(f, t)∞,w.
Note that it is clear from the definition that

ω̃r
φ(f, t)p,w � ωr

φ(f, t)p,w, 0 < p < ∞.

Lemma 5.1. For a doubling weight w, f ∈ Lp[−1, 1], 0 < p < ∞,
n, r ∈ N, and any 0 < θ < 1 the following holds

n∑
i=1

wn(xi)ωr

(
f, |Ji|, Ji

) p
p
� cω̃r

φ(f, θ/n)
p
p,wn

� cωr
φ(f, θ/n)

p
p,wn

,

where, for every i, Ii ⊂ Ji ⊂ [−1, 1] and |Ji| � c0|Ii|, and the constant c de-
pends only on r, p, c0, θ, and the doubling constant of w.

We remark that the reason for introducing θ is that we have NOT proved
the estimate

ωr
φ(f, λ/n)p,wn

� cωr
φ(f, 1/n)p,wn

, p > 0.

Proof. The proof of this lemma is rather standard and not different
from that for unweighted moduli (see e.g. [2]). The main idea is the employ-
ment of the inequality (see [19, Lemma 7.2, p. 191])

(5.2) ωr

(
f, t, [a, b]

) p
p
� c

t

∫ t

0

∫ b

a
|∆r

h

(
f, x, [a, b]

)
|p dx dh, 0 < p < ∞.
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Note that if Ji ⊃ Ii and |Ji| � c0|Ii|, then there exists m ∈ N depending
only on c0 such that Ji has nonempty intersection with at most m intervals
Ij , 1 � j � n. Since |Ii| ∼ |Ii±1| ∼ ρn(xi), this implies that ρn(x) ∼ ρn(y)
∼ |Ii| for all x, y ∈ Ji, and so |x− y| � cρn(x), for all x, y ∈ Ji.

Taking this into account and using (5.2) and (2.2) we have

wn(xi)ωr

(
f, |Ji|, Ji

)p
p
� cwn(xi)ωr

(
f, c∗|Ii|, Ji

)p
p

� c|Ii|−1
∫ c∗|Ii|

0

∫

Ji

wn(xi)
��∆r

h(f, x, Ji)
��p dx dh

� c

∫

Ji

∫ c∗|Ii|/φ(x)

0

φ(x)

|Ii|
wn(x)|∆r

hφ(x)(f, x, Ji)|p dh dx,

where 0 < c∗ < 1 is a constant that we will choose later.
Now, |Ii| ∼ ρn(x) ∼ φ(x)/n for x ∈ Ji, i ∈ J∗, where

J∗ :=
{
1 � i � n | Ji ∩ (I1 ∪ In) = ∅

}
,

and so, for i ∈ J∗, taking into account that c∗ �
√
c∗ (it is a red herring for

now, but is needed because of the estimate for i ̸∈ J∗ below), we have

wn(xi)ωr

(
f, |Ji|, Ji

)p
p
� cn

∫

Ji

∫ c1
√
c∗/n

0
wn(x)|∆r

hφ(x)(f, x, Ji)|p dh dx.

(5.3)

Suppose now that i ̸∈ J∗. We recall that ∆r
h(f, x, Ji) is defined to be 0 if

x± rh/2 ̸∈ Ji and, in particular, ∆r
hφ(x)(f, x, Ji) = 0 if 1− |x| < rhφ(x)/2.

Therefore, recalling that φ(x)/|Ii| � cnρn(x)/|Ii| � cn, x ∈ Ji, for each fixed
x ∈ Ji, we have

∫ c∗|Ii|/φ(x)

0

φ(x)

|Ii|
wn(x)|∆r

hφ(x)(f, x, Ji)|p dh

� cn

∫

S
wn(x)|∆r

hφ(x)(f, x, Ji)|p dh,

where

S :=

{
h
��� 0 < h � min

{
c∗|Ii|
φ(x)

,
2
(
1− |x|

)
rφ(x)

}}
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⊂

{
h
��� 0 < h � c2min

{
c∗

n2
√

1− |x|
,
√

1− |x|

}}

⊂
{
h | 0 < h � c2

√
c∗/n

}
.

Therefore, (5.3) is valid for i ̸∈ J∗ as well (with c2 instead of c1). We now
choose c∗ to be such that max{c1, c2}

√
c∗ < θ. Then

n∑
i=1

wn(xi)ωr

(
f, |Ji|, Ji

)p
p
� cn

n∑
i=1

∫

Ji

∫ θ/n

0
wn(x)|∆r

hφ(x)(f, x, Ji)|p dh dx

� cn

n∑
i=1

∫

Ii

∫ θ/n

0
wn(x)|∆r

hφ(x)(f, x)|p dh dx

� cn

∫ θ/n

0

∫ 1

−1
wn(x)|∆r

hφ(x)(f, x)|p dx dh � cω̃r
φ(f, θ/n)

p
p,wn

,

and the proof is complete. �
An analog of Lemma 5.1 in the case p = ∞ is the following result.

Lemma 5.2. For a doubling weight w, f ∈ L∞[−1, 1], n, r ∈ N, and any
0 < θ < 1 the following holds

sup
1�i�n

wn(xi)ωr

(
f, |Ji|, Ji

)
∞ � cωr

φ(f, θ/n)∞,wn
,

where, for every i, Ii ⊂ Ji ⊂ [−1, 1] is such that |Ji| � c0|Ii|, and the con-
stant c depends only on r, c0, θ, and the doubling constant of w.

Proof. Let 0 < c∗ < 1/(2r) be a constant that we will prescribe later,
and let 1 � i � n, x∗ ∈ Ji and h∗ ∈

(
0, c∗|Ii|

]
(note that h∗ < 1/r) be such

that

W := sup
1�j�n

wn(xj)ωr

(
f, |Jj |, Jj

)
∞ = wn(xi)ωr

(
f, |Ji|, Ji

)
∞

� cwn(xi)ωr

(
f, c∗|Ii|, Ji

)
∞ � cwn(xi)

��∆r
h∗(f, x∗)

�� .
It was shown in the proof of Lemma 5.1, that |x− y| � cρn(x), for all x, y
∈ Ji, and so wn(xi) ∼ wn(x

∗).
Now, we set h := h∗/φ(x∗) and consider two cases: (i) φ(x∗) � θ/(2n)

and (ii) φ(x∗) < θ/(2n). In the case (i), |Ii| ∼ ρn(x
∗) ∼ φ(x∗)/n, and so

h � cc∗/n for some positive constant c, and we can choose c∗ so that h � θ/n.
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In the case (ii), since x∗± rh∗/2 ∈ [−1, 1], we conclude that φ(x∗) �
√

h∗/2,

and so h∗ < θ2/
(
2n2

)
. Therefore, h �

√
2h∗ � θ/n.

Hence, for some 0 < h � θ/n,

W � cwn(x
∗)|∆r

hφ(x∗)(f, x
∗)|,

and so

W � c sup
0<h�θ/n

sup
x∈[−1,1]

|wn(x)∆
r
hφ(x)(f, x)| � cωr

φ(f, θ/n)∞,wn
. �

5.2. Jackson type estimate.

Theorem 5.3. Let w be a doubling weight, r ∈ N, 0 < p � ∞ and f ∈
Lp[−1, 1]. Then, for every n � r and 0 < ϑ � 1, there exists a polynomial
Pn ∈ Πn such that

∥f − Pn∥p,wn
� cω̃r

φ(f, ϑ/n)p,wn
� cωr

φ(f, ϑ/n)p,wn

and

∥ρνnP (ν)
n ∥p,wn

� cω̃r
φ(f, ϑ/n)p,wn

� cωr
φ(f, ϑ/n)p,wn

, r � ν � ν0,

where constants c depend only on r, ν0, p, ϑ and the doubling constant of w.

We remark that, in the case p = ∞, it is usually assumed that f ∈
C[−1, 1] since, otherwise, ωr

φ(f, 1/n)p,wn
� c > 0, n ∈ N, and so the assump-

tion that f ∈ L∞[−1, 1] does not make this theorem more general.

Proof. We first assume that 0 < p < ∞. For n ∈ N, let (xi)ni=0 be the
Chebyshev partition of [−1, 1], and let pi ∈ Πr, 1 � i � n, be a polynomial
of near best approximation of f on Ji := Ii ∪ Ii−1 (with I0 := ∅) in the Lp

(quasi)norm, i.e.,

∥f − pi∥Lp(Ii)
� cEr(f, Ji)p.

We define Sn to be a piecewise polynomial function such that pi = Sn|Ii ,
1 � i � n.

Then

Sn(x) = pn(x) +

n−1∑
i=1

[
pi(x)− pi+1(x)

]
χi(x).

Therefore, using (2.2), (5.1) and Lemma 5.1 we have

∥f − Sn∥pp,wn
=

n∑
i=1

∫

Ii

wn(x)
��f(x)− Sn(x)

��p dx
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� c

n∑
i=1

wn(xi)

∫

Ii

��f(x)− pi(x)
��p dx

� c

n∑
i=1

wn(xi)ωr

(
f, |Ii|, Ji

)p
p
� cω̃r

φ(f, θ/n)
p
p,wn

,

where 0 < θ < 1 will be chosen later. We now define

Pn(x) := pn(x) +

n−1∑
i=1

[
pi(x)− pi+1(x)

]
Ti(x),

where Ti = T1(n, µ, ε1, ε2) are the polynomials from Lemma 3.1 (note that
the choice of ε1 and ε2 is not important; for example, we can set ε1 = ε2 = 0)
with a sufficiently large µ (we will prescribe it later so that all restrictions
below are satisfied).

Lemma 3.1 now implies

∥Sn − Pn∥pp,wn
�

∫ 1

−1
wn(x)

[ n−1∑
i=1

��pi(x)− pi+1(x)
�� · ��χi(x)− Ti(x)

��
]p

dx

� c

∫ 1

−1
wn(x)

[ n−1∑
i=1

∥pi − pi+1∥∞ψi(x)
µ

]p
dx.

Now, using the Lagrange interpolation formula and [3, Theorem 4.2.7] we
have, for all p ∈ Πr and 0 � l � r − 1,

(5.4) ∥p(l)∥∞ � cψ−r+l+1
i ∥p(l)∥C(Ii)

� cψ−r+l+1
i |Ii|−l−1/p∥p∥Lp(Ii)

,

and hence

∥Sn − Pn∥pp,wn
� c

∫ 1

−1
wn(x)

[ n−1∑
i=1

∥pi − pi+1∥Lp(Ii)
|Ii|−1/pψi(x)

µ−r+1

]p
dx.

Now, if 1 � p < ∞, since
∑n−1

i=1 ψ2
i � c, we have by Jensen’s inequality

( n−1∑
i=1

|γi|ψi(x)
2

)p

� c

n−1∑
i=1

|γi|pψi(x)
2 � c

n−1∑
i=1

|γi|p,

and if 0 < p < 1, then

( n−1∑
i=1

|γi|ψi(x)
2

)p

�
n−1∑
i=1

|γi|pψi(x)
2p � c

n−1∑
i=1

|γi|p.
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Therefore, using (2.7) we have

∥Sn − Pn∥pp,wn
� c

∫ 1

−1

n−1∑
i=1

∥pi − pi+1∥pLp(Ii)
|Ii|−1wn(x)ψi(x)

(µ−r−1)p dx

� c

∫ 1

−1

n−1∑
i=1

∥pi − pi+1∥pLp(Ii)
|Ii|−1wn(xi)ψi(x)

(µ−r−1)p−s dx

� c

n−1∑
i=1

ωr

(
f, |Ii|, Ji ∪ Ji+1

)p
p
|Ii|−1wn(xi)

∫ 1

−1
ψi(x)

(µ−r−1)p−s dx.

Now, if α � 2, then
∫ 1
−1 ψi(x)

α dx � c|Ii|, and so

∥Sn − Pn∥pp,wn
� c

n−1∑
i=1

wn(xi)ωr

(
f, |Ii|, Ji ∪ Ji+1

) p
p
� cω̃r

φ(f, θ/n)
p
p,wn

.

provided (µ− r − 1)p− s � 2.
Now, note that

P (ν)
n (x) = p(ν)n (x) +

n−1∑
i=1

ν∑
l=0

(
ν

l

)
[p(l)i (x)− p

(l)
i+1(x)]T

(ν−l)
i (x),

and so, for r � ν � ν0 (which guarantees that p
(ν)
n ≡ 0), we have using

Lemma 3.1 and (5.4)

∥ρνnP (ν)
n ∥p

p,wn

�
∫ 1

−1
wn(x)ρn(x)

νp

[ n−1∑
i=1

ν∑
l=0

(
ν

l

)
|p(l)i (x)− p

(l)
i+1(x)| · |T (ν−l)

i (x)|
]p

dx

� c

∫ 1

−1
wn(x)ρn(x)

νp

[ n−1∑
i=1

ν∑
l=0

∥p(l)i − p
(l)
i+1∥∞|Ii|−ν+lψi(x)

µ

]p
dx

� c

∫ 1

−1
wn(x)ρn(x)

νp

[ n−1∑
i=1

ν∑
l=0

∥pi − pi+1∥Lp(Ii)
|Ii|−ν−1/pψi(x)

µ−r+l+1

]p
dx

� c

∫ 1

−1
wn(x)ρn(x)

νp

[ n−1∑
i=1

∥pi − pi+1∥Lp(Ii)
|Ii|−ν−1/pψi(x)

µ−r+1

]p
dx
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� c

∫ 1

−1
wn(x)ρn(x)

νp
n−1∑
i=1

∥pi − pi+1∥pLp(Ii)
|Ii|−νp−1ψi(x)

(µ−r−1)p dx

� c

∫ 1

−1
ρn(x)

νp
n−1∑
i=1

∥pi − pi+1∥pLp(Ii)
|Ii|−νp−1wn(xi)ψi(x)

(µ−r−1)p−s dx.

Now, since ρn(x)
2 � 4ρn(xi)

(
|x− xi|+ ρn(xi)

)
and |Ii| ∼ ρn(xi),

∥ρνnP (ν)
n ∥p

p,wn
� c

∫ 1

−1

n−1∑
i=1

∥pi − pi+1∥pLp(Ii)[ρn(xi)
(
|x− xi|+ ρn(xi)

)
]
νp/2

× |Ii|−νp−1wn(xi)ψi(x)
(µ−r−1)p−s dx

� c

∫ 1

−1

n−1∑
i=1

∥pi − pi+1∥pLp(Ii)
|Ii|−1wn(xi)ψi(x)

(µ−r−1−ν/2)p−s dx,

and exactly the same sequence of inequalities as above yields

∥ρνnP (ν)
n ∥p

p,wn
� cω̃r

φ(f, θ/n)
p
p,wn

provided (µ− r − 1− ν0/2)p− s � 2. Thus, if we pick µ = µ(r, ν0, p, s) so
that this (the most restrictive in this proof) inequality as well as the re-
strictions on µ from Lemma 3.1 are satisfied then, for each n ∈ N, we have
constructed a polynomial P̃n of degree < c∗n with some c∗ ∈ N depending
only on r, ν0, p and s, such that

(5.5) ∥f − P̃n∥p,wn
� cω̃r

φ(f, θ/n)
p
p,wn

and

(5.6) ∥ρνnP̃ (ν)
n ∥p,wn

� cω̃r
φ(f, θ/n)p,wn

, r � ν � ν0.

We now pick θ := ϑ/(2c∗), and conclude that this completes the proof
for n � c∗. Indeed, suppose that n � c∗. Then there exists m ∈ N such that

mc∗ � n < (m+ 1)c∗. Then, for polynomials P̃m of degree < c∗m (which

implies that P̃m ∈ Πn), (5.5) and (5.6) hold, and

ω̃r
φ(f, θ/m)p,wm

= ω̃r
φ

(
f, ϑ/(2c∗m)

)
p,wm

� cω̃r
φ(f, ϑ/n)p,wm

� cω̃r
φ(f, ϑ/n)p,wn

,
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since wn(x) ∼ wm(x) if n ∼ m. Also, ρn(x) ∼ ρm(x) if n ∼ m, and the proof
is complete for n � c∗. Finally, for r � n � c∗, the statement of the theorem
follows from the case n = r, Whitney’s inequality (5.1) and the observation
that wr(0)ωr(f, 2)

p
p � cω̃r

φ(f, ϑ/r)
p
p,wr

(see Lemma 5.1). This completes the
proof in the case 0 < p < ∞.

If p = ∞, the proof is analogous and, in fact, simpler. For completeness,
we sketch it below.

The estimate ∥f − Sn∥∞,wn
� cωr

φ(f, θ/n)∞,wn
immediately follows from

Lemma 5.2, and for each x ∈ [−1, 1], we have

wn(x)
��Sn(x)− Pn(x)

�� � wn(x)

n−1∑
i=1

��pi(x)− pi+1(x)
�� · ��χi(x)− Ti(x)

��

� c

n−1∑
i=1

∥pi − pi+1∥C(Ii)wn(xi)ψi(x)
µ−r−s+1

� c

n−1∑
i=1

ωr

(
f, |Ii|, Ji ∪ Ji+1

)
∞wn(xi)ψi(x)

µ−r−s+1

� cωr
φ(f, θ/n)∞,wn

n−1∑
i=1

ψi(x)
µ−r−s+1 � cωr

φ(f, θ/n)∞,wn
,

provided µ− r − s+ 1 � 2.
Similarly, for r � ν � ν0, as in the case p < ∞, we have

ρn(x)
νwn(x)|P (ν)

n (x)|

� cwn(x)ρn(x)
ν
n−1∑
i=1

ν∑
l=0

|p(l)i (x)− p
(l)
i+1(x)| · |T (ν−l)

i (x)|

� cwn(x)ρn(x)
ν
n−1∑
i=1

∥pi − pi+1∥C(Ii)|Ii|
−νψi(x)

µ−r+1

� c

n−1∑
i=1

∥pi − pi+1∥C(Ii)wn(xi)ψi(x)
µ−r−s+1−ν/2 � cωr

φ(f, θ/n)∞,wn
,

if µ− r − s+ 1− ν/2 � 2. This completes the proof for n � c∗n, and the
rest of the proof is the same as in the case p < ∞ taking into account that
wr(0)ωr(f, 2)∞ � cωr

φ(f, ϑ/r)∞,wr
. �
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6. Markov–Bernstein type theorems

Lemma 6.1. Let w be a doubling weight, r ∈ N and 0 < p � ∞. Then,
for all n ∈ N and Pn ∈ Πn,

(6.1) ∥ρrnP (r)
n ∥p,wn

� c∥Pn∥p,wn
.

where the constant c depends only on r, p and the doubling constant of w.

Lemma 6.1 will be used to prove an inverse theorem in the case 1 �
p � ∞. However, in the case 0 < p < 1, it will not be sufficient and will
have to be much improved since we will need to know the dependence of the
constant c in (6.1) on r making sure that it does not grow too fast with r.
This will be done in Section 6.1.

Proof. First, we recall Markov–Bernstein’s inequality (see e.g. [17], [7,
(7.2.7)], [9], [22, Lemma 4], [6, Lemma 2.2], [1, (A.4.22)], [18] as well (3.3))

(6.2) ∥ρrnP (r)
n ∥p

� c∥Pn∥p, Pn ∈ Πn and 0 < p � ∞,

where c depends only on r and p.
Clearly, (6.1) is true if r = 0. Now, using strong induction in r, we sup-

pose that it is true for all 0 � l � r− 1. Using Theorem 4.1 with ν0 = r+1,
for example (and noting that, in the case p = ∞, we take 1/p to be 1 in (4.1)
and (4.2)), the Leibniz formula and (6.2) we have

∥ρrnP (r)
n ∥p,wn

� c∥ρrnP (r)
n Qn∥p

� c∥ρrn(PnQn)
(r)∥p

+ c

r−1∑
l=0

∥ρrnP (l)
n Q(r−l)

n ∥p

� c∥ρrn(PnQn)
(r)∥p

+ c

r−1∑
l=0

∥ρlnP (l)
n ∥p,wn

� c∥PnQn∥p + c∥Pn∥p,wn
� c∥Pn∥p,wn

,

and so (6.1) is proved. �

6.1. A refinement of Lemma 6.1 for 0 < p < 1. In the proof of
the inverse theorem in the case 0 < p < 1, we will need to know the depen-
dence of c in Lemma 6.1 on r making sure that it does not grow too fast
with r (since this estimate will be used for all 0 � r � n− 1). Hence, we
need to reprove Lemma 6.1 in the case 0 < p < 1 paying particular attention
to the constants in all estimates.
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It is convenient to denote

δk(x) := max

{√
1− x2

k
,
1

k2

}
.

We start with the following lemma.

Lemma 6.2. Let 0 < p < 1. Then, for every n, k ∈ N, 0 � µ � n− 1,
k � n/2, and Pn ∈ Πn,

(6.3)
��δµ+1

k P ′
n

��
p
� c(µ+ 1)∥δµkPn∥p,

where the constant c depends only on p and is independent of µ, n and k.

In one form or another, Lemma 6.2 is known. For example, it follows
from [22] and [6] (see also [18]). However, since this result and, in particular,
the exact dependence of the constant on µ is crucial in our proofs and since,
as far as we know, Lemma 6.2 was not explicitly stated anywhere in the
present form we sketch its short (and rather standard) proof.

Proof. It is known (see e.g. [22, (2.11)] or [6, (2.3)]) that, for any n ∈ N,
0 � µ � n− 1 and Pn ∈ Πn,

(6.4) ∥φµ+1P ′
n∥p � c1n(µ+ 1)∥φµPn∥p, c1 = c1(p).

It is also well known that

∥P ′
n∥p � c2n

2∥Pn∥p, c2 = c2(p).

Therefore, denoting Ek :=
{
x |

√
1− x2 � 1/k

}
and noting that δk(x) =

1/k2 if x ∈ Ek, and δk(x) = φ(x)/k if x ∈ [−1, 1] \ Ek, we have

21−1/p∥δµ+1
k P ′

n∥p � ∥δµ+1
k P ′

n∥Lp(Ek)
+ ∥δµ+1

k P ′
n∥Lp([−1,1]\Ek)

= k−2µ−2∥P ′
n∥Lp(Ek)

+ k−µ−1∥φµ+1P ′
n∥Lp([−1,1]\Ek)

� k−2µ−2∥P ′
n∥p + k−µ−1∥φµ+1P ′

n∥p

� c2k
−2µ−2n2∥Pn∥p + c1n(µ+ 1)k−µ−1∥φµPn∥p

= c2(n/k)
2∥k−2µPn∥p + c1(n/k)(µ+ 1)

�� [φ/k]µPn

��
p

�
[
c2(n/k)

2 + c1(n/k)(µ+ 1)
]
∥δµkPn∥p � 4(c1 + c2)(µ+ 1)∥δµkPn∥p. �
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Lemma 6.3. Let w be a doubling weight and 0 < p < 1. Then, for all
n,m, k ∈ N and µ ∈ R such that

m � k, n � k and 0 � µ � n− 1,

and Pn ∈ Πn,

∥δµ+1
k P ′

n∥p,wm
� (µ+ 1)c∗∥δµkPn∥p,wm

,

where the constant c∗ depends only on p and the doubling constant of w.

Proof. First, using Theorem 4.1 (with ν0 = 1) we let Qm ∈ Πm be such
that

c1wm(x)1/p � Qm(x) � c2wm(x)1/p

and

|ρm(x)Q′
m(x)| � c3wm(x)1/p,

where constants c1, c2 and c3 depend only on p and the doubling constant
of w.

Note that PnQm ∈ Πn+m−1 and so taking into account that µ � n− 1
� n+m− 2 and k � (n+m− 1)/2, by Lemma 6.2, we have

∥∥δµ+1
k (PnQm)′

∥∥
p
� c4(µ+ 1)

∥∥δµkPnQm

∥∥
p
,

where c4 depends only on p. Therefore,

∥∥δµ+1
k P ′

n

∥∥
p,wm

� c−1
1

∣∣δµ+1
k P ′

nQm

∥∥
p

� c−1
1 2−1+1/p(

∥∥δµ+1
k (PnQm)′

∥∥
p
+
∥∥δµ+1

k PnQ
′
m

∥∥
p)

� c−1
1 2−1+1/p(c4(µ+ 1)

∥∥δµk (PnQm)
∥∥
p
+ c3

∥∥δµ+1
k ρ−1

m Pnw
1/p
m

∥∥
p)

� c−1
1 2−1+1/p(c2c4(µ+ 1)

∥∥δµkPn

∥∥
p,wm

+ c3
∥∥δµkPn

∥∥
p,wm

)

� c−1
1 2−1+1/p(c2c4 + c3)(µ+ 1)

∥∥δµkPn

∥∥
p,wm

. �

Corollary 6.4. Let w be a doubling weight and 0 < p < 1. Then, for all
n,m,k, r ∈ N and l ∈ N0 such that m � k, n � k, l � r � n−1, and Pn ∈ Πn,

∥δrkP (r)
n ∥p,wm

� (c∗)
r−l r!

l!
∥δlkP (l)

n ∥p,wm
,

where the constant c∗ depends only on p and the doubling constant of w.
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Proof. Lemma 6.3 implies

∥δj+1
k P (j+1)

n ∥
p,wm

= ∥δj+1
k (P (j)

n )
′∥

p,wm
� (j + 1)c(p)∥δjkP (j)

n ∥
p,wm

,

for all 0 � j � r − 1, which immediately implies the statement of the corol-
lary. �

Now, taking into account that δn(x) � ρn(x) � 2δn(x), we finally get the
result that we need in order to prove the inverse type theorems for 0 < p < 1.

Corollary 6.5. Let w be a doubling weight, 0 < p < 1, n, r ∈ N, l ∈ N0,
0 � l � r � n− 1, and Pn ∈ Πn. Then

∥ρrnP (r)
n ∥

p,wn
� 2l(c∗)

r−l r!

l!
∥ρlnP (l)

n ∥
p,wn

,

where the constant c∗ depends only on p and the doubling constant of w.

We note that exactly the same proof as above (and actually simpler since
Lemma 6.2 is no longer needed and (6.4) can be used) yields the following
result.

Corollary 6.6. Let w be a doubling weight, 0 < p < 1, n, r ∈ N, l ∈ N0,
0 � l � r � n− 1, and Pn ∈ Πn. Then

∥φrP (r)
n ∥p,wn

� (c∗)
r−l r!

l!
nr−l∥φlP (l)

n ∥p,wn
,

where the constant c∗ depends only on p and the doubling constant of w.

6.2. Other Markov–Bernstein type estimates in the case
0 < p < 1.

Lemma 6.7. Let 0 < p < 1 and n,m, r ∈ N be such that m � n, and sup-

pose that w is a doubling weight from the class W
δ,γ
Λ with γ � rp.

Then, for any κ > 0, there exists a positive constant ϑ depending only on
κ, r, p, Λ, and the doubling constant of w, such that, for any Pm ∈ Πm and
0 < t � 1/m,

(6.5) ωr
φ(Pm, ϑt)p,wn

� κ
( n

m

)δ/p
(tm)r∥ρrmP (r)

m ∥p,wm
.

The following corollary is an immediate consequence of Lemma 6.7 and

Corollary 6.5 with l = 0 (by setting κ :=
[
(c∗)

rr!
]−1

, where c∗ is the con-
stant from Corollary 6.5).

Corollary 6.8. Let 0 < p < 1 and n,m, r ∈ N be such that m � n, and

suppose that w is a doubling weight from the class W
δ,γ
Λ with γ � rp.
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Then, there exists a positive constant ϑ depending only on r, p, Λ, and
the doubling constant of w, such that, for any Pm ∈ Πm and 0 < t � 1/m,

(6.6) ωr
φ(Pm, ϑt)p,wn

�
( n

m

)δ/p
(tm)r∥Pm∥p,wm

.

Proof of Lemma 6.7. The method of the proof is rather standard (see
e.g. [2,5,22]). Suppose that h � ϑt � ϑ/m, where ϑ is a positive constant
that we will choose later. Using Taylor’s expansion of Pm we have

∆r
hφ(x)(Pm, x) =

r∑
i=0

(
r

i

)
(−1)r−iPm

(
x+ (i− r/2)hφ(x)

)
(6.7)

=
r∑

i=0

(
r

i

)
(−1)r−i

m−1∑
j=0

(i− r/2)jhj

j!
φ(x)jP (j)

m (x)

=

m−1∑
j=0

φ(x)jP (j)
m (x)

hj

j!

r∑
i=0

(
r

i

)
(−1)r−i(i− r/2)j

=

m−1∑
j=0

φ(x)jP (j)
m (x)

hj

j!
∆r

1

(
(·)j , 0

)
.

Recall now that, if g(r) is continuous on [x− rµ/2, x+ rµ/2] then, for some
ξ ∈ (x− rµ/2, x+ rµ/2),

∆r
µ(g, x) = µrg(r)(ξ).

This implies

(6.8) |∆r
1

(
(·)j , 0

)
| �



0, if 0 � j � r − 1,

j!

(j − r)!
(r/2)j−r, if j � r.

Also, since w ∈ W
δ,γ
Λ ,

(6.9) wn(x)φ(x)
γ � Λnδmγ−δρm(x)γwm(x),

and taking into account that jp � rp � γ, r � j � m− 1, and φ(x) �
mρm(x), we have

∥∆r
hφ(Pm)∥p

p,wn
=

∫ 1

−1
wn(x)|∆r

hφ(x)(Pm, x)|p dx
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�
m−1∑
j=r

(
hj

(j − r)!
(r/2)j−r

)p ∫ 1

−1
wn(x)|φ(x)jP (j)

m (x)|p dx

� Λ
m−1∑
j=r

(
hj

(j − r)!
(r/2)j−r

)p∫ 1

−1
nδmγ−δρm(x)γφ(x)jp−γwm(x)|P (j)

m (x)|p dx

� Λ
( n

m

)δ
m−1∑
j=r

(
(hm)j

(j − r)!
(r/2)j−r

)p ∫ 1

−1
wm(x)|ρm(x)jP (j)

m (x)|p dx.

It follows from Corollary 6.5 that, for some constant c1 that depends
only on p and the doubling constant of w,

∫ 1

−1
wm(x)|ρm(x)jP (j)

m (x)|p dx = ∥ρjmP (j)
m ∥p

p,wm

�
(
2r(c1)

j−r j!

r!

)p

∥ρrmP (r)
m ∥p

p,wm
, r � j � m− 1.

Therefore, recalling that h � ϑ/m, we have

��∆r
hφ(Pm)

��p

p,wn

� Λ
( n

m

)δ
m−1∑
j=r

(
(hm)jj!

(j − r)!r!
(r/2)j−r2r(c1)

j−r

)p

∥ρrmP (r)
m ∥p

p,wm

� Λ2rp
( n

m

)δ

∥ρrmP (r)
m ∥p

p,wm
(hm)rp

m−1∑
j=r

((
j

r

)
(ϑrc1/2)

j−r

)p

.

Now, if ϑ � 1/(rc1), noting that
∑∞

j=r (1/2)
(j−r)p

[(
j
r

)]p
= c2, where c2 de-

pends only on r and p, we conclude that

ωr
φ(Pm, ϑt)p,wn

� 2r(Λc2)
1/pϑr

( n

m

)δ/p
(tm)r∥ρrmP (r)

m ∥
p,wm

.

Hence, if we guarantee that ϑ is such that 2r(Λc2)
1/pϑr � κ, then

ωr
φ(Pm, ϑt)p,wn

� κ
( n

m

)δ/p
(tm)r∥ρrmP (r)

m ∥
p,wm

,
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and the proof is complete if we pick ϑ := min{1/(rc1), κ1/r(Λc2)−1/(rp)/2}.
�

Note now that if the same weight wn is used on both sides of (6.5) (i.e.,
m = n), then there is no need to use (6.9) in the proof of Lemma 6.7. Also,

one can keep using φjp and not replace it by (nρn)
jp, and use Corollary 6.6

instead of Corollary 6.5 in order to estimate ∥φjP
(j)
n ∥p,wn

. The following

result that is proved using an idea from [5] will be used in the last section to
show the equivalence of the moduli and certain realization functionals. Even
though the proof is very similar to that of Lemma 6.7 we sketch it below for
completeness.

Lemma 6.9. Let w be a doubling weight, 0 < p < 1 and n, r ∈ N. Then,
there exists a positive constant ϑ depending only on r, p and the doubling
constant of w, such that, for any Pn ∈ Πn and 0 < h � t � ϑ/n,

(1/2)1/phr∥φrP (r)
n ∥

p,wn
� ∥∆r

hφ(Pn)∥p,wn
� (3/2)1/phr∥φrP (r)

n ∥
p,wn

,

and so

(1/2)1/ptr∥φrP (r)
n ∥p,wn

� ωr
φ(Pn, t)p,wn

� (3/2)1/ptr∥φrP (r)
n ∥p,wn

.

Proof. The beginning of the proof is similar to that of Lemma 6.7. We
suppose that h � t � ϑ/n, where ϑ is a positive constant that we will choose
later. Then using (6.7) and (6.8), and taking into account that ∆r

1

(
(·)r, 0

)
= r!, we have

∥∆r
hφ(Pn)− hrφrP (r)

n ∥p

p,wn

�
n−1∑

j=r+1

(
hj

(j − r)!
(r/2)j−r

)p ∫ 1

−1
wn(x)|φ(x)jP (j)

n (x)|p dx.

Using Corollary 6.6 we conclude that, for some constant c1 that depends
only on p and the doubling constant of w,

∫ 1

−1
wn(x)|φ(x)jP (j)

n (x)|p dx = ∥φjP (j)
n ∥p

p,wn

�
(
(c1)

j−r j!

r!

)p

n(j−r)p∥φrP (r)
n ∥p

p,wn
, r + 1 � j � n− 1.

Therefore, recalling that h � ϑ/n, we have

∥∆r
hφ(Pn)− hrφrP (r)

n ∥p

p,wn
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�
n−1∑

j=r+1

(
hj

(j − r)!
(r/2)j−r(c1)

j−r j!

r!

)p

n(j−r)p∥φrP (r)
n ∥p

p,wn

� hrp∥φrP (r)
n ∥p

p,wn

n−1∑
j=r+1

(
(ϑrc1/2)

j−r

(
j

r

))p

� hrp∥φrP (r)
n ∥p

p,wn
(ϑrc1/2)

p
n−1∑

j=r+1

(
(ϑrc1/2)

j−r−1

(
j

r

))p

.

Now, if ϑ � 1/(rc1), then
∑∞

j=r+1 (1/2)
(j−r−1)p[

(
j
r

)
]
p
= c2, where c2 depends

only on r and p, and if ϑ � 2(2c2)
−1/p(rc1)

−1, then we get

∥∆r
hφ(Pn)− hrφrP (r)

n ∥p

p,wn
� 1

2
hrp∥φrP (r)

n ∥p

p,wn
.

Therefore, if we set ϑ := min
{
1/(rc1), 2(2c2)

−1/p(rc1)
−1} , then we get

1

2
hrp∥φrP (r)

n ∥p

p,wn
� ∥∆r

hφ(Pn)∥p

p,wn
� 3

2
hrp∥φrP (r)

n ∥p

p,wn
. �

7. Weighted polynomial approximation: inverse theorems

7.1. Auxiliary results.

Lemma 7.1. If w is a doubling weight, 0 < p � ∞, f ∈ Lp[−1, 1],
n, r ∈ N, c∗ > 0, and t � c∗/n, then

ωr
φ(f, t)p,wn

� c∥f∥p,wn
,

where c depends only on r, c∗, p, and the doubling constant of w.

Proof. First, we recall that ∆r
hφ(x)(f, x) = 0 if x ̸∈ Drh/2, where

Dλ :=
{
x | x ̸= ±1 and x± λφ(x) ∈ [−1, 1]

}
=

{
x
��� |x| � 1− λ2

1 + λ2

}
,

and hence, for 0 < p < ∞,

ωr
φ(f, t)

p
p,wn

� c sup
0<h�t

∫

Drh/2

wn(x)

( r∑
i=0

(
r

i

)
|f
(
x+ (i− r/2)hφ(x)

)
|
)p

dx
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� c sup
0<h�t

r∑
i=0

∫

Drh/2

wn(x)|f
(
x+ (i− r/2)hφ(x)

)
|p dx.

It is clear that, if h � t � c/n, then hφ(x) � cρn(x). Therefore, if yi(x) :=
x+ (i− r/2)hφ(x), 0 � i � r, then

��x− yi(x)
�� � rhφ(x)/2 � cρn(x) and

(2.2) implies that wn(x) ∼ wn

(
yi(x)

)
. Hence,

ωr
φ(f, t)

p
p,wn

� c sup
0<h�t

r∑
i=0

∫

Drh/2

wn

(
yi(x)

)
|f
(
yi(x)

)
|p dx

� c

∫ 1

−1
wn(y)

��f(y)��p dy � c∥f∥pp,wn
.

In the case p = ∞, the needed modifications in the proof are obvious. �
Lemma 7.2. Let w be a doubling weight, n, r ∈ N, c∗ > 0, t � c∗/n, 1 � p

� ∞. If f has the (r−1)st locally absolutely continuous derivative on (−1,1)

and ∥φrf (r)∥
p
< ∞, then

ωr
φ(f, t)p,wn

� ctr∥φrf (r)∥
p,wn

,

where c depends only on r, c∗, p, and the doubling constant of w.

We remark that it is well known that, in general, Lemma 7.2 is not
true for 0 < p < 1 and, in fact, one can show that, for every M ∈ R and
n ∈ N, there exists an absolutely continuous function f on [−1, 1] such that
En

(
f, [−1, 1]

)
p
> M∥f ′∥p.

Proof. If f has the (r − 1)st absolutely continuous derivative, then

∆r
h(f, x) =

∫ h/2

−h/2
. . .

∫ h/2

−h/2
f (r)(x+ t1 + · · ·+ tr) dtr . . . dt1.

In the case 1 � p < ∞, if h � c/n, we have

(∫ 1

−1
wn(x)

��∆r
hφ(x)(f, x)

��p dx
)1/p

�
(∫

Drh/2

[ ∫ hφ(x)/2

−hφ(x)/2
. . .

∫ hφ(x)/2

−hφ(x)/2
w1/p
n (x)

× |f (r)(x+ t1 + · · ·+ tr)| dtr . . . dt1
]p

dx

)1/p
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� c

(∫

Drh/2

[ ∫ hφ(x)/2

−hφ(x)/2
. . .

∫ hφ(x)/2

−hφ(x)/2
w1/p
n (x+ t1 + · · ·+ tr)

× |f (r)(x+ t1 + · · ·+ tr)| dtr . . . dt1
]p

dx

)1/p

.

By Hölder’s inequality, for each u satisfying −1 < x+ u− hφ(x)/2 < x+ u
+ hφ(x)/2 < 1, we have

∫ hφ(x)/2

−hφ(x)/2
w1/p
n (x+ u+ tr)|f (r)(x+ u+ tr)| dtr

=

∫ x+u+hφ(x)/2

x+u−hφ(x)/2
w1/p
n (v)|f (r)(v)| dv

� ∥w1/p
n φrf (r)∥Lp(A(x,u))

∥φ−r∥Lp′(A(x,u)),

where 1/p+ 1/p′ = 1 and

A(x, u) :=
[
x+ u− hφ(x)/2, x+ u+ hφ(x)/2

]
.

The needed estimate now follows from
∫

Drh/2

[ ∫ hφ(x)/2

−hφ(x)/2
. . .

∫ hφ(x)/2

−hφ(x)/2
∥φ−r∥Lp′(A(x,t1+···+tr−1))(7.1)

× ∥w1/p
n φrf (r)∥Lp(A(x,t1+···+tr−1))

dtr−1 . . . dt1

]p
dx � chrp∥w1/p

n φrf (r)∥p

p
,

where 1 � p < ∞. In the case p = ∞, an analogous sequence of estimates
yields

sup
x∈Drh/2

∫ hφ(x)/2

−hφ(x)/2
. . .

∫ hφ(x)/2

−hφ(x)/2
∥φ−r∥L1(A(x,t1+···+tr−1))(7.2)

× ∥wnφ
rf (r)∥L∞(A(x,t1+···+tr−1))

dtr−1 . . . dt1 � chr∥wnφ
rf (r)∥∞.

Note that, in the case r = 1, estimates (7.1) and (7.2) are understood, re-
spectively, as

∫

Dh/2

∥φ−1∥pLp′(A(x,0))∥w
1/p
n φf ′∥pLp(A(x,0)) dx � chp∥w1/p

n φf ′∥pp, 1 � p < ∞,

(7.3)
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and

sup
x∈Dh/2

∥φ−1∥L1(A(x,0))∥wnφf
′∥L∞(A(x,0)) � ch∥wnφf

′∥∞, p = ∞.(7.4)

Estimates (7.1)–(7.4) were proved in [12] (see (4.2)–(4.4) there with r = 0,

variable “k” replaced by “r”, g(r) replaced by w
1/p
n f (r) with 1/∞ := 1, and

noting that Dλ in [12] is actually Dλ/2 in the current paper). �

7.2. Inverse theorem: the case 1 � p � ∞. Recall the following
notation that was used in the introduction

λp :=

{
p, if p < ∞,

1, if p = ∞.

Theorem 7.3. Let r ∈ N, 1 � p � ∞, and f ∈ Lp[−1, 1]. Suppose that

w is a doubling weight from the class W
δ,γ
Λ with γ � rλp. Then

ωr
φ

(
f, n−1

)
p,wn

� c

nr−δ/λp

n∑
k=1

kr−1−δ/λpEk(f)p,wk
,

where the constant c depends only on r, p, δ, γ, Λ, and the doubling constant
of the weight w.

Taking into account that any doubling weight belongs to the class W1,1
1

(see Remark 2.3) and that γ = 1 � rλp, for all r ∈ N and 1 � p � ∞, we
immediately get the following corollary of Theorem 7.3.

Corollary 7.4. Let w be a doubling weight, r ∈ N, 1 � p � ∞, and
f ∈ Lp[−1, 1]. Then

ωr
φ

(
f, n−1

)
p,wn

� c

nr−1/λp

n∑
k=1

kr−1−1/λpEk(f)p,wk
,

the constant c depends only on r, p and the doubling constant of w.

Remark 7.5. Since any weight that satisfies the A∗ property is in W0,0

(see Remark 2.4), it immediately follows from Theorem 7.3 that, for A∗

weights w, we have

ωr
φ

(
f, n−1

)
p,wn

� c

nr

n∑
k=1

kr−1Ek(f)p,wk
, 1 � p � ∞.

In the case p = ∞, this is the “inverse” part of [13, Theorem 1.3].
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Proof of Theorem 7.3. Let P ∗
n ∈ Πn denote a polynomial of (near)

best approximation to f with weight wn, i.e.,

c∥f − P ∗
n∥p,wn

� inf
Pn∈Πn

∥f − Pn∥p,wn
= En(f)p,wn

.

We let N ∈ N be such that 2N � n < 2N+1 and denote mj := 2j . Then re-
calling that wn(x) ∼ wm(x) if n ∼ m, and using Lemma 7.1 we have

ωr
φ

(
f, n−1

)
p,wn

� ωr
φ

(
f, 2−N

)
p,wn

� ωr
φ

(
f − P ∗

mN
, 2−N

)
p,wn

+ ωr
φ

(
P ∗
mN

, 2−N
)
p,wn

� c∥f − P ∗
mN

∥
p,wmN

+ ωr
φ

(
P ∗
mN

, 2−N
)
p,wmN

� cEmN
(f)p,wmN

+ ωr
φ

(
P ∗
mN

, 2−N
)
p,wmN

.

Now, the fact that w ∈ W
δ,γ
Λ implies (see (2.6))

wmN
(x)φ(x)γ � Λmδ

Nmγ−δ
j ρmj

(x)γwmj
(x), 0 � j � N.

Hence, using

P ∗
mN

= P ∗
1 +

N−1∑
j=0

(P ∗
mj+1

− P ∗
mj

)

and Lemmas 7.2 and 6.1 we have

ωr
φ

(
P ∗
mN

, 2−N
)
p,wmN

�
N−1∑
j=0

ωr
φ

(
P ∗
mj+1

− P ∗
mj

, 2−N
)
p,wmN

� c

N−1∑
j=0

2−Nr∥w1/λp

mN
φr

(
P ∗
mj+1

− P ∗
mj

) (r)∥p

� c

N−1∑
j=0

2−Nr∥mδ/λp

N m
(γ−δ)/λp

j ργ/λp

mj
φr−γ/λpw1/λp

mj

(
P ∗
mj+1

− P ∗
mj

) (r)∥p
.

Since r − γ/λp � 0 and φ � mjρmj
, this yields

ωr
φ

(
P ∗
mN

, 2−N
)
p,wmN

� c

N−1∑
j=0

2−Nr∥mδ/λp

N m
r−δ/λp

j ρrmj
w1/λp

mj

(
P ∗
mj+1

− P ∗
mj

) (r)∥
p
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� c
N−1∑
j=0

2−(N−j)(r−δ/λp)∥ρrmj
w1/λp

mj

(
P ∗
mj+1

− P ∗
mj

) (r)∥
p

� c

N−1∑
j=0

2−(N−j)(r−δ/λp)∥w1/λp

mj

(
P ∗
mj+1

− P ∗
mj

)
∥
p

� c

N−1∑
j=0

2−(N−j)(r−δ/λp)Emj
(f)p,wmj

.

Therefore,

ωr
φ

(
f, n−1

)
p,wn

� c

N∑
j=0

2−(N−j)(r−δ/λp)Emj
(f)p,wmj

,

and so

ωr
φ

(
f, n−1

)
p,wn

� c

nr−δ/λp

N∑
j=0

2j(r−δ/λp)Emj
(f)p,wmj

� c

nr−δ/λp

(
E1(f)p,w1

+
N∑
j=1

mj∑
k=mj−1+1

kr−1−δ/λpEk(f)p,wk

)

� c

nr−δ/λp

n∑
k=1

kr−1−δ/λpEk(f)p,wk
. �

We have the following immediate corollaries of Theorems 5.3 and 7.3.

Corollary 7.6. Let r ∈ N, 1 � p � ∞ and f ∈ Lp[−1, 1]. Suppose that

w is a doubling weight from the class Wδ,γ with γ � rλp. Then, for 0 < α
< r − δ/λp, we have

En

(
f, [−1, 1]

)
p,wn

= O(n−α) ⇐⇒ ωr
φ

(
f, n−1

)
p,wn

= O(n−α).

Again, taking into account that any doubling weight belongs to the class
W

1,1
1 and that 1 � rλp, for all r ∈ N and 1 � p � ∞, we get the following

corollaries (or one can obtain them as a consequence of Theorem 5.3 and
Corollary 7.4).
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Corollary 7.7 (1 < p < ∞ and all doubling weights). Let w be a dou-
bling weight, r ∈ N, 1 < p < ∞ and f ∈ Lp[−1,1]. Then, for 0 < α < r−1/p,
we have

En

(
f, [−1, 1]

)
p,wn

= O(n−α) ⇐⇒ ωr
φ

(
f, n−1

)
p,wn

= O(n−α).

Clearly, this corollary is also valid for p = 1 and p = ∞. However, since
r − 1/λp = r − 1 in both of these cases it seems more natural to state them
in the following form replacing r − 1 with r.

Corollary 7.8 (p = 1 or p = ∞, and all doubling weights). Let w be
a doubling weight, r ∈ N, p = 1 or p = ∞, and f ∈ Lp[−1, 1]. Then, for
0 < α < r, we have

En

(
f, [−1, 1]

)
p,wn

= O(n−α) ⇐⇒ ωr+1
φ

(
f, n−1

)
p,wn

= O(n−α).

In the case p = ∞, Corollary 7.8 was proved in [13] (with ωr+2
φ instead

of ωr+1
φ ). Also, it was shown in [13, p. 183] that, in the case r = 1 and

p = ∞, Corollary 7.8 is no longer true if ωr+1
φ is replaced by ωr

φ.

7.3. Inverse theorem: the case 0 < p < 1.

Theorem 7.9. Let 0 < p < 1, f ∈ Lp[−1, 1] and let r ∈ N, and suppose

that w is a doubling weight from the class W
δ,γ
Λ with γ � rp. Then

ωr
φ

(
f, ϑn−1

)
p,wn

� c

nr−δ/p

( n∑
k=1

krp−δ−1Ek(f)
p
p,wk

)1/p

,

where ϑ is the constant from Corollary 6.8, and the constant c depends only
on r, p and the doubling constant of w.

We now recall that any doubling weight w belongs to the class Wδ,γ with
(δ, γ) ∈ Υ. In particular, w belongs to the class Wδ0,γ0 with γ0 := min{rp, 1}
and δ0 := 2− γ0. Hence, we get a corollary of Theorem 7.9 for all r ∈ N,
0 < p < 1, and doubling weights w with δ0 = 2−min{rp, 1}. However, in
the case rp � 1 this corollary is useless since the resulting inequality

ωr
φ

(
f, ϑn−1

)
p,wn

� cn2(1/p−r)

( n∑
k=1

k2rp−3Ek(f)
p
p,wk

)1/p

simply means that ωr
φ

(
f, ϑn−1

)
p,wn

is bounded above by a quantity larger

than cE1(f)p,w1
which is worse than what Lemma 7.1 implies.

Therefore, we do not really get anything useful that is valid for all dou-
bling weights if rp � 1. In the case rp > 1, δ0 = γ0 = 1, and we are back to
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the same situation as in the case for p � 1, i.e., we can use the fact that any

doubling weight is in W
1,1
1 . Hence, we get the following inverse theorem that

is valid for all doubling weights.

Corollary 7.10. Let w be a doubling weight, 0 < p < 1, f ∈ Lp[−1, 1],
and let r ∈ N be such that r > 1/p. Then

ωr
φ

(
f, ϑn−1

)
p,wn

� c

nr−1/p

( n∑
k=1

krp−2Ek(f)
p
p,wk

)1/p

,

where ϑ is the constant from Corollary 6.8, and the constant c depends only
on r, p and the doubling constant of w.

Remark 7.11. Since any weight that satisfies the A∗ property is in W0,0

(see Remark 2.4), it immediately follows from Theorem 7.9 that, for A∗

weights w, we have

ωr
φ

(
f, ϑn−1

)
p,wn

� c

nr

( n∑
k=1

krp−1Ek(f)
p
p,wk

)1/p

, 0 < p < 1.

In fact, it is possible to show that one can set ϑ = 1 in this case.

Proof of Theorem 7.9. The method of the proof is rather standard
(see e.g. [6]). The beginning is the same as in the case 1 � p � ∞. Namely,
let P ∗

n ∈ Πn denote a polynomial of (near) best approximation to f with
weight wn, i.e.,

∥f − P ∗
n∥p,wn

� cEn(f)p,wn
.

We let N ∈ N be such that 2N � n < 2N+1, denote mj := 2j , and recall that
ϑ is the constant from Corollary 6.8.

Recalling that wn(x) ∼ wm(x) if n ∼ m, and using Lemma 7.1 we have

ωr
φ

(
f, ϑn−1

)p
p,wn

� ωr
φ

(
f, ϑ2−N

)p
p,wn

� ωr
φ

(
f − P ∗

mN
, ϑ2−N

)p
p,wn

+ ωr
φ

(
P ∗
mN

, ϑ2−N
)p
p,wn

� c∥f − P ∗
mN

∥p
p,wmN

+ ωr
φ

(
P ∗
mN

, ϑ2−N
)p
p,wmN

� cEmN
(f)pp,wmN

+ ωr
φ

(
P ∗
mN

, ϑ2−N
)p
p,wmN

.

Using

P ∗
mN

= P ∗
1 +

N−1∑
j=0

(P ∗
mj+1

− P ∗
mj

)
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and Corollary 6.8 with t := 2−N (noting that t � 1/mj+1 for all 0 � j �
N − 1) we have

ωr
φ

(
P ∗
mN

, ϑ2−N
)p
p,wmN

�
N−1∑
j=0

ωr
φ(P

∗
mj+1

− P ∗
mj

, ϑ2−N)
p

p,wmN

�
N−1∑
j=0

(
mN

mj+1

)δ (
2−Nmj+1

) rp��P ∗
mj+1

− P ∗
mj

��p

p,wmj+1

� c

N−1∑
j=0

2−(N−j)(rp−δ)Emj
(f)pp,wmj

.

Hence,

ωr
φ

(
f, ϑn−1

) p
p,wn

� c

N∑
j=0

2−(N−j)(rp−δ)Emj
(f)pp,wmj

,

and so as in the proof for 1 � p � ∞, we conclude that

ωr
φ

(
f, ϑn−1

)p
p,wn

� c

nrp−δ

N∑
j=0

2j(rp−δ)Emj
(f)pp,wmj

� c

nrp−δ

(
E1(f)

p
p,w1

+

N∑
j=1

mj∑
k=mj−1+1

krp−δ−1Ek(f)
p
p,wk

)

� c

nrp−δ

n∑
k=1

krp−δ−1Ek(f)
p
p,wk

. �

We have the following immediate corollary of Theorems 5.3 and 7.9.

Corollary 7.12 (0 < p < 1). Let r ∈ N, 0 < p < 1 and f ∈ Lp[−1, 1].

Suppose that w is a doubling weight from the class Wδ,γ with γ � rp. Then,
for 0 < α < r − δ/p, we have

En

(
f, [−1, 1]

)
p,wn

= O(n−α) ⇐⇒ ωr
φ

(
f, n−1

)
p,wn

= O(n−α).

We remark that, since 1 ∈ W0,0, an immediate consequence of Corol-
lary 7.12 is the usual equivalence result for unweighted polynomial approxi-
mation in Lp for 0 < p < 1.

Again, taking into account that any doubling weight belongs to the class
W1,1 and assuming that rp > 1 we get the following corollary.
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Corollary 7.13 (0 < p < 1 and all doubling weights). Let w be a dou-
bling weight, 0 < p < 1, f ∈ Lp[−1, 1], and let r ∈ N be such that r > 1/p.
Then, for 0 < α < r − 1/p, we have

En

(
f, [−1, 1]

)
p,wn

= O(n−α) ⇐⇒ ωr
φ

(
f, n−1

)
p,wn

= O(n−α).

As a final remark in this section, we mention that it is still an open
problem to prove or disprove if Theorems 7.3 and 7.9 are sharp.

8. K -functionals and realization

For f ∈ Lp, r ∈ N and a weight w, the weighted K-functional is defined
as follows

Kr,φ(f, t)p,w := inf
g(r−1)∈ACloc

(∥f − g∥p,w + tr∥φrg(r)∥p,w),

where ACloc is the set of all locally absolutely continuous functions on
(−1, 1). In fact, for doubling weights w we are interested in a sequence
of these K-functionals with weights wn, and so we define several related
quantities (all of which depend on n) as follows:

Kr,φn
(f, t)p,wn

:= inf
g(r−1)∈ACloc

(∥f − g∥p,wn
+ tr∥φr

ng
(r)∥p,wn

),

where φn(x) := φ(x) + 1/n = nρn(x),

Rr,φ(f, t)p,wn
:= inf

Pn∈Πn

(∥f − Pn∥p,wn
+ tr∥φrP (r)

n ∥
p,wn

),

and

Rr,φn
(f, t)p,wn

:= inf
Pn∈Πn

(∥f − Pn∥p,wn
+ tr∥φr

nP
(r)
n ∥p,wn

).

Note that Rr,φ and Rr,φn
are sometimes referred to as “realizations” of ap-

propriate K -functionals or “realization functionals” (see [4,5], for example).
It is clear that

Kr,φ(f, t)p,wn
� Kr,φn

(f, t)p,wn
� Rr,φn

(f, t)p,wn
and(8.1)

Kr,φ(f, t)p,wn
� Rr,φ(f, t)p,wn

� Rr,φn
(f, t)p,wn

, t > 0.

It follows from Theorem 5.3 that, if w is a doubling weight, r ∈ N, 0 < p
� ∞, f ∈ Lp[−1, 1], and A > 0 is any constant, then there exists Pn ∈ Πn

such that

∥f − Pn∥p,wn
+ n−r∥φr

nP
(r)
n ∥

p,wn
� cω̃r

φ(f,A/n)p,wn
� cωr

φ(f,A/n)p,wn
,
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n � r, and hence, for any constant B > 0,

Rr,φn
(f, t)p,wn

� cω̃r
φ(f,A/n)p,wn

� cωr
φ(f,A/n)p,wn

, n � r and t � B/n,
(8.2)

where the constant c depends only on r, p, A, B, and the doubling constant
of w.

Lemmas 7.1 and 7.2 imply that, if w is a doubling weight, 1 � p � ∞,

f ∈ Lp[−1, 1], C > 0, D > 0, and g is any function such that g(r−1) ∈ ACloc

and ∥φrg(r)∥p
< ∞, then

ωr
φ(f, t)p,wn

� cKr,φ(f,Ct)p,wn
, 0 < t � D/n,

where the constant c depends only on r, p, C, D, and the doubling constant
of w.

Therefore, together with (8.1), this immediately implies the following
result.

Corollary 8.1. If w is a doubling weight, 1 � p � ∞, f ∈ Lp[−1, 1],
and n, r ∈ N are such that n � r, and A/n � t � B/n, then

ωr
φ(f, t)p,wn

∼ ω̃r
φ(f, t)p,wn

∼ Kr,φ(f, t)p,wn
∼ Kr,φn

(f, t)p,wn

∼ Rr,φ(f, t)p,wn
∼ Rr,φn

(f, t)p,wn
,

where all equivalence constants depend only on r, p, A, B, and the doubling
constant of w.

We now turn our attention to the case 0 < p < 1. Things are a bit more
complicated now since, as was shown in [5], the K -functionals are identically
zero if 0 < p < 1. However, we are still able to get the equivalence of the
moduli and the realization functionals.

Lemmas 6.9 and 7.1 imply that, for a doubling weight w, 0 < p < 1,
n ∈ N, and some constant ϑ depending only on r, p, and the doubling con-
stant of w,

ωr
φ(f, t)p,wn

� cRr,φ(f, t)p,wn
, 0 < t � ϑ/n,

where c depends only on r, p and the doubling constant of w. For n � r,
together with (8.2), this implies, for A/n � t � ϑ/n,

Rr,φn
(f, t)p,wn

� cω̃r
φ(f,A/n)p,wn

� cω̃r
φ(f, t)p,wn

� cωr
φ(f, t)p,wn

(8.3)

� cRr,φ(f, t)p,wn
� cRr,φn

(f, t)p,wn
.
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Suppose now that P ∗
n ∈ Πn is a polynomial of (near) best approximation

to f with weight wn, i.e., ∥f − P ∗
n∥p,wn

� cEn(f)p,wn
, and consider

R∗
r,φ(f, t)p,wn

:= ∥f − P ∗
n∥p,wn

+ tr∥φr(P ∗
n)

(r)∥
p,wn

.

Then, Lemmas 6.9 and 7.1 and Theorem 5.3 imply, for A/n � t � ϑ/n,

R∗
r,φ(f, t)p,wn

� cEn(f)p,wn
+ tr∥φr(P ∗

n)
(r)∥

p,wn

� cEn(f)p,wn
+ c(A/n)r∥φr(P ∗

n)
(r)∥

p,wn

� cEn(f)p,wn
+ cωr

φ

(
P ∗
n ,A/n

)
p,wn

� cEn(f)p,wn
+ cωr

φ(f,A/n)p,wn

� cωr
φ(f,A/n)p,wn

� cωr
φ(f, t)p,wn

.

Since

Rr,φ(f, t)p,wn
� R∗

r,φ(f, t)p,wn
,

together with (8.3) we get the following result.

Corollary 8.2. If w is a doubling weight, 0 < p < 1, f ∈ Lp[−1, 1],
and n, r ∈ N are such that n � r, then there exists a positive constant ϑ de-
pending only on r, p and the doubling constant of w, such that, for any
constant 0 < A < ϑ and A/n � t � ϑ/n, we have

ωr
φ(f, t)p,wn

∼ ω̃r
φ(f, t)p,wn

∼ Rr,φ(f, t)p,wn
∼ Rr,φn

(f, t)p,wn
∼ R∗

r,φ(f, t)p,wn
,

where all equivalence constants depend only on r, p, A, ϑ, and the doubling
constant of the weight w.
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