On K-monotone Polynomial and Spline

Approximation in L,, 0 < p < co (Quasi)norm

Kirill A. Kopotun

Abstract. Negative results for k-monotone polynomial and spline ap-
proximation in L,(0 < p < oo) metric and unconstrained polynomial
approximation in L,(0 < p < 1) quasi-norm are obtained. In par-
ticular, it is shown that the estimates Eq(lk)(f)p < Cuws(fM,1), and
Sﬁfcn) (f)p < Cwa(f*), 1), are not true in general for 0 < p < oo, and
the estimate E,(f), < Cn"lwn(f,n""), is true for not all f € AC,
if 0 < p < 1, where Eq(lk)(f)p7 Sﬁfcn) (f)p and E,(f), denote the rates
of best k-monotone polynomial, k-monotone spline and unconstrained
polynomial approximation in L,, respectively.

§1 Introduction

Let L,[0,1], 0 < p < oo denote the space of all measurable functions on
[0, 1] such that

1 1/p
£l = 1F oo ::{(fo o), 0<p<os.

ess sup, o 1| ()], p=o0

is finite, and let L{; [0, 1] be the space of functions which are j-fold integrals
of L,[0, 1] functions. As usual, the integral modulus of smoothness of
order m is given by wy, (f,d), = supgcp<s IAR(f, )lp » where AP (f, ) =
S (M(=1)™ " f(x +ih), if [v,2 + mh] C [0,1] and AP(f,z) := 0, if

?

[, + mh] ¢ [0,1], is the m-th (forward) difference (if m = 0, we set

wo(f,0)p == [|fllp)-
Also, let II,, denote the set of all algebraic polynomials of degree < n,

and S(r, N) be the space of all splines of order r with knots {i/N}X, (i.e.,
s € S(r,N) if and only if s is a polynomial of degree < r — 1 in each
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interval [i/N, (i + 1)/N], and s € C"72[0,1]). We also denote by A¥ the
set of all functions f such that A¥(f,z) > 0 for all h > 0 and z € [0, 1].
In particular, A' is the set of all nondecreasing functions. It is easy to
see that, if f € C*[0,1], then f € AF if and only if f(z) > 0, = €
[0,1]. We are interested in approximation of such functions by polynomials
and splines from A*, i.e., in the so called “k-monotone approximation”.
Recall that the rates of best unconstrained and k-monotone polynomial
approximation are given, respectively, by E,(f), := infp en, |[|[f — Pull,
and B (), = infp, enr, aar |1f = Pally.

The following Theorem A was proved by A. S. Shvedov [15] in the
case 1 = 0. Recently, S. P. Manya noticed that the same proof works for
all © <k —1 (see [13], for example).

Theorem A. Let A > 0,k>1,0<p<oc,n>k+land0<i:<k-—1
be given. Then there exists a function f € C*[0,1] N A*, such that

EWR(F)p > Awka—i( £, 1), . (1)

In the case for monotone approximation, Theorem A implies that the
estimate E,(})(f)p < Cwz(f,n™1), is not true in general. At the same time
the following (direct) result is known.

Theorem B. If f € L,[0,1]N A', 0 < p < oo, then for any n > 1

EMN(f)p < Cun(fin™h), (2)
Therefore, in the case 1 < p < oo, if f € L}J[O, 1] N A, then
EXN(f)p < Cn7lw(f i), (3)

Theorem B was proved by R. A. DeVore [2] for p = oo, by A. S. Shve-
dov [15] in the case 1 < p < oo, and by R. A. DeVore, D. Leviatan and
X. M. Yu [4] for 0 < p < 1.

In the case p = oo, it was proved by I. A. Shevchuk [11] and, in-
dependently, by Y. P. Ma and X. M. Yu [16] that, if f is continuously
differentiable, then a much better estimate than (3) is true. Namely, the
following result was established.

Theorem C. Let f € C1[0,1] N Al, then
EWV (o < Cnrwp(F,n ™) for any n > m. (4)

Thus, the natural question on whether one can improve the estimate
(3) in the case 0 < p < oo arises. We will show that it is impossible, that is,
w in (3) can not be replaced by w,, with m > 2. In fact, we will prove the
following negative result in the general k-monotone case. (This result is a
generalization of Theorem 1 of [7], and its proof is based on a modification
of the counterexample from [8].)
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Theorem 1. Let k € N and 0 < p < oo be fixed, and let v € N and
m € N U {0} be such that max{k +2 — m,k} < v < k + p~'. Then for
anyn € N, 0 < e <1and A > 0 there exists a function f € C*[0,1],
f®(z) > 0, z € [0,1] such that for every P, € II,, P,gk)(O) > 0 the
following inequality holds

1f = Pallz, o, > Awm (£, 1), (5)

Corollary 2. The estimate
EP(f)p < Con(fV,1), (6)
is not true in general for 0 < p < oo and f € C*[0, 1]NAF, k€ V.

In the case 1 < p < oo Theorem A is an immediate consequence of
Corollary 2. However, we can not say the same if 0 < p < 1, since the
estimate wg(f,0), < Céwr_1(f’,0), is no longer valid if p < 1 (though it is
easy to modify the proof of Theorem 1 to yield (1) forall: <k —1andp <
o0). It is well known that L,, 0 < p < 1 spaces are “pathological in nature”.
For example, they are not Banach spaces, there are no linear continuous
functionals in L, (except the zero functional), etc. It was recently shown
by Z. Ditzian, V. H. Hristov and K. Ivanov [6] that the Peetre K-functional
between L, and W is identically zero.

Theorem D. For 0 < p < 1,r € N, t > 0 and any f € L,[0,1] we have
K (f,175 Ly, Wy) = infyecrion (I = gll + 719" l,) = 0.

Z. Ditzian [5] proved that the rate of simultaneous approximation of
a function and its derivatives is very bad if 0 < p < 1.

Theorem E. For 0 < p < 1 and f € AC|0,1] we can not have P, € II,
such that ||f — P,ll, < Cwa(f,n™t), and ||f' — P!, < Cw(f',n71),

simultaneously with constants independent of f and n.
Thus, the following result is not surprising.

Theorem 3. For every A >0, B€R,0<p<1andn € N there exists
an absolutely continuous function f (f € AC|0,1]), such that

En(f)p > An|f']l, - (7)

Corollary 4. The estimate E,(f), < Cn'w,(f',n™1), is not true in
general for 0 < p < 1 and any m € N U {0}.

At the same time, the condition f € A* is rather strong (at least
for k > 2) in the sense that it eliminates those functions f which “bring
anomalous properties” into L, for p < 1. To illustrate this we only men-
tion that employing the method of the proof used by R. A. DeVore and
D. Leviatan [3] one can show the validity of the following (direct) result on
convex polynomial approximation in L, for 0 < p < 1.
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Theorem F. Let f € L},[O, 1] (0 < p < 1) be convex, then for every n > 1

ER(fy < Cn~lo(fn™h),. (8)

It is well known that for unconstrained polynomial approximation one
has the following estimate

Eu(f)y <Cn'Eusa(f)p,  1<p<co. (9)

It follows from Theorem 3 that (9) is not true if 0 < p < 1.

Corollary 5. For every A > 0, B € R and 0 < p < 1, there existsn € N
and f € AC|0,1] such that

En(f)p > An"En_a(f'), - (10)

Now, the natural question is whether the estimate
EXN(f)p < Cn Eaea(f')y (11)

is true for f € L[0,1] N A'. In view of the estimate (4) it seems that
it would be reasonable to expect that (11) is true at least in the case
p = oo. Moreover, it is not difficult to see that, if p = oo, then the
following inequality, which is weaker then (11), holds:

EM(f)oo < CEni(f')oo - (12)

Indeed, the following proof, based on a slight modification of one of the
proofs in O. Shisha’s paper [14], was proposed by D. Leviatan. Let f €
C0,1] N Al and let p,(2) := Ene1(f oo + ¢u(z) + £(0) — ¢a(0), where
q), is the best approximation to f’ from II,,_;. Then p, € II, N A!, and

EO(f)oe < I1f = palloc = ‘

/Ox(f’(y) —p%(y))dy“

oo

<NF = pulloe = 1" = @ = En-1(f)oolloc < CEn1(f)os - (13)

Despite all the above, it was recently proved by I. A. Shevchuk [12]
that (11) is not true for p = co. Namely, there exists an absolute constant

Co (Co = 555) and a function f € C1[0,1] N Al such that

200
EM(f)oo > CoBn1(f oo (14)

Thus, in a sense, (12) is the best possible estimate of this type. If p <
oo, then the rate of approximation deteriorates even further, and even
the estimate (12) is no longer valid. The following is a consequence of
Theorem 1.
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Corollary 6. For anyn € N, k € N, 0 < p < oo and A > 0 there exists
f e C>[0,1] N A¥ such that

ER(F)p > ABu—i(f V), (13)

Another corollary of Theorem 1 is the fact that one can not have the
estimate

gr(’,kn)(f)p < CW?(f(k)v 1)p, 0<p<oo (16)

for k-monotone spline approximation, where

EN D= it I =l

Thus, the following result on monotone spline approximationin L,, 1 < p <
oo 1s the best possible in the sense of the orders of moduli of smoothness.
(In the case k =1 and 1 < p < oo it was also recently proved by X. M. Yu
and S. P. Zhou [17].)

Theorem G (monotone spline approximation). The following estimates
are valid:

E (oo € Cn7lopoa (f'n ™),
if f e C'0,1]Nn A" and r > 2 (D. Leviatan and H. N. Mhaskar [9]),

5532 (f)P < Cn_zwf’—Z( //7n_1)]97
if feL2[0,1]]NA' (1 <p < oo)andr >3 ([9]),
gr(’,lg(f)p < C'n_lw(f’, n_l)pv

it f e L},[O, 1JNA' (1 <p<oo)andr >2 (C. K. Chui, P. W. Smith and
J. D. Ward [1]).

§2 Proofs

Proof of Theorem 1. We now construct the counterexample described
in Theorem 1. This counterexample is a modification of the one used in
the proof of Theorem 2 of [8] (see also Theorem 1 of [7]).

Let n e N, 0<e<1,A>0and0 < p< oo be fixed, and define

fe(x) == /Ox /0“71 ---/OM_1 (€xr —In(xg + 7)) —1n¢) duy...dzy
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— 1 ¢ k—1 —&
—m/o(l'—y) (by —In(y +e7%) —1n¢) dy,
where ¢ > 1 will be chosen later. Clearly, fe € C*°[0, 1], and it is easy to
check that f{*'(z) = €2 — In(z + ¢7¢) —In& > 0, = € [0, 1].
Suppose that the assertion of the theorem is not true, i.e., that for
every £ > 1 there exists a polynomial P ,(z) = ag+a1z+...+apn2™ € II,

such that Pé];)(O) = kla > 0, and

Ife = Penllr, o, < Awm (7. 1), (17)

Now, note that there exists a constant Cy which depends only on p, v and
k., such that

wn(f,1), < Co. (18)

Indeed, if v = k (which is possible only in the case m > 2), then

em(F{ 1 = e (10 +¢79) 1)) < [[inGe + )]

1 2
0 0

If v >k, then
v _ v—k p _ v—kYIP
wm(F 1) = wm (e +e76)" ™ 1) < (e + 7)™
P P
—v||P L de (v—Fk—=1)!
_ —k—l!‘ —6)F < —k—l!/ =
(v N [CR N A = =il py

since (v — k)p — 1 < 0. Now, using the estimate

/ox(l‘ — ) n(y + %) dy

1
< [ a=wt ity + ) dy
P 0

1 2
< [ nty+ )y < [ ugl dy = 2102,
0 0
together with (17) and (18), we have

Hﬁ /ox(x —9)" Gy ~1nQ) dy — Pen(r)

L,[0,e]

< amax{LI/PY(AC, + 21n2)
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and, therefore (see Lemma 7.3 of [10]),

1

‘m /Ox(l' — )" &y = In¢) dy — Peu(2)

< CeYromaxtlLl/PY(AC, +2In2) =: C .
Now, applying Markov’s inequality, we get
‘ fx —In& — Pé’;)(x)

and, in particular,

Lo [0,¢]

< 5_kn2k01

Lo [0,¢]

In¢ + P (0)

<
exp{e*n2*C1} + 1 we get Pé];)(()) < e *p?kCy —1In¢ < 0, thus, obtaining
a contradiction. W

e7*n2?*C,. Therefore, choosing ¢ =

Proof of Theorem 3. Let £ < n~%/4be a parameter which will be chosen
later. For x € [0,n %] we define

x 1, x € [0,¢],
f‘g(x) — 17 T E [£7n_2/2]7
‘ nTEN 241 —afTt, 2 e nT?/2,077 /24 ],
0, x€nT?/24 €077

Now, let fe(z) = fe (x—[xn_z]n_2> for + € [n72,1]. Clearly, f¢ €
AC[0,1]. Let us denote V) := {x € [0,1] : @ — [sn"?|n"% € [£,555]} =

2n2
Ul 46 St 5], e i={a €0, 1]t a—[an?In"? € [ +& 5]} =

U?jal[n% + 5 + ¢ and Vs o= [0,1]\ {V1 U De}. Then fe(z) = 1
if v € W, fe(x) = 0if @ € Db, and [fi(z)] = ¢~Vif v € V5. Hence,
[ £¢llh = € Pmeas{Ys} = 2n2E1=P . At the same time, since every polyno-
mial P, of degree < n has not more than n — 1 points of monotonicity
change, there exists an interval [a,b] C [0, 1] of the length at least 1/n such
that P, is monotone on [a,b]. In turn, this implies the existence of an
interval [a, 8] C [a, b] of the length 1/(2n) (in fact, [o, 5] is [a, (a 4+ b)/2] or
[(a 4+ b)/2,0]) such that either P,(x) > 1/2 or Py(x) < 1/2 for = € [a, (3]
Suppose that P,(x) > 1/2, @ € [a, 3] (the other case is treated similarly).
Then

[fe — Pl = / |fe(z) = Po(z)]? do = / | Py ()| da

yQﬁ[avﬂ] yQO[avﬂ]
> 27Pmeas{Ve N[, B} > 27 P In(n™2/2 - &) >27P 371,

(In fact, using more precise calculations one can show that || fe — Pp|[5 >
C,.) Finally, it is sufficient to choose

¢ < min {71_2/47 <2_p_4A_Pn—Bp—3>1/(1—P)}

in order to complete the proof of the theorem. W
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