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Abstract

We prove, in particular, that for a function f such that f=1 € AC and f) €
L,[-1,1],1 <p < oo, and m,n € N, there exists a polynomial P, of degree < n such
that

11 = By < Cm, ) =R 1 )y, 0 <k <,

where w (g, ), is the Ditzian-Totik s-th order modulus of smoothness of g in L, .

AMS 1991 Subject Classification: 41A10, 41A25, 41A28

1. Introduction

Let L,[a,b] be the set of all functions, which are measurable on [a,b], and such that
NIzt i= {ff | f(x)]? d:z;}l/p < 00. Also, let II,, denote the set of all algebraic polynomials
of degree not exceeding n and A, (z) := V1—a2ntan 2

Recall that the usual m-th order modulus of smoothness of a function f € L,[a,b] is

given by
b 1/p
W(F,6,[a,b]), = sup {/ |A2”(f,x,[a,b])|pdx} :
0<h<s a
where

AM(f,x,[a,b]) = { Srso () (=1 e — 2y + kn), if o+ 2y € [a,b],

0, otherwise.
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is the symmetric m-th difference.

If o(x) = V1 — a2, then the Ditzian-Totik modulus is (see [4])

1/p
wl(f,0,]a,b]), = sup {/ | A [a b])|pd:1;} :

0<h<s
For I := [~1,1] for simplicity we write [|-||,, := |||z, (1), @™ ([, 0)p 1= W™ (f, 0, [)p, W (f,0)p 1=
Wl (f,0,1), and AT (f, ) == AP (f, 2, 1).

In this note we prove the following theorem.

THEOREM 1. Let m,r € N and f = f(x) be such that f=Y is absolutely continuous on
[—1,1) and f©) € L,[-1,1] (1 < p < o). Then for any n > m +1r — 1 there exisls a linear
operator P,(f) : L,[—1,1] — 11, such that

Hf(’”(x) B < e (50, 1m)

An(w)™”

p

fork=0,1,...,r and any integer ry, satisfying k <r, <r.
Moreover, for k > m + r and any integer 7, 0 < 7 < r the following inequality holds:

| A () Pg’f)(f,x)H < Clkywit = (f <f>,1/n)p.

For p = oo better estimates than those in Theorem 1 were proved in [8]. Choosing ry = k

for 0 <k <rand 7 =0 in Theorem 1 we obtain the following result.

COROLLARY 2. Let m,r € N and f = f(x) be the same as in Theorem 1. Then for any
n >m+r—1 there exists P,(x) € Il,, satisfying

Hf(k)—Pék H < C(m, r)wm"'r k( (k),l/n)p for 0 <k<r
and

HAn(:I;)kPﬁ)(x)H < Clk)ywl ™ (f,1/n), for k>m+r.

By the same argument as was used by D. Leviatan in [9], employing the inequality

W (f(r)7 1/n)p < C Hf(r)
Theorem 1 (choose ry =r for 0 <k <r and m =1).

, one can also show the validity of the following corollary of
P



Simultaneous Approximation

COROLLARY 3. Letr € N and f = f(x) be such that fU"=Y is an absolutely continuous
function on [—1,1] and ) € L,[—1,1] (1 < p < 00). Then for any n > r there exists
P,(x) € 11, such that

B () — pE) (4
@)‘V ()f@()
An(z)

< C) By (f7) , 0<k <,

p

P
where F, (g)p = infp.en, |lg — PSHP.

Corollary 3 was recently proved by D. Jiang [6]. In the case p = oo a better inequality
than (3) is valid (see T. Kilgore [7]).

The next section contains auxiliary results. We also introduce some notations there.

Finally, the proof of Theorem 1 is given in Section 3.

2. Notations and auxiliary results

The following notations are used throughout this paper (cf. [12]):
jm :
x;i=cos—, 0 <3< n,
n
L= jxjal, b=l =2j —2;, 1< j<n,

T = []‘U[]‘_l, if QSJSTL,
A I it j=1.

Vi—a2 1
Ay (x) = vy — .
n n
It can be easily verified (see [12], for example) that ;41 < 3h; and A, (z) < h; < 5A,(2)
for x € I;.
As usual, €' denote constants which are independent of f and n, and are not necessarily

the same even when they occur on the same line.

C h;
For simplicity we also denote v; := !

e — a4k

The following lemma, which was proved by E. A. Storozhenko [13, Theorems 1 and 2],
is an analog of the well known Whitney’s theorem for the spaces L,la,b], 1 < p < 0.

LEMMA A (E. A. STOROZHENKO). Letr € N and f = f(z) be such that fU=1 is
absolutely continuous on [a,b] and f0) € Ly[a,b], 1 < p < co. Then for every m € N a

linear operator Qpyr—1(f,[a,b]): Ly[a,b] — W, 4,—1 exists satisfying

(@) [ = QUL i a,0))

b—a
< myr—k [ plk) 7 % b
Lyplad] — Clm,r)w (f 20m +r)’ [, ] ,
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fork=0,1,...,r.

Also, we need the following lemma which is a simple consequence of the results obtained

in [8].

LEMMA B. Let u, & € N be such that p > 7€, and let 1 < 3 <n —1 be a fired index. Then
there exists a polynomial T;(x) of degree < 4un such that the following inequalities hold for
x e [-1,1]:

(5)  |Ti(x) = x;(=)| < Cu) o}

6) 1P| < CluygihTF, 1<k <€,

V)

where x;(x) = { (1)’ if v =,

otherwise.

LEMMA C. For a function g € L,[—1,1] (1 <p < o) and s € N the following inequality
holds:

(7) Z;ws(gahmfj)i < CPWi(g,n7h)E.
]:

Proof. In one form or another, the lemma is known. In fact, for 0 < p < 1 the inequality,
similar to (7), was proved by R. DeVore, D. Leviatan and X. M. Yu [1, inequalities (4.1),
(4.5) and (4.6)]. The same proof works in the case 1 < p < oo. The main its idea is the

employment of the inequality

S 1 5 b S
(8) wg.dlably < C5 [ [ 185,206 dodh,

which appeared in [10, Lemma 7.2] (see also [3]). Namely, using (8) we have

h]
g Ty <t [ 18 g0 TP da dn

hle) o) |\
= ¢ /z] /0 h; | A (gs )P dh da .
Since hj/p(x) ~n~! for x € Z;, j =3,...,n — 1 we conclude that for these j
Cn—!
(9) ws(g,hj,Ij)Z < CPn /I /0 |Aiw(x)(g,x)|p dhdr .

Now, since Afw(l,)(g, x) = 0if She(x) > 1 £z, then it equals zero for v € 7y UZ, UZ, and
h > 30n~'. Hence, (9) also holds for j = 1,2 and n.
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Finally, inequality (9) yields

Yo w9 LYy < cpnz// @)]" dhda
7=1

Cn~—
< o[ |8 oo )P dda
—-1J0
Cn—!
< Cn [ 852l dh
< CTwi(gnTU. -

3. Proof of Theorem 1
The idea behind the proof of Theorem 1 is rather well known (see [1], [2], [8] and [12],

for example). Namely, first, we approximate a function f (and its derivatives f*)) by the

spline L, (f,z) (and LW(f,x)) given by

LalFoo)i= o) + 3 (i) = poa ()] (o)

where p;(f) := Quir—1(f,Z;) is a polynomial of degree < m +r — 1 (with Q4,1 defined
in Lemma A). Now, the polynomial P,(f, ) (in fact, it is a linear operator L,[—1,1] — Il¢,
with C'= C(m,r)) such that

n—1

Pn(f,l') = pn(fvx) + Z [pj(f,l') - p]‘_|_1(f,$)] T](l')

7=1
(where T} is defined in Lemma B with £ = m 4+ r and g = 7(m + r)) satisfies (1) and (2).

To justify the above claim we show that

B ‘f o DAL < g o,
P
and
ngk) fvx _Pék) fvx m4r—r r —
Jy 1= ‘ ( An)(x)rk_k( ) < wa-l- k(f( k)7n l)p‘

P
This will prove inequality (1).

To estimate .J;, keeping in mind that L,(f,x) = p;(f,z) if « € [;, we write for every
kE=0,....rand k <r; <r:

P
Bk
J

< cr Zhﬁk " O — PO,

JP < CP dx
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Together with Lemmas A and C this implies

‘]f < cr Z h;‘k_rk)p wm+r—k(f(k)7 hjv [])g

< Cr Z Wt =rk (f(rk)7 h],71'],)£
j=1

S CP m—l—r Tk (f(rk)7n—1)£ )

In order to estimate .J; we recall that for a polynomial P,(z) of degree < v the inequality
(10) [P(x)| < 77 [|Plew), « € [=1,1]
holds (this follows, for example, from the Lagrange interpolation formula), and that
A0 P llew)y < Ch7 PP

(see [10, Lemma 7.3], for example). Using (10) we have

n—1

i< /_llAnu)““‘”)p{Z(|p§’“><f,x>—p§’21<f,x>||><]«<x>—Tj<x>|

i=1

n Z( )|p] fra)— p§:>1<f,x>||Tﬁ—”><x>|)} de
< o [ At {i(up] )= 2 (Dlleq, g7

P
+ ZHP] =P (Do, b W_M_WH)} -

Now applying Markov’s inequality first and then Jensen’s inequality (for the latter the
inequality 3%, ¥f < O, a > 2 is used) we write

P
1
(12) Jy < 7 /_IA i {ZHP} pj+1(f)!\c(lj)h}k¢f/2} dx
< (P IA (k—rx)p 4 o » BRR 2T
< ) n() ZHPJ(JC) Piti(F)c,y by ™ ¢35 x
_ =~

< O S nil) = pin (Dl b7 [ 0 de

since A, (x) > Chjvp; (see [8]) and ¢; <1 for all @ € [—1,1] and, therefore,
An(x)(k—rk)p ¢;’p S P h;k—rk)p ¢;T+k—rk)p S P h;k—rk)p‘

Since [!, Pde < C(a)h; for any v > 2 (this is verified by straightforward computations),

we conclude that

n—1

Jy < O b i) = pied (D) -

i=1
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and, therefore, using (11)
n—1
o< 0 [ n0 = pnlfe)l de
< cpzh”p/ (@) = pi(f.a)|P da.

Using Lemma C and the fact that || f — p;(f)llz,z,) < Cw™ " (f, h;,Z;), (see Lemma A) we

conclude that

n—1
Jy < CP Y TG (f by )

7=1
S oL Z wm+7’—7’k (f‘(T’k)7 h]7 I])g
j=1
S CP m—l—r L (f(rk)7 n—l)g )
Thus, the proof of (1) is complete, and it remains to show the validity of (2).
For any 7, 0 <7 <r and k£ = m 4 r we write

(13) JP = HAn(x)’“‘fPé’“)(f,x)Hz

/ {Z mi(k)lp (f,2) - pﬁ”ﬁl(f,xn|T;’“—”><x>|}pdx

174
v

IA

< o [ar {i 12505 = i (Dllew,) 5 W} dz.

The only difference between the last quantity and the one in the first inequality of (12) is

that it contains 7 instead of ry. Thus, it follows from the above estimates that
JS S Cw$+r_F(f(F)7 n_l)p ’

which proves (2) for k = m + r. Finally, for k& > m + r the inequality (2) follows from the

case k = m + r and the estimate
1AL ()" P, < ClAL(x) Pa(2)ll, P €Ly, p €R,

which is due to M. K. Potapov [11] (see also K. G. Ivanov [5, ineq. (4.11)]).

The proof of Theorem 1 is now complete.
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