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O n  c o p o s i t i v e  a p p r o x i m a t i o n  
b y  a l g e b r a i c  p o l y n o m i a l s  

K I R I L L  K O P O T U N  

1. I n t r o d u c t i o n  and m a i n  resul t  

We are interested in how well one can approximate a function f C 
C[-1,  1] with finitely many sign changes by polynomials Pn such that 

f(x)pn(x) > 0, x �9 [-1,1] 

(we say that in this case f and Pn are copositive in [-1, 1]). 
Let II~ denote the set of all algebraic polynomials of degree not ex- 

ceeding n. Recall that the mth order Ditzian-Totik modulus of smoothness 
in the uniform metric is given by (see [3]) 

(1) w~"(f, 5, [a, bl) -- sup IlAh%(x)( f, z, [a, bl)llta,bl, O<h<5 
where I1" ll[o,bl denotes the uniform norm on the interval [a, b], 

~(x) := X/1-  x 2 

and 

Ar;(S,x, ta, bll := { 
k=O 
0 

m m 
( k ) ( - 1 ) m - k f ( x -  - ~ +  k~) ifx• E[a,b], 

otherwise. 
is the symmetric mth difference. 

Note that if r = ~(x) is replaced by the constant 1, then (1) becomes 
the definition of the usual modulus of smoothness of order m. 

For I := [-1, 1], for simplicity, we write 

I1" II := I1" IIz, wm(f, 5) :-- W'n(f, 5, I) 

and 
w~(f,  5) := w~(f,  5, I). 

One of recent results on eopositive approximation is due to LEVIATAN 
[5] who proved the following theorem. 
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T h e o r e m  A. There exists an absolute constant C = C(r) such that for 
every f E C[-1,  1] which alternates in sign r times in [-1, 1], 0 < r < oo, 
and each n > 1, there is a polynomial Pn C Hn which is copositive with f 
and satisfies 

(2) [ I f -PnN <- C w ( f , n - 1 )  �9 

This result was later improved. In particular, the modulus w was 
replaced by w~,, and the dependance of C on the set of points of sign changes 
was investigated (see [6], for example). However, it was not known for a 
long time whether w in (2) can be replaced by the modulus of smoothness 
of higher order. 

ZHOU (see [9] and [10]) showed that estimate (2) can not hold with 
w 4 instead of w. He also considered copositive approximation in Lp metric, 
I < p < oc, and proved that the estimate by the second integral modulus 
of smoothness w 2 ( f , n - 1 ) ;  is not correct in this case. These results can be 
summarized in the following theorem. 

T h e o r e m  B. There are functions f l  and f2 in C1[-1,1] with r >__ 1 
sign changes such that 

E(~ ~ (fl ,  r ) ~  E (~ (f2, r)p 
limsupn~oo w4(fl,?Z -1) --00 and limsuPw2(f2,n_l)pn....oo - 0 0 ,  1 < p <  c~, 

where E(~~ is the error of the best copositive L~, (C if p = c~) 
approximation to f by polynomials from IIn. 

Recently, Y. Hu, LEVIATAN and X. M. Yu [4] showed that Theorem A 
can be considerably improved. They were able to replace w by w 2 in (2), 

thus, together with Theorem B, revealing an interesting and unexpected 
difference between the cases p = a~ and 1 < p < c~ for copositive polynomial 
approximation. Their result is stated as follows. 

T h e o r e m  C. Let f E C[-1,1] change sign r times at - 1  < yl < 
�9 "" < yr < 1, and l e t  

5 : =  min lyi+l - yil, where g o : = - 1  and yr+1:= l. 
O ~ i ~ r  

Then there exists a constant C = C(r, 5) independent of f and n such 
that for each n > 46 -1  there is a polynomial pn E Hen, copositive with f ,  
satisfying 

(3) [If -p~[[ ~ Cw2( f ,n -1 ) .  
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In fact, it is not difficult to show that  a; 2 in (3) can be replaced by 
aJ 3. However, there is still some room for improvement. It is well known 
that  if one wants to characterize approximation properties of a function f in 
terms of its moduli of smoothness, then this characterization should involve 
either w " ( f ,  An(x))  or a ; ~ ( f , n  -1) (or equivalent quantities). Thus, in a 
sense, "exact" estimates for algebraic polynomial approximation are those 
in terms of the above mentioned quantities. 

The following theorem is the main result of this note. 

T h e o r e m  1. Let f E C[-1,1J  change sign r > 1 times at - 1  < yl < 
�9 '" < yr < 1, and let 

(5 := win lYi+l - Yil, where yo := - 1  and yr+l := 1. 
0<i<r 

Then there exists a constant C1 = Cl(r,  5) such that for each n > C1 there 
is a polynomial Pn E YIn, copositive with f ,  satisfying 

(4) Ilf -- Pn l l  ~ C(r)w3(f ,  n - l )  �9 

Theorem 1 implies 

T h e o r e m  1'. Let f be the same as in Theorem 1. Then .for each 
n > 0 in the ease r > 3, and n >_ 2 if  r = 1 or 2, there is a polynomial 
Pn E Hn, copositive with f ,  such that 

Hf - P,~II <- C(r, 6)o:~(f,n-X), 

where 0 -1 := 1. 

An immediate consequence of Theorems 1 and 1' and converse theorems 
in terms of the Ditzian-Totik moduli (see [3] and [8]) is the following result. 

C o r o l l a r y  2. Let 0 < a < 3, and let a function f C C[-1 ,  1] change 
sign r times in [-1,  1]. Then 

(5) E n ( f )  = O(n -~)  .'. :. E (~  = O(n-~) ,  

where 

E n ( f ) =  inf I I f -P~ l l  and E ( ~  inf I l f - p n l l .  
pnEII~ pnEIIn,p,~f>O 

The case a _> 3 in Corollary 2 remains open. 
The next section contains auxiliary results. We also introduce some 

notations there. Theorems 1 and 1' are proved in Section 3. Finally, some 
relevant remarks are given in Section 4. 
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2. N o t a t i o n s  a n d  a u x i l i a r y  r e s u l t s  

The following notations are used throughout  this paper (cf. [8]): 

xj  := c o s J n  0 _< j _< n, 
?2 

Ij := [x j , x j_ l ] ,  hj := lIjl = x j _ l  - x j ,  l <_ j <_ n, 

An(x) . -  x/1 - x 2 1 - -  + and ~ ( x ) = x / 1 - x  2. 
n 

It can be easily verified (see, for example, [8]) that  

hj~ l  < 3hj and An(x) _< hj <_ 5An(x) for x E Ij.  

Also, let L(x ,  f ,  t l , . . . ,  t , )  denote the Lagrange polynomial of degree 
< # - 1 interpolating the function f at t l , . . .  ,tt,. 

Suppose f E C[ -1 ,  1] satisfies the conditions of Theorem 1, i.e., it 
changes sign 1 < r < oc times at - 1  < Yl < " "  < Y~ < 1. Also, let n be 
fixed and sufficiently large. If Yi r (x j (~) ,x j (o-x) ,  i = 1 ,2 , . . .  , r ,  then it is 
convenient to denote 

y~ := x j (o+l ,  y~' := xj(~)-2, 

:[i :-~ [Y~,Y~'] :=- Ij(i)+l U Ij(i) iJ Ij(i)_ 1 -~- [2Cj( i )+l ,Xj ( i )_2]  

and 

Then  

and, therefore, 

l! 

2 ' 2 
for i = 1 , 2 , . . . , r .  

~hj(i) . . ,  < liIil =21Yi I < 7 h j (  0, i = 1 ,  . r, 

II~1 '~ lYil '~ hj(o ~ A,~(x) for x E l i .  

Throughout  the paper C denote constants which are independent of f 
and n, and are not necessarily the same even when they occur on the same 
line, and I(~, i >__ 1, denote constants which are independent of f and n and 
remain fixed everywhere in the proofs. 

While proving Theorem 1 we will need to smooth the function f which 
is only assumed to be continuous on [-1,  1]. The idea to consider a smooth 
approximation instead of the original function is very well known. It is 
frequently used in different areas of approximation theory. In particular, the 
construction of such an approximation is crucial in the proofs of theorems on 
the equivalence of K-functionals and the appropriate moduli of smoothness 
(see [1], [3] and [7], for example). There are numerous approaches to this 
problem. Thus, it is often convenient first to extend the function to a larger 
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interval preserving some of its smoothness characteristics. In particular, this 
idea was employed in the proof of the main lemma in [4]. In our proof we will 
avoid the problems of smoothing and extending f (though, this approach is 
possible) simply by considering an algebraic polynomial which sufficiently 
approximates f and satisfies some extra conditions (in fact, the polynomial 
of best approximation to f in C[-1,  1] will do). Then, we will modify this 
polynomial near the points of sign changes obtaining a smooth piecewise 
polynomial approximation fn with controlled first and third derivatives. 
The following lemma is Crucial for the proof of Theorem 1. 

L e m m a  3. Let f be the same as in Theorem 1. Then for  each 
n ~ 45 -1  there exists a funct ion fn E C3[-1,1], copositive with f in 
Y := [-J[=l Yi ,  such that 

(6) IIf - f~ll - C ( r ) w 3 ( f , n - 1 ) ,  

(7 )  

and 

(8) 

II~(x)af'~"(x)ll ~ l(l(r)n3cd3(f,n-1), 

IAn(x)f '~(x) l  > co3(f, n -1) for  x e Y. 

P r o o f .  Let n > 45 -1 and let the index 1 < i < r be fixed. For x E 2/ 
we set j~ to be the polynomial of degree _< 2 which vanishes at yi: 

! I t  
x -- yi [ x -- y i 7 /  H, x -- Yi ~ t ) 

f ~ ( x )  : =  = ~ -  - ,  ~ _ - 7 -  - ~i~y~ ) + - - 7 ,  f ~ ( y 3  , 
Yi - Y i  Yi - Y i  Y i - Y i  

f i ( Y i )  are so where f i (Yi)  and chosen that 

- , f 6 0 w 3 ( f , n - 1 ) s g n ( f ( y ~ ) )  if If(Y~)l -< 60w3(f, n - l )  , 
f~(Yi) = I. f(y~) otherwise. 

and 

60w3(f,n -1) sgn(f(y~')) if I.f(YT)l - 60w3(f,n-1),  
f/(Y~') = f(y~') otherwise. 

(If f(y~) = 0, e.g., then sgn(f(y~)) equals to the sign of f on (Y i - l ,Y i ) . )  
Since j~  E H 2 ,  a n d  N ~ _ . f i (Yi)  and f i(Yi ) have opposite signs, then the only 

zero of j~ in Zi is Yi. Hence, f/ is copositive with f in 2-/. Also, the first 
derivative of ~:  

/ 

f ~ ' ( x )  = ,; - - : : , - -  77 - , ] i~Y~  ) + 
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is a linear function, and 
§ / 

\ 2 / 

K. Kopotun 

N ! 

.fi(Yi) and fYi~ ( y i +  y: ' )  _ f i(Yi ) ~ - ~  
2 Yi -- Yi 

are of the same sign, which implies that ~ /does  not change sign in yi ,  and 
for any x E Yi we have 
(9) 

,1 I f i (Y~) l  - " Ifi(Yi )l I L ' ( x ) l  > mm{ f ~ ( Y i + Y : ~ l  - , 2  , , '  2Y )]}=min{ 
Y i - Y ~  Yi - Y i  - 

1 

min{ - ~' I f i ( y i ) l }  > I f~(y~) l ,  ~ " A n ( x ) - k ~  
>- 60A~(x) 

Now we will show that 

(10) I~(x) - f(x)l  _ C w 3 ( f , n - 1 ) ,  x e Zi. 

We use the fact that  

(11) I f ( x ) -  n ( x , f )  I < c w 3 ( f , n - 1 ) ,  x e Z i ,  

where 

1 , , ,  x - y~ ~ x - y ~ . ,  ,1, x - y T f ( y , ) ~  
L(x ,  f )  := L(x ,  f ,  Yi, Yi, Yi ) -- ~1 - ~ ~ 1 ,  ](Yi ) + - - -- 

Yi - Yi Yi - yi Yi - y~ " / 

is the Lagrange polynomial of degree _< 2, which interpolates f at y~, Yi and 
y~l. Inequality (11) is an analog of Whitney's  inequality for Ditzian-Totik 
moduli  and can be found in [8, Lemma 18.2] by SHEVCHUK, for example. 

Using (11) and the above presentations of ~ (x)  and L(x ,  f ) ,  we write 
for x E Zi, 

r~(x)-  f(x)l __ I~(x)-  L ( x , f ) l  + F L ( x , f ) -  f(x)l _< 

I 

I < t(Yi(X ~,;Yi)(x -__yi)_ fi(Y~ ) - f(Y~') + 
_ ,, y~)(y~ - y ~ )  

+ .~--.7.,-_7~(x - y i ) (x  . . . .  - Y~')~.,Ifi(yi)- i f(y~) + C w ~ ( f , n - 1 )  < C ~ ( f , n - 1 ) ,  
(y~ - y~) (~  - y~) 

and (10) is proved. 
At this stage it is worth mentioning that the ability to construct a 

function .~ for which (9) and (10) hold determines the possibility to obtain 
the estimates in terms of the third modulus of smoothness in Theorem 1. 
For instance, if we could find a polynomial gi of degree _< 3, copositive with 

4 instead of 3 f in Zi, and such that  inequalities (9) and (10) held with w~, aJ~, 
4 However, because 3 in Theorem 1 by w~. then we would be able to replace w~o 

of Theorem B, the creation of such gi is impossible in general. The function 
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is the best of what one can construct. At the same time, if we add some 
conditions on the behavior of f near the points of sign change, then estimate 
(4) can be improved (see Remark 2 in Section 4). 

Now, let us continue with the proof of the lemma. 
It is well known (see [3, Theorems 7.2.1 and 7.3.1], for example) that  

there exists a polynomial Q(x) of degree _ n (the polynomial of best 
approximation to f in C[ -1 ,  1] v~ill do) satisfying 

(12) 

and 

(13) 

I I f  - O I l  -< Cw~(f, n-l) 

II (x)3Q'"(x)II <_ Cn3w3(f, n-l). 
Now we define the piecewise polynomial function S(x) as follows: 

l 
1 (y ( ) if x~Uir__lI.i, 
0 if x E U '~ x i-----1 Yi, 
Ai (y_y~)3  Yi+Y~ 3 

S(x) := ~+y~)12 2 y dy if x E [y~, Y~+Y~I 2 J' 
i = 1 , . . . , r ,  

y (y~ ,_y)3dy  if x e ,  2 ,Y~'], 
~i " 2 2 (Y~+Y~)/ i = 1 , . . . , r .  

where the normalizing constants Ai and ~i are chosen so that S be a 
continuous function, 

1 ! 

y~+y;)/2 2 
and 

t l  I I  ( )_1 
-- Y ~ ) CYi - y ) 3 d y  

"J(y,+y~')/2 

Moreover, it is easy to see that not only S is continuous, but also 8 E 
C 3 [ - 1 , 1 1 .  

Finally, the function fn(x) such that 

.fn(X) : :  ~ (Q(x) - fi(x))S(x) + .~(x) if x c :Z-i, 
[ Q(x) otherwise. 

is copositive with f in Y = U[=l Yi, and inequalities (6)-(8) are satisfied. 
Indeed, fn coincides with 9~ on Yi and, hence, it is copositive with 

f in Y, and (8) holds. Also, S e C3[-1, 1] and S(x) = 1, x ~ U r i--1 1"/ 
imply that  fn is in C3[-1,  1]. Inequality (6) follows from (10), (12), and the 
observation that  fn(X) is a convex combination of Q(x) and )~(x) for every 
fixed x E 27i \ Yl (since 0 < S(x) < 1). 
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To prove the remaining inequality (7) we need the following well known 
Kolmogorov type inequality (see, e.g., [1] or [8]): 

(14) I tg(~)l[[a,b] <_ C((b - a)r--Vi[g(r)ii[a,b ] -'t- (b - a ) - t ' i i g i [ [ a , b ] ) ,  

where g C C~[a,b] and 0 < v < r. 
For 

[ Y~ + Y:] i =  1, , r  xC  y~, 2 ' "'" 

(for x E L----T--,Y~'] considerations are similar, (7) follows from (13) for 
x !~ U[=l Zi, and for x E Y it is trivial), using the fact that  

~(x) ~ nA~(x) ~ < z ~ l  for x ~ Z~, 

we have 
3 

I~o(x)3f"'(x)I < Cn3[ZiI a ~ IQ(')(x) - ~(~)(x)ll$(a-,)(x)l" 
v-~0 

Applying (14) for I Q(~)(x)-  ~ ' ) (x ) l  and Markov's inequality for I S(3-~) (x)l , 
together with (10), (12), and (13), we obtain 

3 

I~(x)aS'J(x)l < C~al:Z-~l 3 y: '  (I:&I3-"IIQ"'IIz,+ 
v--'--O 

- I I l S l l z ,  _< �9 +I2:~I-"IIQ kll:r,) IZ~ "-a C n a w a ( f , n - ' )  

This completes the proof of (7). 
The following lemma can be found in [8, Theorem 18.2] by SHEVCHUK. 

It will be used to construct a polynomial approximant to fn established in 
Lemma 3. 

L e m m a  D. I f  g E CS[-1,1] is such that 

I ( 1  - x2)'/2g(~)(x){ <<_ M, x e [-1, 1], 

then for every n >_ s 1 there exists a polynomial q~(g) E YIn satisfying 

Ilg - qn(g)ll ~ C M n - *  (15) 

and 

(16) 

an~ 

IAn(x)~'(g( ')(x)-q(~)(g,x))] <_ C M n  -s, 0 < u < s/2. 

C o r o l l a r y  4. I f  g E ca[ -1 ,1 ]  is such that 

[ ( 1 - x 2 ) 3 / 2 g ' " ( x ) i < M ,  x e [ , 1 , 1 ] ,  - l < y l  < ' "  < y r  <1 ,  

5 := rain l Y i + l  - -  Y i l ,  l<i_<r-1 
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then .for every n >_ C(r ,  6) there exists a polynomial  p~(g) E IIn, which 
interpolates g at yl  , . . . , y~ and such that 

(17) Ilg - pn(g)ll < K2(r ,  6 ) M n  -3 

and 

(18) [[A,~(x) (g'(x) - p[ (g, x)) [I < K3(r)  M n - 3 .  

P r o o f .  Let q,~ E IIn satisfy (15) and (16) with s = 3 and z, = 1. Then  
the polynomial  Pn(g, x)  given by 

p,~(g,x) := qn(x) + L ( z , g  - q n , Y l , . . . , Y r ) ,  

interpolates g at Yl , . . .  ,Yr and satisfies (17) and (18). Indeed, 

[[g-Pn(g)[[  <- Jig - q~[[ + [ [ L ( x , g -  q~ ,Y l , . . . ,Y~)[[  _< C [ I g -  quit <-- C M n - 3 ,  

which is inequality (17). Inequality (18) is valid since 

/ X IJAn(x)(g'(x) - pn(g, ))ll <_ 
< I IA~(x ) (g ' (x )  - q'(x))[[ + 2~-l l lL '(x ,g - q , , y l , . . . ,  y~)ll --- 

2 ~ - l r ( r  - 1) 
< C M n - 3  + 6~_ 1 n - l i l Y  - -  qn[[  <-- C M n - 3  

for sufficiently large n (n > C61-~) .  The  proof  of the corollary is complete.  

P r o p o s i t i o n  5. For every Yi, i = 1 , . . .  , r ,  there exists an increasing 
polynomial  T ~ ( y i , x )  of  degree < n,  copositive with sgn(x - Yi) in [ -1 ,  1], 
sat is fying 

T .~ (y i , -1 )  -- - 1 ,  T.(yi ,  1) -- 1, 

and such that 
A~(y~)+ An(y~) )2. 

(19) I sgn(x - yi) - Tn(yi ,  x)[ < K4 ( 
Ix Yil 

P r o o f .  Let the index i -- 1 , . . . , r  and the integer n be fixed. It is 
known (see, e.g., [8, Lemma  17.2]) tha t  for every N = C n  E N there exist 
increasing polynomials  TN (Y~, x) and - " �9 T N ( Y i ,  x) of degree < N such tha t  

- ' T N ( y ~ , - 1 )  - 1 ,  TN(y i , 1 )  - " T N ( y ~ , - 1 ) : -  " - ' : : T g ( y i ,  1) : 1, 

and satisfying 

I s g n ( x -  y~) - ~N (Yi,' x)1 <<- I Cs ( i x_y~ l+  AN(y:) / ,~(y:) ]j2 (20) 

and 

(21) ,, ,, ~N(yT) ~2 
Isgn( x - yi ) - TN(yi ,x)l < K5(I x _ Y~'I + AN(y~')/ 
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Now, we choose N to be sufficiently large, say, N := [2v/-~5 + 1In. 

and, similarly, 

TN(Yi ,  Yi) > 1 -  K5 , ) _ 
- Yi - Yi -~ AN(y~)  > 

> 1 - K s (  AN(y~)~2  2 _ ~ )  _> 1 - 4 K S ( N  ) > 0  

Now, let 

TN(y i  , Yi) <_ --1 + I(5 yf, _ Yi + AN(yf') --< 

_<- - l+  5 ~ , ~ )  _ < - 1 + 4 K 5  <0 .  

Therefore, there exists 0 < ai < 1 such that 

~T~(y~, y~) + (1 - " = - a i )TN(y i  ,yi) O. 

Tn(y~, x) := ~i:rN ' x ( Y i , ) + ( 1  - " - ~ ) T N ( y i  ,x ) .  

Then Tn is an increasing polynomial of degree _ C n  such that 
T,~(y~,yi) = 0 (this implies that T~ is copositive with sgn(yi - x ) ) ,  and 
the following inequalities hold: 

I sgn(x - yi) - Tn(yi ,  x)l ~_ 

~]sgn(x  . . . . .  Yi) sgn(x y~)l+lsgn(x y~) TN(yi ,x)]+- ' 

+l sgn(x . . . .  Yi) sgn(x YI')I + I sgn( x Yi" ) - - T N ( y i ,  " ~-- 

~(Y~) )~ c( ~(Y~) -<C(ix_y~l+~.(y~) + ix_y:l+A~(y:))2+ 

+ C ( I x  - y:'l + A~(y:,) J -< C(ix - y~l + ~.(y~)) 
The proof of the proposition is complete. 

The following result is a generalization of Lemma 1 of [4]. 

L e m m a  6. Let f be as in Theorem 1. I f  for  n ~ 45 -1 there exists 
p,~ E II~, copositive with f in Y = [J[=l Y~, then there is a polynomial  
P,~ E IIK6n, K6 = K 6 ( r ) ,  which is copositive with f in [-1, 1] and such that 

(22)  [ff - Pair <- c ( r ) [ [ / -  p. l l .  

Then, the following inequalities hold: 
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S k e t c h  of  t h e  p r o o f .  The polynomial 

P, (x )  := pn(X) + 2rll/ -- P-ll~ i : I  TN(y~, X), 
i=1 

where N is sufficiently large (N = ([18x/~4] + 1)n will do), and z /=  =t=1 is 
such that  

7 +  

sgn(f(x))  = z/I ' I  sgn(x - Yi), 
i=1 

satisfies the assertion of the lemma. The verification of this fact is similar 
to the proof of Lemma 1 of [4]. The only difference is that  instead of 
(yi - 1/2n, Yi + 1/2n) the intervals y~, i = 1 , . . . ,  r, are considered. Namely, 

Pn(z ) f ( x )  >_ 0 in ~J Yi, 
i=1 

since both pn and ~ 1-Ii~1Tg(yi) are copositive with f in this set. Also, 

Pn(x ) f ( x )  > 0 in [-1,1] \ [..J Yi, 
i = l  

since 
7 "  

l-I Tg(yi ,  x ) f ( x )  >_ 0 and 
i=1 

Finally, (22) holds since 

TN(y ,x) <_ 1. 

(-I TN(y. x) >>_ 2 
i=1 

P r o o f s  of  T h e o r e m s  1 a n d  1 ~ 

P r o o f  of  T h e o r e m  1. The proof of Theorem 1 is based on a 
modification of the ideas used by Y. Hu, LEVIATAN and X. M. Yu  in [4]. 

Let n > 45 -1 be fixed, and let N = N(n )  >_ n be an integer (we will 
prescribe its exact value later). Also, let fn E C3[-1,  1] be a function which 
was described in Lemma 3. Inequality (7) can be written as 

I1(1 - x2)3/2ftn"(x)l I ~ M with M := I<ln3w3(f ,n-1) .  

It follows from Corollary 4 that there exists a polynomial Pg(fn, X) E 
I lg ,  which interpolates fn at Yl , . . .  ,Yr (i.e., Pg( fn ,Y i )  = O, i = 1, . . .  , r ) ,  
and such that  

\ l ~ t  ] - 
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and 

(24) l iAg (x ) ( f : ( x ) - -p /N( fn ,X ) ) l l  ~ I(lI(3(N)3~M3(.f,n-l). 
We prescr ibe  N to be such tha t  

K 1 K 2 ( n / N )  3 < 1 

For instance,  

1 
and K I K 3 ( n / N )  2 ~_ 

N := KTn : -  ([(KIK2) 1/3] + [ 2 ~ 1  + 2)n. 

I t  follows from (24) tha t  for x E Yi, i = 1 , . . .  , r ,  the  following es t imate  
is val id:  

[f�88 - p~N(f,~,x)[ <_ IQK3~ n , (_~)n 2w~,(f,n_ ) <_ 
iVaN(X) 

?Z n 2 3 1 A /x~- i  3 /e  1~1K3 1V/-~'Z~X2('~) w~(f ,  ' n - l )  ~ ~ n~') O2~o~J-,n--1). 

Together  wi th  (8) this implies tha t  

sgn(pN(fn,X)) = sgn(fn(x)),  X C 0 ~i. 
i=1 

In turn ,  it follows tha t  Pg(f,~) is coposit ive wi th  f in [-J~=l Yi, and also by 
(6) and (23), 

IIf - PN(f,~)[I <_ [If - f~l[ + [[f,~ -- PN(fn)[[ <_ Cw~ ( f , n -1 )  �9 

Together  wi th  L e m m a  6, this yields the assert ion of T he o re m 1 tbr 
n > Ks  := 45-1K6K7, Ks = Ks(r, 5). 

P r o o f o f T h e o r e m 1/. Clearly, we only have to prove T he o re m 11 
for 0 < n _< I fs .  If  r > 3, then it is sufficient to choose 

Pn(x) := L ( x , f ,  V l , . . .  ,Vr) =-- 0. 

In this case denot ing  

L(x) L (x ,  f , -1 ,  - 1  + - -  

we have for any x C [ -1 ,  1], 

2 - 1  + 2(r - 2), 1) 
, - - 1 ' "  -;-z f :  ' 

I f(x)  - P~(x)l = i f (x)  - L ( x , f ,  y l , . . . , y r ) ]  = 
: 2 r - l r  

= I f ( x ) -  L ( x ) -  n ( x , f  - L, Yl, ",Y~)I -< (1 + --~=5-) IIf - L]I" 

Now using W h i t n e y ' s  inequal i ty  we conclude tha t  

IIf - Pull <-- Cw~(.W, 1) _< Cw3(f,  1) < 
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<<_ Cw3(.f, 1) <<_ Cw3(f,  K s  1) < Cw3(f ,n-1) ,  

where C = C(r, 5). 
In the cases r = 1 and r = 2 for 2 _< n < Ks, one should apply a 

similar consideration for the polynomials of the second degree 

Pn(x) :=  L(x,.f ,  -1 ,  yl, 1) and Pn(X) := L(x , f ,  - 1 ,  yl ,y2),  

respectively. 
The  proof  of Theorem 1 ~ is now complete. 

4. R e m a r k s  

R e m a r k  1. All the considerations will remain the same if f vanishes 
on some subinterval(s),  say, [a~, ~]  C [-1,  1]. In this case, if [ai,/~i] is an 
interval of sign change (i.e., if f (a i  - c)f(/~i + c) < 0 for small c), then  it is 
sufficient to fix any x0 E [a~,/~i] as a point of sign change. Thus,  Theorem 1 
is valid for any f E C [ - 1 ,  1] with finitely many changes of sign. In fact, if 
f vanishes in all the intervals of sign change, then  Theorems 1 and 11 can 
be considerably improved (see the next  remark).  

R e m a r k  2. As we mentioned in the proof of Lemma  3, est imate (4) 
can be improved if f satisfies extra conditions near the points of sign change. 
For example, the following theorem is valid. 

T h e o r e m  7. Suppose f E C[ -1 ,  1] changes sign 1 <_ r < oo times in 
[ -1 ,  1] and vanishes in the intervals of sign change, i.e., suppose that 

7" 

f ( x ) = 0 ,  x e  [ .J[y i -S i , y i+Si]  
i=1 

and 
f ( Y i - S i - ~ ) f ( Y i + S i + ~ )  <0  for i = l , . . . , r ,  

and all sufficiently small ~. Let 5 := min{61, . . . ,5~}  and m E N. Then 
there exists a sequence of polynomials Pn E IIn, copositive with f ,  such that 

( 2 5 )  I I f  - P n  II ___ C(r, m, 5)w'~(f, n- l ) .  

P r o o  f. Theorem 7 can be proved by using considerations similar to 
those in the proof  of Theorem 1. The most  impor tan t  difference which makes 
est imate (25) possible, is that  ~ in the  proof of Lemma  3 can be replaced 
by the linear polynomial  

60W~n (f,  n -1 ) 
~(x)  := ((x - y~) sgn f(Yi + 5~ + r + (y~' - x) sgn f(Yi - 6 i -  r 
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However, there is a trivial proof. 
For sufficiently large n E N,  let :Pn E IIn be the best approximant to 

f in C[ -1 ,  1]. Then 

IIf-7~,~ll < C w ~ ( f , n  -~) and f ( x ) ~ ( x ) = O ,  x e Y : =  O Y i ,  
i=l 

i.e., by definition, Pn is copositive with f in Y. Now, Lemma 6 implies that  
there exists a polynomial P~, copositive with f in [-1,  1], such that  

I I / -  P,~ll -< c l l f  - Phil <_ c w r ~ ( f , n - ] )  �9 

Another  example of how the behavior of f near the points of sign change 
determines the rate of copositive polynomial approximation, is presented in 
the following theorem. 

T h e o r e m  8. Let f E C[-1 ,1]  change sign r >_ 1 times at - 1  < Yl < 
�9 .. <y~  < 1 ,  and l e t f ( x )  E I I l f o r x E [ y i - h i , y i + h i ] , i = l , . . . , r .  Then, 
for any m E N ,  a sequence of polynomials Pn C Hn, copositive with f in 
[-1,  1], exists such that (25) holds with ~ := rain{51, . . . ,  di~}. 

The proof of Theorem 8 is less trivial than that  of Theorem 7. We 
omit the details, and only mention that  the crucial idea is again to replace 

in the proof of Lemma 3 by a rapidly increasing or decreasing linear 
polynomial. 
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O t.~ I~OIIO a-IO~I4Te ~IB H O H aIIIIpOI<CHMaI~X, IH 

a a I r e 6 p a x a q e c I ~ I 4 M X ~  M t t o r o q J I e t t a M I ,  I 

K H P H M ~  KOHOTYH 

JIn~ dpyHK~H~ f 6 C[--1, 1] c orpam4qeHHLIM *4~C~IOM nepeMeH 3HaKa CTpOI4TEYI 

nocae~oBaTea~HOCWb MHOrO*4~eHOB p~, KOnOnOmI4TenLHLIX C f (T.e. f(x)pn(x) ~ O, 
- 1  < x < 1) ~I TaK14x, qTO 

3 --1 III-P,~II~ <_ Cw~(f ,n  ), 
3 r~Ie w~(f, 5) - -  MoJIyYIb ~IenpepI,mHOCWI4 2~IHTIII4aIta--TowI4Ka TpeTLero nop~2:I<a. I/I3BeCW- 

4 034. HO t q T O  C-03 HeJIb35I  3aMeHI4TI~ HM H a  W~ ~ HI4 H a  TaKHM o 6 p a 3 o M ~  I I p H B e , / I e H g a Y l  o l l e H K a  

T O q H a  B H e K o T O p O M  CMBICne .  B K a q e C T B e  c n e ~ C T B M J t  y C T a H O B J I e H a  ~KBI4BaJICHTHOCTIJ  

COOTHOIHeI~I4~ 

E,~(I) = O ( n  -~) x4 E~~ -~) ~a~ O < a < 3 .  
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