On k-monotone Interpolation

Kirill A. Kopotun

Abstract. The errors of approximation of k-monotone functions by
k-monotone interpolants are obtained. Suppose that a partition Py =

{xi}fio, N > k, of an interval [a,b] into < N subintervals is such that
a=20<z1<...<zN_1 <zN =D, and either

() 11Px]l < 352

or
(ii) [|1Py]| > 5=y and b—a < Adist{yz—1, {a,b}},
where ||Py|| := maxg<;<y—1{%i+1 — i}, and {yz}iV:Il is a permu-

tation of {xz}z]iIl ordered so that dist{y;, {a,b}} > dist{y;+1, {a,b}}
foralll1 <i:< N —1.

We show, in particular, that if f and g are k-monotone functions on
[a,b] such that f(z;) = g(z;) for all 0 <4 < N, then

1f = gllcfa,p) £ Cmin{wi(f, [P, [a,b]), wk (g, [|1Pn ]l [a;0])}

where wyg, is the usual kth modulus of smoothness, and the constant
C depends only on k£ in the case (i), and on k¥ and A in the case
(ii). Moreover, we show that dependence of C on A in the case (ii) is
essential and cannot be removed.

§1. Introduction

In this paper, we discuss the errors of approximation of k-monotone func-
tions by k-monotone interpolants. It turns out that any two k-monotone
functions f and g whose graphs intersect each other at certain (sufficiently
many) points in [a,b] have to be “close” to each other in the sense that
|f — 9ll{a,5) has to be small. The only requirement on the points is that
there should be enough of them “in the middle” of the interval [a, ], i.e.,
they should not all be accumulated near the endpoints of [a,b]. These

Advances in Constructive Approximation 265
M. Neamtu and E. B. Saff (eds.), pp. 265-275.

Copyright © 2004 by Nashboro Press, Brentwood, TN.

ISBN 0-9728482-2-3

All rights of reproduction in any form reserved.



266 K. A. Kopotun

results are no longer valid for functions f and g which are not necessarily
k-monotone (see Section 4 for more details).

A function f : [a,b] — R is said to be k-monotone on [a, b] if its kth
divided differences [z, .. ., zk; f] are nonnegative for all selections of £+ 1
distinct points zg, . ..,z in [a, b]. We denote the class of all such functions
by MF := M¥*[a,b], and note that M°, M, and M? are convex cones of
all nonnegative, monotone, and convex functions, respectively.

Let || - || := || - ||z denote the uniform norm on an interval I, and let
wi(f, 9, [a, b]) be the usual uniform kth modulus of smoothness:

zk: (f) (=1 f(a + ih)

1=0

wk(f7 (5a [aa b]) ‘= Sup
0<h<s

Y

[a,b—kh]

and wg(f,I) := wr(f, |I],I), where |I| is the length of I.

Also, let Lig_1(f, z;t1,...,tx) denote the Lagrange polynomial of de-
gree < k—1 interpolating f at the points ¢;, 1 < j < k. If some (or all) in-
terpolation points coincide, we use the usual convention that interpolation
of corresponding derivatives takes place which results in a Hermite-Taylor
polynomial. More precisely, let [; denote the number of points ¢; such that
t; = tj with ¢ < j, i.e.,

b=l ({ti}) == #{ili < g, b = 15}

Then, Lg_1(f,x;t1,...,t) is the unique polynomial of degree < k — 1
such that, for all 1 < 57 <k,

lj— .
LTV (1, 5) = FED ().

Hence, in order for Hermite-Taylor polynomial to be properly defined the
function f has to have (m; — 1)st derivative at t;, where m; is the multi-
plicity of ¢;, i.e., m; := # {i|t; = t;}. We now recall that any k-monotone
function on [a,b] has absolutely continuous (k — 2)nd derivative on any
closed subinterval of (a,b), and f*~2) has left and right derivatives which
are, respectively, left- and right-continuous and nondecreasing on (a,b).
Thus, if f € M*, the only problem with the notation Lg_1(f, z;t1,...,tx)
that we might encounter is when one has to deal with the (k —1)st deriva-
tive of f which may not be defined (this can happen only if all ¢; coincide,
i.e.,t; =t for all 1 < j < k). In this case, to avoid ambiguity, we define

k k—2
1 . ; 1
. . = r(2) Y (k—1) k-1
Li-1(f,mt,- 1) -—gi!f O ="+ gopfs O -0
and note that all of the results below involving Ly_1(f,z;t,...,t) are

valid if fik_l)(t) is replaced by fﬁk_l)(t) or any number between fik_l)(t)
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and fJ(rk_l)(t). This follows from the fact that, for any f € (Ck_z(a, b),
Li_1(f,z;t1,...,tk) is a continuous function of T' = (t1,...,tx) at every
point T* = (},...,t}) € (a,b)* such that not all ¢}, 1 < j < k, are the
same (see [2]), and the existence of left and right (k — 1)st derivatives at
every point in (a, b).

If I = [«, B], denote

Ou(I) :=[a—p(B — ), B+ u(B — )],

i.e., O, () is the interval of length (1 + 2u)|I| such that I is in its center.
The following lemma is an immediate corollary of [3, Theorem 1]
(with A in that theorem defined by A := u/(1+ 2u) and J4 :=I).

Lemma 1. Let f € M*[a,b], k > 1. If an interval I C [a,b] is such that
dist{I,{a,b}} > 0, then, for any set {t1,...,tx} of k points in I and any
p > 0 such that O, (I) C [a,b], we have

|f = Le—1(f, 5t s t)llo, ) < Clk, p)wi(f, Ou(l)), (1)

where the constant C, which depends only on k and u, can be chosen to
be a non-increasing function of u: C(k, u1) < C(k, ug) for puy > po.

Note that, in general, the constant C in (1) becomes unbounded as y
approaches 0 (except in the case k = 1) since (see [3, Proposition 4))

5 ( ”f_Lk—l(fa';tla---atk)”O“(I)>
im sup sup

n=0F \ feME[a,b] {1, tr}CI wi(f, Ou(I))

The paper is organized as follows. In Section 2, we generalize Lemma 1 to
allow interpolation at the endpoints of an interval (Corollaries 3 and 4),
discuss how exact these new estimates are (Lemmas 5 and 5'), and then
obtain local estimates as a consequence (Theorem 6). Section 3 is devoted
to global estimates which are the main result of this paper (Theorems 7
and 8). Finally, in Section 4, we discuss the validity of the estimates if the
condition that f and g are k-monotone is removed.

§2. Local Estimates

First, we show that Lemma 1 can be slightly generalized to allow interpo-
lation at the endpoints of the interval [a, b] (see Corollaries 3 and 4). We
need the following auxiliary lemma.

Lemma 2. Let f be a bounded function on [a, b]. Suppose that an interval
I C [a,b] is such that b — a < Adist{I,{a,b}} for some A € R. Also, let
{t1,...,tk_1} be a set of any (not necessarily distinct) k — 1 points in I,
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and let q;_1 be a polynomial of degree < k — 1 which interpolates f at
{t1,...,tk_1}. Then, the following inequality is valid:

1f = le—1(F)lla,p) < CNf — ar—1ll[a,5)5 (2)

where lg_1(f) is Lr—1(f,;a,t1,...,tg—1) or Lg_1(f,3t1,...,tx—1,b), and
the constant C depends only on k and A.

Proof: Since

1/ = k=1 ()]

(ap] = If = ar—1 — -1 (f — qk—1)|l[a,5]

<Nf = ae-1llja,p) + k=1 (f — qk—1)ll{a,5];
the proof of (2) will be complete if we show that
llk—1(f = qk—1)ll{a,0] < ClIf = ar-1ll[a,5)- (3)

In order to prove (3), we recall that (f — gz—1)& D (¢;) = 0 for all 1 <
j <k —1, and, hence,

k-1 ]
hea(f = aeo2) = (£ — aua(0) [T =4

where c is either a or b.
This immediately implies

b—a kot
Li_ — (r_ <|\— — Qk—
sl = a0llon < (gir ogyy) O~ @)
< AN F = @1 lans
and the proof of the lemma is complete. O

Corollary 3. Let f € MP¥[a,b], k > 2. Suppose that an interval I C [a, b]
is such that b—a < Adist{I,{a,b}} for some A € R, and let {t1,...,tx—1}
be a set of any (not necessarily distinct) k — 1 points in I. Then,

1f = le—1 (a0 < Cwr(f, [a,B]), (4)

where lg_1(f) is Lg_1(f,;a,t1,...,tg—1) or Lg_1(f,3t1,...,tx_1,b), and
the constant C depends only on k and A.

Proof: Lemma 2 implies that

1f = le—1(P)lap) S CNf = Li—1(f5 515 s te—15 ) |l[a,e) (5)
for any ¢ € [a,b] and, in particular, for any ¢ € I. Let I =: [, 8], and
suppose that dist{,a} > dist{I,b}, i.e., dist{l,{a,b}} = dist{I,b} =
b — B (the other case is treated similarly), and let & = a + (b — ). Since
I C [a, ], we have {t1,...,tx_1,t} C [&, B]. Now, let p:= (b—B3)/(B —
@). Then, O,la, B8] = [a,b], and (4) follows from (5), Lemma 1 and the
observation that p > dist{I, {a,b}}/(b—a) > A7, O

The following statement can be proved using Corollary 3 and the
method of the proof of Lemma 2. We omit details.
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Corollary 4. Let f € MF[a,b], k > 2. Suppose that an interval I C [a, b]
is such that b—a < Adist{I,{a,b}} for some A € R, and let {t1,...,tx_2}
be a set of any k — 2 points in I. Then,

”f - Lk—l(fa 5 a, t17 ceey tk—27 b)“[a,b] < ka(fa [aa b]), (6)
where the constant C' depends only on k and A.

Remark. In the case k = 2 (k = 2 or 3) Corollary 3 (4) is valid for all
bounded functions f and not only for those in M¥. This immediately
follows from the classical Whitney theorem.

The following Lemmas 5 and 5" imply that constants C' in (4) de-

pend, in general, not only on k£ but also on the ratios b_max{l;:‘f“ Py

(f lg—1(f) = Lg—1(f, -3 t1,. .., tk—1,b)) and min{tl,l.).._,?k_l}_a (if le—1(f) =
Ly 1(f,-;a,t1,...,tx—1)). This shows that the dependence of constants
C in (4) and (6) on A is essential and cannot be removed in general.

Lemma 5. Let k > 2. For any set {t1,...,tx—1} of k — 1 points in [a,b)
such that a < t; < ... < t_1 < b there exists a function f € MF[a,b]
satisfying

Le_1(f,5t1,. ., tk—1,0)||1a b—
| Lk—1(f, 5t k—1,0)]l[a,5] > C(k) @
|.f |l ta,5] b—tr_1

Lemma 5'. Let k > 2. For any set {t1,...,tx—1} of k — 1 points in (a, b
such that a < t; < ... < t_1 < b there exists a function f € MPF[a,b]
satisfying
||Lk—1(f7 5 a, t17 ceey tk—l)“[a,b] > C(k) b—a .
1 f1l[a,b li—a

Proof of Lemma 5: We only prove Lemma 5 since the proof of
Lemma 5’ is similar.

Let to := a and tg := b, and define I; := [t;,t;41] for 0 < i < k — 1.
Now, let f(z) := (b—t;_1)'"F(z — t;_1)%", and note that f € M¥a,b),
and || f||fa,5y = 1. Also, since f(x) =0 for z < tx_1, and f(b) = 1, we have

k—1
x —t;

Li-a(fostn, - ti-1,0) = [ ] b— t?.
i=1 ¢

Suppose now that I is the largest of the intervals I;, 0 <4 < k — 1, and
that £ is its midpoint. Then, k|I| > Zi:ol |I;] = b — a and, hence, for all
1<i<k-—1,wehave | —1t;| >|I|/2> (b—a)/(2k). Therefore, we have

|Le—1(fs5t1,. - te—1,0)|l[a,8]
1 £1l1a,5)

Z ‘Lk—l(faé-;tla .- 'atk—17b)|
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((b—a)/(2k)" " — (2k)-F =

- (b—a)k_z(b—tk_l) b—tk 1
and the proof is complete. O

Theorem 6. Let k > 2, and an interval I C [a,b] be such that b —a <
Adist{I,{a,b}} for some A € R, and {t1,...,tx—1} be a set of any k — 1
points in I. If f, g € M¥[a,b] are such that f4i=b(t;) = gt=1(t;) for all
0<j<k (wherety:=a,ty:=0b,and l; :==1; ({ti}fzo)), then

1 = gllfa,p) < Cmin {wi(f, [a,b]), wr(g; [a,b])}, (7)

where the constant C' depends only on k and A.

Proof: Without loss of generality, assume that wg(f, [a,b]) < wk(g, [a, b]).
It was shown by Bullen [1] (see also [4, Lemma 8.3]) that, if f is k-
monotone, then f— Lg_1(f,-;x1,...,x,) changes sign at x1,...,z;. More
precisely, let k € N, f € M*(a,b), and recall that Ly_1(f,x;xq,...,Tk) is
the Lagrange (Hermite-Taylor) polynomial of degree < k —1 interpolating
f (or f together with its derivatives) at the points z;, 1 < i < k, where
a=290 <z <...<2f <2py1:=0b. Then, for 0 <i <k,

(—1)k_i (f(x) — Lg—1(f,z;21,...,2k)) >0, z€ (x5,xi41).  (8)

Now, let

Gk—1(x) := Lg_1(f, z5t0,t1, .. ., tk—1) (= Lr—1(g, x5 to, t1, - . -, t—1))

and

Gk—1(x) == L1 (f, z5t1, - -y ti—1,tk) (= Le—1(9, z5t1, - . -, te—1, 1)) -

Inequalities (8) imply that, for every 0 < i < k — 1 and = € [t;,t;41], the
following inequalities are valid:

DN (f (@) — e (@) 20, (1) (g(2) — qr-1()) 2 0
(=D (f(2) = @e-1(2)) 20, (=1)* " (9(2) = Gr-1(2)) 2 0,

and, therefore, for every x € [a,b|, the values f(z) and g(x) lie between
qr—1(x) and gx—1(x). This implies that

\f(x) —g(z)| < |gp—1(z) — Gr—1(2)|, z € [a, b].
Now, using Corollary 3 we have

N f—glliap < llar-
S ka(f’ [aab])7

where C depends only on & and A. O
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§3. Global Estimates

Let Py[a,b) = {z;} o ={a=20 <71 <...<xny_1 < 2N = b} be a
partition of [a, b] into < N subintervals.
We denote

IPal = [Pylabll == | max {ri2 -}

the length of the largest interval in that partition (the norm of the parti-
tion), and denote the length of the smallest interval by (IPy):

(Py) = Pyla,b]):= | min {ziys — i}

Notation. Following Oswald [5] we call a partition IPy|a,b] almost uni-
form if ||IPy/[a, b]|| < 3(IPx|a, b]).

It was shown in [5, Lemma 1.1] that any partition IPy|a, b] of [a, b] can be
made almost uniform by deleting some of the partition points:
For any partition IP[a,b] there exists a superpartition f)[a,b] (i-e.,
partition IP is obtained from IP by deleting some of the points of IP)
which is almost uniform and such that

Pl < () < ||| < 3| (9)

Theorem 7. Suppose that N > k > 2, and let Py := Py[a,b] = {a =
2o < x1 < ... < zNy_1 < TN = b} be a partition of [a,b] into < N
subintervals such that ||Py|| < 3(k 5. Also, let f,g € MF[a, b] be such
that f(x;) = g(x;), 0 <4 < N. Then

1f = 9llfap) < Cmin{wi(f, [P, [a,b]), we(g, [P, [a,0])},  (10)

where the constant C' depends only on k.

Proof: Without loss of generality, assume that wg(f,|Pn|,[a,b]) <
wk (9, [[Pwl; [a,b]). According to (9) there exists an almost uniform parti-
tion of [a, b, P (which is a superpartltlon of Pyla,b]) such that ||IP N|| <

(P) < ||P|| < 3||Py]|- Since |[IPy]| < 3(k % this implies that |P|| < b-a

and therefore P consists of at least k intervals. Now, it is sufficient to prove
(10) for the partition IP instead of IPy. Equivalently, we can assume that
the original partition IPy is almost uniform. Hence, we finish the proof
of the theorem assuming that |IPy|| < 3(IPx) and that Py consists of at
least k intervals.

Let 4, 0 <i < N — 1, be fixed, and denote a(i) := max{0,i — k + 1}
and J; := [Ta(i), Ta@)+k)- Since IPy[a,b] consists of at least k intervals,
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then [z;,z;11] C J; C [a,b]. Taking into account that |J;| ~ ||IPn]|, we
can now apply Theorem 6 (with [a,b] := J;, t; := Ta(i)44, 0 < j < k, and
I :=[t1,tx_1]) to conclude that

1 = 9lliwiaira] < I = glls < Cwn(f, i) < Cwi(f; [Pw]; [a, b]),

where C depends only on k, because we can choose a constant A in the
statement of Theorem 6 to be 3k, since

i - kP

: < < 3k.
dist{[t1, tx—1], {xa(i)a ﬂfa(z’)+k}} (Pn)

ST s = ||f_g||[$i,$i+1]’
the proof of the theorem is complete. O

Theorem 8. Suppose that N > k> 2, Py = Pyla,b] = {a =2z < .’I,'l <
. < zy-1 < zy = b} is a partition of [a,b] such that ||Py| > 3(k s

and each x;’s multiplicity is at most k. Let f,g € MF¥[a,b] be such that
fED(z;) = gV (), 0 < j < N, where l; := l; ({z:}X,). Also, let
{y:}N! be a permutation of the set {x;}1 ;" such that dist{y;, {a,b}} >
dist{y;+1,{a,b}} for all 1 < i < N — 1, and suppose that b — a <
Adist{yx_1,{a,b}}. Then

1 = 9llfa,p) < Cmin{wi(f, [Pxll; [a,0]), wi(g, [Px]]; [a, 0])}

where the constant C' depends only on k and A.

Proof: First, note that ||Py|| > 3(k %y implies |IlP || ~ b—a and, hence,

wi(f; [P, [a,b0]) ~ wi(f,[a,b]) and wi(g, [ Pn]],[a,b]) ~ wk(g,]a,b]).
Now, the statement of the theorem immediately follows from Theorem 6
with ¢t; = y;, 1 < j <k — 1, taking into account that

dist{[min{y1, ..., yk—1}, max{ys,...,yk—1}], {a,b}}
= dist{yg—1,{a,b}} > (b—a)/A. O

The following example shows that dependence on A in Theorem 8 is
essential and cannot be removed.

Example. Let k£ > 2. Suppose for simplicity that [a,b] = [0, 1], and let

fl@):=(1-89" -

and
g(z) = (1= * -5,
where &, € (0,1) and £ +1/2 < (. Then,
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wi(f,[0,1]) = wi(f = (1= OF( =" 1, [0,1])

<2PIf -1 -9 - ) -
=2"(1-¢)' kll( £)
=281 - €)' 7Fekm

and, at the same time,

1 =gll 2 1f () =9(Ol= 1= (- > (1 - F2' 7~

Hence,

If = gll o =gl (A=l F
min{wg(f, [0, 1]), wx(g, [0, 1)} = wk(f,[0,1]) = 2F(1 — &)1-R¢r1
=212 (qist{¢, {0, 1})"F 50 as £—0.

Finally, recall that f and g interpolate each other at the endpoints of [0, 1]
and are identical on [0, £].

At the same time, as was mentioned above the case k = 1 is somewhat
different and simpler (see also Remarks after Lemma 10) . The proof of
the following statement is trivial and will be omitted.

Lemma 9 (k = 1). Let N > 1, Pyla,b] = {a = 2o < 21 < ... <
zn_1 < N = b} be a partition of[a bl, I; := [z;,x;+1], and let f and g be
monotone functions on [a,b] such that f(x;) = g(x;), 0 < i < N. Then,
for any 0 < ¢ < N — 1, the following estimate holds

If =gl < f(@iv1) — f(@:) = 9(@iv1) — 9(@) (= w(f ;) = wlyg, L)) -

Therefore,

1 = 9llfap) < min{w(f; [P, [a,b]),w(g, [Px||;[a; b])}-

We finally remark that wg in Theorems 7 and 8 cannot be replaced
by w,, with m > k + 1. To see this, it is sufficient to let f be a polyno-
mial of degree < k, and g be any k-monotone function (different from f)
interpolating f at the points in IP (the existence of such g follows from
Zwick [10], for example).
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§4. Appendix: Interpolation Without Constraints

All statements in this section are simple and can be easily proved by
anyone familiar with the classical Whitney theorem. The only reason for
including them here is for a quick comparison with corresponding results
for k-monotone interpolation.

Lemma 10. Let m € N, N > m—1, and suppose that Py := PyJa, b] =

{a =29 <21 <...<xNy_1 < xzNn = b} is a partition of [a,b] into N
subintervals which is quasi-uniform, i.e.,
IPn| < B{Px).

If f, g € Cla,b] are such that f(z;) = g(x;), 0 <i < N, then
||f - g”[a,b] < C max {wm(f, ||]PN||7 [a7 b])a wm(.q’ ||]PN||7 [a7 b])}7 (11)

where the constant C' depends only on m and B.
Proof: The statement of the lemma immediately follows from the obser-
vation that, for 0 <¢: < N —m+1,

Lo 1 (fy 526, i1, - o3 Tigm—1) = Lm—1(9, 5 T6, Tig1, - -+, Tigm—1),

and the classical Whitney theorem of interpolatory type: for f € Cla, f]
and P, _1[a, 8] = {a =& < & < ... < &n—1 = B} such that ||IPp,_q|| <
B(IP,,_1) the following estimate holds:

||f - Lm—l(fa S £Oa 615 cee agm—l)”[a,ﬂ] < Cwm(f’ [aﬂ B])’

where the constant C depends only on m and B. O

Remark 1. Obviously, “max” in Lemma 10 cannot be replaced by “min”
(consider f to be a polynomial of degree m — 1, for example).

Remark 2 (m = 1). It immediately follows from the definition of the
modulus of continuity that, if f(£) = g(&) for some £ € [a, b], then

1 = 9llfap) < 2max{w(f; [a,b]),w(g,[a,b])} -

Hence, for m = 1, (11) is valid without the requirement that P is quasi-
uniform.

Remark 3 (m = 2). It immediately follows from Lemma 10 that if
f(a) = g(a) and f(b) = g(b), then
1f = glla,p) < Cmax{ws(f, [a, b]), wa(g, [a, b))},

and therefore (11) is valid without the requirement that IPy is quasi-
uniform in the case m = 2 as well.

If interpolation at the endpoints is not required, it is easy to show that ws is
impossible in (11) for non-quasi-uniform partitions (consider, for example,
f=0,and g. ==z —(a+b)/2,a <x < (a+b)/2; ge(z) :=x——(a+b)/2,
e+(a+b)/2<z<b and g.(z):=0, (a+b)/2<z<e+ (a+b)/2).
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Remark 4 (m > 3). In the case m > 3, the statement of Lemma 10 is no
longer true if the condition that a partition IP v is quasi-uniform is removed
(in other words, the constant C in (11) cannot be made independent of B).
For example, for small € > 0, define f =0, and g.(z) := (b—2x)(x —a—¢)
ifa+e<z<b, and g.(z) :=0if a <z < a+e. Then, f and g coincide
on [a,a+¢| and have the same value at x = b. Therefore, they interpolate
each other at all points in Py = {z;}V, such that a = 29 < 71 < ... <
zy—1 < a+e <zy =D and, at the same time, ||f — g|lj,57 ~ (b — a)? and
ws(g, [a, b]) ~ (b— a)e.
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