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On copositive approximation
by algebraic polynomials

KIRILL KOPOTUN

1. Introduction and main result

We are interested in how well one can approximate a function f €
C[—1,1] with finitely many sign changes by polynomials p,, such that
f(.’L‘)pn(.'L') Z 0) T € [—17 1]
(we say that in this case f and p, are copositive in [~1,1]).
Let II,, denote the set of all algebraic polynomials of degree not ex-
ceeding n. Recall that the mth order Ditzian—Totik modulus of smoothness
in the uniform metric is given by (see [3])

) (b (ab) = up 1AT, (2 o, Dl

where || - ||(a,;) denotes the uniform norm on the interval [a, ],

o(x) := V1 - z?

and
m m - m . N
AP s ot = | 2o (U™ o= Fuvhn) it g el
0 otherwise.

is the symmetric mth difference.

Note that if ¢ = ¢(x) is replaced by the constant 1, then (1) becomes
the definition of the nsual modulus of smoothness of order m.

For I :=[-1,1], for simplicity, we write

”“ = ||HI1 wm(f76) = wm(f76’I)
and
we'(f,0) == wi(f,6,1).

One of recent results on copositive approximation is due to LEVIATAN

[5] who proved the following theorem.
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Theorem A. There exists an absolute constant C = C(r) such that for
every f € C|—1,1] which alternates in sign r times in [-1,1], 0 < r < oo,
and each n > 1, there is a polynomial p, € I, which is copositive with f
and satisfies

(2) If = pall < Cwlf,n™h).

This result was later improved. In particular, the modulus w was
replaced by w,, and the dependance of C on the set of points of sign changes
was investigated (see [6], for example). However, it was not known for a
long time whether w in (2) can be replaced by the modulus of smoothness
of higher order.

ZHOU (see [9] and [10]) showed that estimate (2) can not hold with
w* instead of w. He also considered copositive approximation in L, metric,
1 < p < oo, and proved that the estimate by the second integral modulus
of smoothness w?(f,n~!), is not correct in this case. These results can be
summarized in the following theorem.

Theorem B.There are functions fi and fo in CY[—1,1] with r > 1
sign changes such that

2 (f1,7) B (f2,7)
limsup —=—=12 7% — o gpd  limsup ——22 2P =0, 1< p < 00,
ey wt(f1,n" 1) n—oo w3(f2,n71), p
where ET(IO)(f, T)p 15 the error of the best copositive L, (C if p = o0)
approzimation to f by polynomials from II,.

Recently, Y. Hu, LEVIATAN and X. M. YU [4] showed that Theorem A
can be considerably improved. They were able to replace w by w? in (2),
thus, together with Theorem B, revealing an interesting and unexpected
difference between the cases p = co and 1 < p < oo for copositive polynomial
approximation. Their result is stated as follows.

Theorem C. Let f € C[-1,1] change sign r times at —1 < y; <
e <y <1, and let-

6= o%% [Yie1 — yil, where yo:=~1 and y,11 := 1.

Then there exists a constant C = C(r,6) independent of f and n such
that for each n > 467! there is a polynomial p, € Ilc,, copositive with f,
satisfying

(3) If = pall < CW*(£,n71).
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In fact, it is not difficult to show that w? in (3) can be replaced by
w?. However, there is still some room for improvement. It is well known
that if one wants to characterize approximation properties of a function f in
terms of its moduli of smoothness, then this characterization should involve
either w™(f, An(z)) or w(f,n™!) (or equivalent quantities). Thus, in a
sense, “exact” estimates for algebraic polynomial approximation are those
in terms of the above mentioned quantities.

The following theorem is the main result of this note.

Theorem 1. Let f € C|-1,1] change sign r > 1 times at -1 < y; <
<y < 1, and let

= i 3 — Ui}y == r = 1.
6 olé?élrly +1 = ¥il, where  yo 1 and yr4y

Then there exists a constant Cy = Cy(r,8) such that for each n > C; there
15 a polynomual P, € I1,,, copositive with f, satisfying

(4) If = Pall < C(r)wy(f,n ).
Theorem 1 implies

Theorem 1'. Let f be the same as in Theorem 1. Then for each
n>01wmthe case v > 3, and n > 2 if r = 1 or 2, there is a polynomial
P, €11, copositive with f, such that

If = Pall < C(r, 6)w(f,n1),
where 071 :=1.

An immediate consequence of Theorems 1 and 1’ and converse theorems
in terms of the Ditzian—Totik moduli (see [3] and [8]) is the following result.

Corollary 2. Let 0 < a < 3, and let a function f € C[-1,1] change
sign v times in [—1,1}. Then

(5) En(f)=0(n™") < EV(f,r)=0(n""),
where
= i —_ (0) — 1 _
E(f)= inf If=pall and EQ(fr)= it f =l

The case « > 3 in Corollary 2 remains open.

The next section contains auxiliary results. We also introduce some
notations there. Theorems 1 and 1’ are proved in Section 3. Finally, some
relevant remarks are given in Section 4. »
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2. Notations and auxiliary results

The following notations are used throughout this paper (cf. [8]):
@ :=cos‘%r, 0<j<n,

I i=[zj,zi), hj= |l =2 -2, 1< <,

N
An(z) = vi-z + Elg and  ¢(z) =1 -z

n
It can be easily verified (see, for example, [8]) that

hj+1 <3h; and Ap(z) <h; <5A,(z) for z € I;.

Also, let L(z, f,t1,...,t,) denote the Lagrange polynomial of degree
< p — 1 interpolating the function f at 1y,...,%,.

Suppose f € C[~1,1] satisfies the conditions of Theorem 1, i.e., it
changes sign 1 < r < oo times at —1 < y; < -+ <y, < 1. Also, let n be
fixed and sufficiently large. If y; € (z4), Zju)-1), ¢ = 1,2,...,7, then it is
convenient to denote '

y’; = Zj(i)+1s yi’ = Th)-2y
i = [y5, v = Li+1 Y Ly U i1 = [75)+1, Tioy—2]
and

. U R "
V= [y“;y’,y’;yl] for i=1,2,...,r.

Then 5
lghj(i) <|Li| = 2|¥| < Thjy, 1=1,...,m,
and, therefore,
|Zi] ~ [Vi] ~ by ~ An(z)  for z €T,

Throughout the paper C denote constants which are independent of f
and n, and are not necessarily the same even when they occur on the same
line, and K;, ¢ > 1, denote constants which are independent of f and n and
remain fixed everywhere in the proofs.

While proving Theorem 1 we will need to smooth the function f which
is only assumed to be continuous on [—1,1]. The idea to consider a smooth
approximation instead of the original function is very well known. It is
frequently used in different areas of approximation theory. In particular, the
construction of such an approximation is crucial in the proofs of theorems on
the equivalence of K-functionals and the appropriate moduli of smoothness
(see [1], [3] and [7], for example). There are numerous approaches to this
problem. Thus, it is often convenient first to extend the function to a larger
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interval preserving some of its smoothness characteristics. In particular, this
idea was employed in the proof of the main lemma in [4]. In our proof we will
avoid the problems of smoothing and extending f (though, this approach is
possible) simply by considering an algebraic polynomial which sufficiently
approximates f and satisfies some extra conditions (in fact, the polynomial
of best approximation to f in C[-1,1] will do). Then, we will modify this
polynomial near the points of sign changes obtaining a smooth piecewise
polynomial approximation f,, with controlled first and third derivatives.
The following lemma is crucial for the proof of Theorem 1.

Lemma 3. Let f be the same as in Theorem 1. Then for each
n > 46~ there exists a function f, € C3[-1,1], copositive with f in
Y = Ui, Vi, such that

(6) If = full < C(r)wd(fin™h),

(7) le(@)® £ (@)l < Ky (r)n’wi(f,n1),
and

(8) |An(2) fr (@) 2 wi(fin™h)  for z €Y.

Proof. Let n > 46~ and let the index 1 < i < 7 be fixed. For z € Z;
we set f; to be the polynomial of degree < 2 which vanishes at y;:

7 T x—yf Yy yil"’, ’

x_
Y —

where fi(y!) and fi(y!') are chosen so that

iy = { SR s 6) I 17 < 6027
i (i) otherwise.

and
Fl) = {GOw;(f,n"l)Sgn(f(yé’)) if 1£(y)] < 60w (f,n ),
flyh otherwise.
(If f(y!) =0, e.g., then sgn(f(y})) equals to the sign of f on (y;—1,%:).)
Since f; € Iy, and f:(y;) and ﬁ(y,’-’) have opposite signs, then the only
zero of ﬁ in Z; is y;. Hence, ﬁ is copositive with f in Z;. Also, the first
derivative of f;:

5 2 —yi— Yyl 2r -y —yl
i _ z {af! i (o
fz( ) - (y:/ _ y:)(y:/ _ yl)fl( 1.) (y;/ . y:)(yz _ y:)fl(yl)
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is a linear function, and

Yty fily) d yi +uiN _ fily)
fz( )—'_,_/ an f( )" "o
2 Yi Y; 2 Y; Yi
are of the same sign, which implies that f;’ does not change sign in Y;, and
for any x € ); we have

9)
7 Y Y YN |7 (Vi T YL Ifz(yz)l |fz( 9l
1 > w7 () |7 ()} = min ) OO
> s P{FGOLIEWO 2 An@) i (fin™.
Now we will show that
(10) |fi(x) — f(z)| < Cwl(f,n™Y), zeT
We use the fact that
(11) [f(z) = L(z, f)] < Cwl(f,n™h), zeI,
where
/ " T —Y; yz " yz
L(.Z',f) = L(x’fayi,yiayi): y// yz(y;/_ f( ) Yi — f( ))

is the Lagrange polynomial of degree < 2, which interpolates f at y., y; and
yY. Inequality (11) is an analog of Whitney’s inequality for Ditzian-Totik
moduli and can be found in [8, Lemma 18.2] by SHEVCHUK, for example.

Using (11) and the above presentations of f;(x) and L(z, f), we write
for x € 7,,

filx) = (= )I <|ﬁ( )— (w I+ L@, f) = f(=)] <
—I }fz "

1(;(, yz)(x e )‘ Filyl) f(yi)

and (10) is proved.

At this stage it is worth mentioning that the ability to construct a
function f; for which (9) and (10) hold determines the possibility to obtain
the estimates in terms of the third modulus of smoothness in Theorem 1.
For instance, if we could find a polynomial g; of degree < 3, copositive With
f in Z;, and such that inequalities ( ) and (10) held with w}, instead of w
then we would be able to replace w in Theorem 1 by wff, However because
of Theorem B, the creation of such g is impossible in general. The function

+Cwl(f,n™h) < Cwl(f,nY),



Copositive approximation by algebraic polynomials 275

f; is the best of what one can construct. At the same time, if we add some
conditions on the behavior of f near the points of sign change, then estimate
(4) can be improved (see Remark 2 in Section 4).

Now, let us continue with the proof of the lemma.

It is well known (see [3, Theorems 7.2.1 and 7.3.1], for example) that
there exists a polynomial Q(z) of degree < n (the polynomial of best
approximation to f in C[-1,1] will do) satisfying

(12) If = @Il < Cw(f,n™?)
and
(13) le(z)°Q" ()|l < CnPwi(f,n™Y).
Now we define the piecewise polynomial function S(z) as follows:
1 if T g U::l Iia
by _aon3(¥ Y d if ze y1+y1
S(z) = (yﬁyw(y vi) (——2 y) dy if 2 ; [_yli ],
-z 43
M/‘ (y—yf+%)(%—mfdylfxéﬁﬁy,W]
(yi+yi')/2 2 i=1,.

\

where the normalizing constants A; and Xi are chosen so that S be a
continuous function,

= (o () w)”

vity})/2

X':(/y_g (y y’;y’)(yz )dy) B
(

vityl')/2
Moreover, it is easy to see that not only S is continuous, but also S €
C3-1,1].
Finally, the function f,(z) such that

fol) o= { (Q(x) - fix))S(x) + Ji(x) if z e,
Q(x) otherwise.
is copositive with f in Y = J;_; );, and inequalities (6)—(8) are satisfied.
Indeed, f, coincides with ﬁ on Y; and, hence, it is copositive with
fin Y, and (8) holds. Also, § € C3-1,1] and S(z) = 1, 2 ¢ Ui, Z;
imply that f, is in C3[—1,1]. Inequality (6) follows from (10), (12), and the
observation that f,(z) is a convex combination of Q(z) and f;(z) for every
fixed x € Z; \ V; (since 0 < §(z) < 1).

and
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To prove the remaining inequality (7) we need the following well known
Kolmogorov type inequality (see, e.g., [1] or [8]):

(14) 19wy < Cb=a) g Nla ) + (0 = @)~ glla,e1);
where g € C"[a,b] and 0 < v <7,
For o
v Yi T Y,
T e [yi, —‘2———],
(for z € [M,yg’] considerations are similar, (7) follows from (13) for

)
x € Ui_1Z;, and for z € Y it is trivial), using the fact that

p(x) ~nA,(x) ~n|Z;| for z €1,

1=1,...,7

we have
3
() £2"(2)] < CR¥ I 3 1QM () — FIV(@)ISE) ().
v=0

Applying (14) for |Q™)(z)— f)(z)| and Markov’s inequality for |SG=2) ()],
together with (10), (12), and (13), we obtain

3
p(2)* £ (@) < CrT Y (1T 1Rl +

v=0
HII™NQ - fi I.-)
This completes the proof of (7).
The following lemma can be found in [8, Theorem 18.2] by SHEVCHUK.

It will be used to construct a polynomial approximant to f, established in
Lemma 3.

LI"2ls

lIi < Cngwi(f)n_l)'

Lemma D. If g € C*[—1,1] is such that
(1= 22 (@) < M, e [-1,1]

then for every m > s — 1 there exists a polynomial ¢, (g) € I1,, satisfying
(15) lg — an(9)ll < CMn~°
and
(16) 1An(2)” (9 () = ¢¥)(g,2))| < CMn™°, 0<wv<s/2

Corollary 4. If g € C3[-1,1] is such that

(1 —2?)2¢g" (@) <M, ze[-1,1], -l1<y<-- <y <1,
and

6:= min 11— Ui
19'9«-1"%“ JZIa
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then for every n > C(r,8) there exists a polynomial p,(g) € Il,, which
interpolates g at y1,...,y» and such that

(17) llg — pn(g)ll < Ka(r,6)Mn~?
and
(18) [An(z) (¢'(2) = pr(9,2)) | < Kg(r)Mn~2.

Proof. Let ¢, € II, satisfy (15) and (16) with s = 3 and ¥ = 1. Then

the polynomial p,(g,x) given by
Pn(9, %) := qu(@) + L(T, 9 = ¢n, y1, - - Y1),
interpolates g at yi,...,¥, and satisfies (17) and (18). Indeed,
lg = pn(@)l < 1lg = gall + 1 L(z,9 = @n> 91, -, 4:)| < Cllg = gult < CMR73,
which is inequality (17). Inequality (18) is valid since
An(2)(g'(z) — pulg, )l <
< NAn(2)(g'(z) = gn@DI + 207 HIL' (2,9 = gnsy1s- -5 90l <
27 r(r—1
<omn=+ T 0D g g < e

for sufficiently large n (n > C8'~"). The proof of the corollary is complete.

Proposition 5. For every y;, ¢ = 1,...,r, there exists an increasing
polynomial T, (y;,x) of degree < m, copositive with sgn(z — y;) in [—1,1],
satisfying

Tn(yia _1) = —]-a Tn(yza 1) = 1;
and such that
A (yi) 2
(19) sgn(z — ¥:) — Tu(yi, 2)| < Ky :
| ) (euts &)

Proof. Let the index ¢ = 1,...,r and the integer n be fixed. It is
known (see, e.g., [8, Lemma 17.2]) that for every N = Cn € N there exist
increasing polynomials Tn(y:,z) and Tn(y!,z) of degree < N such that

Tn(yl, -1) =Tn(y!, -1) = =1, Tn(yi,1) = Tn(y!,1) =1,

and satisfying

~ } AN(?/I') 2
20 sgn(z —yi) — In(yi,z)| < K .
@) s =) - Tuleho)] < Koot
and
= An(yi) 2
_ {I —T {/ < T .
(21) |sgn(:c Yi) N(yz yx)| £ I{S(|.'I3 _ ygll + A‘N(y;/))
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Now, we choose N to be sufficiently large, say, N := [2¢/K5 + 1]n.
Then, the following inequalities hold:

~ AN(y/) 2
Tn(yhy) >1- K d
Wl w) 2 S(yi—yHAN(yé)) B

An(y;)
An(yi)

> 1- K )221—4K5(%)2>0

and, similarly,

~ An(yi) 2
"o _ i
Tl o) < 1+ K (= Bk ) <
An(yi)\2 n\?2
< —1+K5(m) §—1+4K5(N) <0.

Therefore, there exists 0 < o; < 1 such that
aiTN(yi,yi) +(1 - O‘i)f'N(y;Iayi) =0.
Now, let
Tn(yia :E) = aiTN(:‘/;,x) + (1 - ai)TN(yélax)‘

Then T, is an increasing polynomial of degree < Cn such that
Tn(yi,yi) = 0 (this implies that T, is copositive with sgn(y; — x)), and
the following inequalities hold:

|sgn(z — y;) — Tnlyi, )| <
< |sgn(z — y;) — sgn(z — y})| + | sgn(z — y}) — T (¥, x)|+
+|sgn(z — y;) — sgn(x — y/)| + | sgn(z — y!') — Tn(y!, )| <

An(y:) 2 An(yi) 2
et am) s avan)

An (! 2 A, (1 2
+ ( ”N(yz) ”) <cf (i) ).
|z —yi'l + An(yi) |z — il + An(ys)
The proof of the proposition is complete.
The following result is a generalization of Lemma 1 of [4].

Lemma 6. Let f be as in Theorem 1. If for n > 46~ there exists
pn € I, copositive with f in'Y = -, Vi, then there is a polynomial
P, € Il fqn, Ko = K¢(r), which is copositive with f in [—1,1] and such that

(22) If = Pull < C(r)IIf = pall-
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Sketch of the proof. The polynomial
P, (2) :=pa(z) + 27||f = palln H In(yi, ),
i=1 _
where N is sufficiently large (N = ([18v/K4] + 1)n will do), and 5 = £1 is
such that

sgn(f(z)) = n [ ] sen(z — v:),
i=1
satisfies the assertion of the lemma. The verification of this fact is similar
to the proof of Lemma 1 of [4]. The only difference is that instead of

(y; —1/2n,y; +1/2n) the intervals V;, i = 1,...,r, are considered. Namely,
P,(2)f(x) >0 in O Vi,
i=1
since both p, and n];—; Tn(y;) are copositive with f in this set. Also,
P@f 20 i LI\

since . .
n[]Tn@s2)f(@) 20 and  |[[Zw(y;)| 227",
i=1

i=1

Finally, (22) holds since

<1

H TN(yivx)
i==1

Proofs of Theorems 1 and 1’

Proof of Theorem 1. The proof of Theorem 1 is based on a
modification of the ideas used by Y. Hu, LEVIATAN and X. M. YU in [4].

Let n > 467! be fixed, and let N = N(n) > n be an integer (we will
prescribe its exact value later). Also, let f,, € C3[~1,1] be a function which
was described in Lemma 3. Inequality (7) can be written as

(1 — 2232 f"(2)|| <M with M := Kin*wl(f,n7h).

It follows from Corollary 4 that there exists a polynomial py(fn,z) €
I, which interpolates f, at yy,..., vy, (i.e., pn(fn,4:) =0, =1,...,7),
and such that

(23) 1o = ()]l < Ko B (50) (f,07Y)
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and

@) An@)(Fa@) = Pl ) < K (55) wh(fn ).
We prescribe IV to be such that

K\ Ky(n/N)* <1 and K;K3(n/N)?<

e

For instance,
N = Ko = ([(K1 )3 + 2VEK K3] + 2)n.
It follows from (24) that for x € };, i = 1,...,r, the following estimate

is valid:

(Fole) = P (F ) < KBz () wh(m ™) <

< Koot () b (™) € GAu@) Wb

Together with (8) this implies that
Sgn(pN(frnx)) - sgn(fn 7 LIS U yz

In turn, it follows that py(f,) is copositive with f in Ui=1 YV;, and also by
(6) and (23),
1f = ()l SN f = fall + 10 = o (Fa)ll < Cd(f,n7).

Together with Lemma 6, this yields the assertion of Theorem 1 for
n> Kg:= 45_1I(6I(7, Kg = I(g(’f’, 5)

Proof of Theorem 1’. Clearly, we only have to prove Theorem 1’
for 0 <n < Kg. If r > 3, then it is sufficient to choose

Pn(x) = L(xafayla-“’yr) =0.
In this case denoting

. 2 2(r — 2)
L($)—L($,f,_1,—1+;:—_~—1,,—1+ r—1 ,1),

we have for any z € [—1, 1},
If(x) - Pn(x)l = If(f)?) - L(.Z', f7 Yty - 7yr)l =

r— 1

~ ~ ‘ 2
= 1f(@) = L@) - Lz, f = Lys, 3| < (14 == )If - LI
Now using Whitney’s inequality we conclude that
IIf = Pull < Cw™(£,1) < Cw’(f,1) <
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< Cuwg(f,1) £ Cwi(f, Kg') < Cwi(f,n™h),
where C = C(r,§).
In the cases ¥ = 1 and r = 2 for 2 < n < Kjp, one should apply a
similar consideration for the polynomials of the second degree

PTL("I:) = L($,,f,"‘1,y1,1) and Pn(x) = L(:Uafa—layl)yQ)v

respectively.
The proof of Theorem 1’ is now complete.

4. Remarks

Remark 1. All the considerations will remain the same if f vanishes
on some subinterval(s), say, [, 0;] C [—1,1]. In this case, if [a;, 3] is an
interval of sign change (i.e., if f(a; —¢)f(6; +¢) < 0 for small €), then it is
sufficient to fix any zg € [y, 3] as a point of sign change. Thus, Theorem 1
is valid for any f € C[—1,1] with finitely many changes of sign. In fact, if
f vanishes in all the intervals of sign change, then Theorems 1 and 1’ can
be considerably improved (see the next remark).

Remark 2. As we mentioned in the proof of Lemma 3, estimate (4)
can be improved if f satisfies extra conditions near the points of sign change.
For example, the following theorem is valid.

Theorem 7. Suppose f € C[—1,1| changes sign 1 < 7 < 00 times in
[—1,1] and vanishes in the intervals of sign change, i.e., suppose that

fx)=0, zel|Jly—6i,ui + 6
i=1

and

f(yi—6i~5)f(yi+6i+€)<0 fOTizl,...,T,
and all sufficiently small €. Let § := min{éy,...,6,} and m € N. Then
there exists a sequence of polynomials P, € Il,,, copositive with f, such that

(25) ”f - P'n”S C(Tamv 6)(“}47:(.)07”_1)'

Proof. Theorem 7 can be proved by using considerations similar to
those in the proof of Theorem 1. The most important difference which makes
estimate (25) possible, is that f; in the proof of Lemma 3 can be replaced
by the linear polynomial
~ _ 60w (f,n71)

bie) = — i (w=y)sen flyi+ i)+ (v’ — ) sgn f(y: —6: —¢)).
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However, there is a trivial proof.
For sufficiently large n € N, let P,, € II,, be the best approximant to
f in C[-1,1]. Then

If = Pull < Cw(f,n™Y) and  f(z)Pu(z) =0, z €Y =V,
i=1
i.e., by definition, P, is copositive with f in Y. Now, Lemma 6 implies that
there exists a polynomial P,, copositive with f in [—1,1], such that

If = Pall S CIIf = Pull < Cwg(f,n™1).

Another example of how the behavior of f near the points of sign change
determines the rate of copositive polynomial approximation, is presented in
the following theorem.

Theorem 8. Let f € C[—1,1] change sign r > 1 times at —1 < y; <

<y <1, andlet f(z) €l forx € [yi—bi, s +6;), i =1,...,7. Then,

for any m € N, a sequence of polynomials P, € II,,, copositive with f in
[—1,1], exists such that (25) holds with 6 := min{é,...,6,}.

The proof of Theorem 8 is less trivial than that of Theorem 7. We
omit the details, and only mention that the crucial idea is again to replace
fi in the proof of Lemma 3 by a rapidly increasing or decreasing linear
polynomial.
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O KOHOJIO}KHTGJIBHOi/i AllIpPpOKCUMAITI
anre6panquRMMM MHOIro4JeHaMHA

KNPWJIJ KOIIOTYH

Hnsa pyrxmuu f € C[—1,1] ¢ orpaHUYeHHLIM YHCIOM IepeMeH 3HaKa CTPOUTCA
HOCJIeJOBATENLHOCTL MHOFOYJIEHOB Py, Komojokurenvunlx ¢ f (r.e. f(z)pn(z) > 0,
—1 <z <1) n rakux, 4ToO

3 -1
lf = Pllee < Cwy(f,n77),

rue w;:',(f, §) — Moxnyns HenpepuiBHOcTH dnrnuana—ToTnka TpeTnero nopsaka. Uasecr-

HO, 4YTO wf, HeJL3dA 3aMEHUTDL HU Ha wé, HHU Ha w4. Taxum OGP&BOM, IpUBeJEeHHad Ol€HKa

TOYHa B HEKOTOPOM CMbICJIE. B kauectse CJIe[CTBHA YCTAHOBJIEHA 3KBHUBa&JEHTHOCTL

cooTHONIeRu i

Ef)=0(n") un EP(f,r)=0n"") mz 0<a<3.
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