On K-monotone Polynomial and Spline Approximation in L_p , 0 (Quasi)norm

Kirill A. Kopotun

Abstract. Negative results for k-monotone polynomial and spline approximation in $L_p(0 metric and unconstrained polynomial approximation in <math>L_p(0 quasi-norm are obtained. In particular, it is shown that the estimates <math>E_n^{(k)}(f)_p \leq C\omega_2(f^{(k)}, 1)_p$ and $\mathcal{E}_{r,n}^{(k)}(f)_p \leq C\omega_2(f^{(k)}, 1)_p$ are not true in general for $0 , and the estimate <math>E_n(f)_p \leq Cn^{-1}\omega_m(f', n^{-1})_p$ is true for not all $f \in AC$, if $0 , where <math>E_n^{(k)}(f)_p$, $\mathcal{E}_{r,n}^{(k)}(f)_p$ and $E_n(f)_p$ denote the rates of best k-monotone polynomial, k-monotone spline and unconstrained polynomial approximation in L_p , respectively.

§1 Introduction

Let $L_p[0,1], 0 denote the space of all measurable functions on <math>[0,1]$ such that

$$||f||_p := ||f||_{L_p[0,1]} := \begin{cases} \left(\int_0^1 |f(x)|^p \, dx \right)^{1/p}, & 0$$

is finite, and let $L_p^j[0, 1]$ be the space of functions which are *j*-fold integrals of $L_p[0, 1]$ functions. As usual, the integral modulus of smoothness of order *m* is given by $\omega_m(f, \delta)_p := \sup_{0 \le h \le \delta} \|\Delta_h^m(f, \cdot)\|_p$, where $\Delta_h^m(f, x) :=$ $\sum_{i=0}^m {m \choose i} (-1)^{m-i} f(x+ih)$, if $[x, x+mh] \subset [0,1]$ and $\Delta_h^m(f, x) := 0$, if $[x, x+mh] \not\subset [0,1]$, is the *m*-th (forward) difference (if m = 0, we set $\omega_0(f, \delta)_p := \|f\|_p$).

Also, let Π_n denote the set of all algebraic polynomials of degree $\leq n$, and $\mathcal{S}(r, N)$ be the space of all splines of order r with knots $\{i/N\}_{i=0}^{N}$ (*i.e.*, $s \in \mathcal{S}(r, N)$ if and only if s is a polynomial of degree $\leq r - 1$ in each

ISBN 0-12-xxxxxx-x

Approximation Theory VIII

Charles K. Chui and Larry L. Schumaker (eds.), pp. 1-8.

Copyright @1995 by World Scientific Publishing Co., Inc.

All rights of reproduction in any form reserved.

interval [i/N, (i+1)/N], and $s \in C^{r-2}[0,1]$). We also denote by Δ^k the set of all functions f such that $\Delta_h^k(f, x) \ge 0$ for all $h \ge 0$ and $x \in [0,1]$. In particular, Δ^1 is the set of all nondecreasing functions. It is easy to see that, if $f \in C^k[0,1]$, then $f \in \Delta^k$ if and only if $f^{(k)}(x) \ge 0$, $x \in [0,1]$. We are interested in approximation of such functions by polynomials and splines from Δ^k , *i.e.*, in the so called "k-monotone approximation". Recall that the rates of best unconstrained and k-monotone polynomial approximation are given, respectively, by $E_n(f)_p := \inf_{P_n \in \Pi_n} ||f - P_n||_p$ and $E_n^{(k)}(f)_p := \inf_{P_n \in \Pi_n \cap \Delta^k} ||f - P_n||_p$.

The following Theorem A was proved by A. S. Shvedov [15] in the case i = 0. Recently, S. P. Manya noticed that the same proof works for all $i \leq k - 1$ (see [13], for example).

Theorem A. Let A > 0, $k \ge 1$, $0 , <math>n \ge k+1$ and $0 \le i \le k-1$ be given. Then there exists a function $f \in C^k[0,1] \cap \Delta^k$, such that

$$E_n^{(k)}(f)_p > A\omega_{k+2-i}(f^{(i)}, 1)_p.$$
(1)

In the case for monotone approximation, Theorem A implies that the estimate $E_n^{(1)}(f)_p \leq C\omega_3(f, n^{-1})_p$ is not true in general. At the same time the following (direct) result is known.

Theorem B. If $f \in L_p[0,1] \cap \Delta^1$, $0 , then for any <math>n \ge 1$

$$E_n^{(1)}(f)_p \le C\omega_2(f, n^{-1})_p.$$
 (2)

Therefore, in the case $1 \leq p \leq \infty$, if $f \in L_p^1[0,1] \cap \Delta^1$, then

$$E_n^{(1)}(f)_p \le C n^{-1} \omega(f', n^{-1})_p .$$
(3)

Theorem B was proved by R. A. DeVore [2] for $p = \infty$, by A. S. Shvedov [15] in the case $1 \le p < \infty$, and by R. A. DeVore, D. Leviatan and X. M. Yu [4] for 0 .

In the case $p = \infty$, it was proved by I. A. Shevchuk [11] and, independently, by Y. P. Ma and X. M. Yu [16] that, if f is continuously differentiable, then a much better estimate than (3) is true. Namely, the following result was established.

Theorem C. Let $f \in C^1[0,1] \cap \Delta^1$, then

$$E_n^{(1)}(f)_{\infty} \le C n^{-1} \omega_m (f', n^{-1})_{\infty} \text{ for any } n \ge m.$$
(4)

Thus, the natural question on whether one can improve the estimate (3) in the case $0 arises. We will show that it is impossible, that is, <math>\omega$ in (3) can not be replaced by ω_m with $m \ge 2$. In fact, we will prove the following negative result in the general k-monotone case. (This result is a generalization of Theorem 1 of [7], and its proof is based on a modification of the counterexample from [8].)

Theorem 1. Let $k \in N$ and $0 be fixed, and let <math>\nu \in \mathcal{N}$ and $m \in \mathcal{N} \cup \{0\}$ be such that $\max\{k+2-m,k\} \leq \nu < k+p^{-1}$. Then for any $n \in \mathcal{N}, 0 < \varepsilon \leq 1$ and A > 0 there exists a function $f \in C^{\infty}[0,1]$, $f^{(k)}(x) \geq 0, x \in [0,1]$ such that for every $P_n \in \Pi_n, P_n^{(k)}(0) \geq 0$ the following inequality holds

$$||f - P_n||_{L_p[0,\varepsilon]} > A\omega_m(f^{(\nu)}, 1)_p.$$
(5)

Corollary 2. The estimate

$$E_n^{(k)}(f)_p \le C\omega_2(f^{(k)}, 1)_p$$
 (6)

is not true in general for $0 and <math>f \in C^{\infty}[0, 1] \cap \Delta^k, k \in \mathcal{N}$.

In the case $1 \leq p < \infty$ Theorem A is an immediate consequence of Corollary 2. However, we can not say the same if 0 , since the $estimate <math>\omega_k(f, \delta)_p \leq C \delta \omega_{k-1}(f', \delta)_p$ is no longer valid if p < 1 (though it is easy to modify the proof of Theorem 1 to yield (1) for all $i \leq k-1$ and $p < \infty$). It is well known that L_p , 0 spaces are "pathological in nature".For example, they are not Banach spaces, there are no linear continuous $functionals in <math>L_p$ (except the zero functional), etc. It was recently shown by Z. Ditzian, V. H. Hristov and K. Ivanov [6] that the Peetre K-functional between L_p and W_p^r is identically zero.

Theorem D. For $0 , <math>r \in \mathcal{N}$, t > 0 and any $f \in L_p[0,1]$ we have $K_r(f, t^r; L_p, W_p^r) := \inf_{g \in C^r[0,1]} \left(\|f - g\|_p + t^r \|g^{(r)}\|_p \right) = 0$.

Z. Ditzian [5] proved that the rate of simultaneous approximation of a function and its derivatives is very bad if 0 .

Theorem E. For $0 and <math>f \in AC[0,1]$ we can not have $P_n \in \prod_n$ such that $||f - P_n||_p \leq C \omega_2(f, n^{-1})_p$ and $||f' - P'_n||_p \leq C \omega(f', n^{-1})_p$ simultaneously with constants independent of f and n.

Thus, the following result is not surprising.

Theorem 3. For every A > 0, $B \in \mathcal{R}$, $0 and <math>n \in \mathcal{N}$ there exists an absolutely continuous function f ($f \in AC[0,1]$), such that

$$E_n(f)_p > An^B ||f'||_p.$$
 (7)

Corollary 4. The estimate $E_n(f)_p \leq Cn^{-1}\omega_m(f', n^{-1})_p$ is not true in general for $0 and any <math>m \in \mathcal{N} \cup \{0\}$.

At the same time, the condition $f \in \Delta^k$ is rather strong (at least for $k \geq 2$) in the sense that it eliminates those functions f which "bring anomalous properties" into L_p for p < 1. To illustrate this we only mention that employing the method of the proof used by R. A. DeVore and D. Leviatan [3] one can show the validity of the following (direct) result on convex polynomial approximation in L_p for 0 . **Theorem F.** Let $f \in L_p^1[0,1]$ $(0 be convex, then for every <math>n \ge 1$

$$E_n^{(2)}(f)_p \le C n^{-1} \omega(f', n^{-1})_p .$$
(8)

It is well known that for unconstrained polynomial approximation one has the following estimate

$$E_n(f)_p \le C n^{-1} E_{n-1}(f')_p, \qquad 1 \le p \le \infty.$$
 (9)

It follows from Theorem 3 that (9) is not true if 0 .

Corollary 5. For every A > 0, $B \in \mathcal{R}$ and $0 , there exists <math>n \in \mathcal{N}$ and $f \in AC[0,1]$ such that

$$E_n(f)_p > An^B E_{n-1}(f')_p.$$
(10)

Now, the natural question is whether the estimate

$$E_n^{(1)}(f)_p \le C n^{-1} E_{n-1}(f')_p \tag{11}$$

is true for $f \in L_p^1[0,1] \cap \Delta^1$. In view of the estimate (4) it seems that it would be reasonable to expect that (11) is true at least in the case $p = \infty$. Moreover, it is not difficult to see that, if $p = \infty$, then the following inequality, which is weaker then (11), holds:

$$E_n^{(1)}(f)_{\infty} \le C E_{n-1}(f')_{\infty}$$
. (12)

Indeed, the following proof, based on a slight modification of one of the proofs in O. Shisha's paper [14], was proposed by D. Leviatan. Let $f \in C^1[0,1] \cap \Delta^1$, and let $p_n(x) := E_{n-1}(f')_{\infty}x + q_n(x) + f(0) - q_n(0)$, where q'_n is the best approximation to f' from Π_{n-1} . Then $p_n \in \Pi_n \cap \Delta^1$, and

$$E_n^{(1)}(f)_{\infty} \le \|f - p_n\|_{\infty} = \left\| \int_0^x (f'(y) - p'_n(y)) \, dy \right\|_{\infty}$$
$$\le \|f' - p'_n\|_{\infty} = \|f' - q'_n - E_{n-1}(f')_{\infty}\|_{\infty} \le CE_{n-1}(f')_{\infty} \,. \tag{13}$$

Despite all the above, it was recently proved by I. A. Shevchuk [12] that (11) is not true for $p = \infty$. Namely, there exists an absolute constant C_0 $(C_0 = \frac{1}{200})$ and a function $f \in C^1[0,1] \cap \Delta^1$ such that

$$E_n^{(1)}(f)_{\infty} \ge C_0 E_{n-1}(f')_{\infty} .$$
(14)

Thus, in a sense, (12) is the best possible estimate of this type. If $p < \infty$, then the rate of approximation deteriorates even further, and even the estimate (12) is no longer valid. The following is a consequence of Theorem 1.

Corollary 6. For any $n \in \mathcal{N}$, $k \in \mathcal{N}$, 0 and <math>A > 0 there exists $f \in C^{\infty}[0,1] \cap \Delta^k$ such that

$$E_n^{(k)}(f)_p > A E_{n-k}(f^{(k)})_p .$$
(15)

Another corollary of Theorem 1 is the fact that one can not have the estimate

$$\mathcal{E}_{r,n}^{(k)}(f)_p \le C\omega_2(f^{(k)}, 1)_p, \qquad 0 (16)$$

for k-monotone spline approximation, where

$$\mathcal{E}_{r,n}^{(k)}(f)_p := \inf_{s \in \mathcal{S}(r,n) \cap \Delta^k} \|f - s\|_p.$$

Thus, the following result on monotone spline approximation in L_p , $1 \le p \le \infty$ is the best possible in the sense of the orders of moduli of smoothness. (In the case k = 1 and 1 it was also recently proved by X. M. Yu and S. P. Zhou [17].)

Theorem G (monotone spline approximation). The following estimates are valid:

$$\mathcal{E}_{r,n}^{(1)}(f)_{\infty} \le C n^{-1} \omega_{r-1}(f', n^{-1})_{\infty}$$

if $f \in C^1[0,1] \cap \Delta^1$ and $r \geq 2$ (D. Leviatan and H. N. Mhaskar [9]),

$$\mathcal{E}_{r,n}^{(1)}(f)_p \le C n^{-2} \omega_{r-2} (f'', n^{-1})_p,$$

if $f \in L^2_p[0,1] \cap \Delta^1$ $(1 \le p < \infty)$ and $r \ge 3$ ([9]),

$$\mathcal{E}_{r,n}^{(1)}(f)_p \le C n^{-1} \omega(f', n^{-1})_p,$$

if $f \in L_p^1[0,1] \cap \Delta^1$ $(1 \le p < \infty)$ and $r \ge 2$ (C. K. Chui, P. W. Smith and J. D. Ward [1]).

$\S 2$ **Proofs**

Proof of Theorem 1. We now construct the counterexample described in Theorem 1. This counterexample is a modification of the one used in the proof of Theorem 2 of [8] (see also Theorem 1 of [7]).

Let $n \in \mathcal{N}, 0 < \varepsilon \leq 1, A > 0$ and 0 be fixed, and define

$$f_{\xi}(x) := \int_0^x \int_0^{x_1} \dots \int_0^{x_{k-1}} \left(\xi x_k - \ln(x_k + e^{-\xi}) - \ln\xi\right) \, dx_k \dots dx_1$$

K. A. Kopotun

,

$$= \frac{1}{(k-1)!} \int_0^x (x-y)^{k-1} \left(\xi y - \ln(y+e^{-\xi}) - \ln\xi\right) \, dy \,,$$

where $\xi \geq 1$ will be chosen later. Clearly, $f_{\xi} \in C^{\infty}[0,1]$, and it is easy to check that $f_{\xi}^{(k)}(x) = \xi x - \ln(x + e^{-\xi}) - \ln \xi \geq 0, x \in [0,1]$. Suppose that the assertion of the theorem is not true, *i.e.*, that for

Suppose that the assertion of the theorem is not true, *i.e.*, that for every $\xi \geq 1$ there exists a polynomial $P_{\xi,n}(x) = a_0 + a_1 x + \ldots + a_n x^n \in \prod_n$ such that $P_{\xi,n}^{(k)}(0) = k! a_k \geq 0$, and

$$\|f_{\xi} - P_{\xi,n}\|_{L_{p}[0,\varepsilon]} \le A\omega_{m}(f_{\xi}^{(\nu)}, 1)_{p}.$$
(17)

Now, note that there exists a constant C_0 which depends only on p, ν and k, such that

$$\omega_m(f_{\xi}^{(\nu)}, 1)_p \le C_0.$$
 (18)

Indeed, if $\nu = k$ (which is possible only in the case $m \ge 2$), then

$$\omega_m (f_{\xi}^{(\nu)}, 1)_p^p = \omega_m \left(\left(\ln(x + e^{-\xi}) \right), 1 \right)_p^p \le \left\| \ln(x + e^{-\xi}) \right\|_p^p$$
$$= \int_0^1 \left| \ln(x + e^{-\xi}) \right|^p \, dx \le \int_0^2 \left| \ln x \right|^p \, dx \le 1 + \Gamma(p+1) \,.$$

If $\nu > k$, then

$$\omega_m (f_{\xi}^{(\nu)}, 1)_p^p = \omega_m \left(\left(\ln(x + e^{-\xi}) \right)^{(\nu-k)}, 1 \right)_p^p \le \left\| \left(\ln(x + e^{-\xi}) \right)^{(\nu-k)} \right\|_p^p$$
$$= (\nu - k - 1)! \left\| \left(x + e^{-\xi} \right)^{k-\nu} \right\|_p^p \le (\nu - k - 1)! \int_0^1 \frac{dx}{x^{(\nu-k)p}} = \frac{(\nu - k - 1)!}{1 - (\nu - k)p}$$
eines ($\nu - k$) $p = 1 \le 0$. New using the estimate

since $(\nu - k)p - 1 < 0$. Now, using the estimate

$$\left\| \int_0^x (x-y)^{k-1} \ln(y+e^{-\xi}) \, dy \right\|_p \le \int_0^1 (1-y)^{k-1} \left| \ln(y+e^{-\xi}) \right| \, dy$$
$$\le \int_0^1 \left| \ln(y+e^{-\xi}) \right| \, dy \le \int_0^2 \left| \ln y \right| \, dy = 2\ln 2 \,,$$

together with (17) and (18), we have

$$\left\| \frac{1}{(k-1)!} \int_0^x (x-y)^{k-1} \left(\xi y - \ln \xi\right) \, dy - P_{\xi,n}(x) \right\|_{L_p[0,\varepsilon]} \le 2^{\max\{1,1/p\}} (AC_0 + 2\ln 2)$$

and, therefore (see Lemma 7.3 of [10]),

$$\left\| \frac{1}{(k-1)!} \int_0^x (x-y)^{k-1} \left(\xi y - \ln \xi\right) \, dy - P_{\xi,n}(x) \right\|_{L_\infty[0,\varepsilon]} \\ \leq C \varepsilon^{-1/p} 2^{\max\{1,1/p\}} (AC_0 + 2\ln 2) =: C_1 \,.$$

Now, applying Markov's inequality, we get

$$\left\| \xi x - \ln \xi - P_{\xi,n}^{(k)}(x) \right\|_{L_{\infty}[0,\varepsilon]} \le \varepsilon^{-k} n^{2k} C_1$$

and, in particular, $\left| \ln \xi + P_{\xi,n}^{(k)}(0) \right| \leq \varepsilon^{-k} n^{2k} C_1$. Therefore, choosing $\xi = \exp\{\varepsilon^{-k} n^{2k} C_1\} + 1$ we get $P_{\xi,n}^{(k)}(0) < \varepsilon^{-k} n^{2k} C_1 - \ln \xi < 0$, thus, obtaining a contradiction.

Proof of Theorem 3. Let $\xi \leq n^{-2}/4$ be a parameter which will be chosen later. For $x \in [0, n^{-2}]$ we define

$$f_{\xi}(x) := \begin{cases} x\xi^{-1}, & x \in [0,\xi], \\ 1, & x \in [\xi, n^{-2}/2], \\ n^{-2}\xi^{-1}/2 + 1 - x\xi^{-1}, & x \in [n^{-2}/2, n^{-2}/2 + \xi], \\ 0, & x \in [n^{-2}/2 + \xi, n^{-2}]. \end{cases}$$

Now, let $f_{\xi}(x) := f_{\xi}\left(x - [xn^{-2}]n^{-2}\right)$ for $x \in [n^{-2}, 1]$. Clearly, $f_{\xi} \in AC[0, 1]$. Let us denote $\mathcal{Y}_1 := \{x \in [0, 1] : x - [xn^{-2}]n^{-2} \in [\xi, \frac{1}{2n^2}]\} = \bigcup_{i=0}^{n^2-1} [\frac{i}{n^2} + \xi, \frac{i}{n^2} + \frac{1}{2n^2}], \mathcal{Y}_2 := \{x \in [0, 1] : x - [xn^{-2}]n^{-2} \in [\frac{1}{2n^2} + \xi, \frac{1}{n^2}]\} = \bigcup_{i=0}^{n^2-1} [\frac{i}{n^2} + \frac{1}{2n^2} + \xi, \frac{i+1}{n^2}]$ and $\mathcal{Y}_3 := [0, 1] \setminus \{\mathcal{Y}_1 \cup \mathcal{Y}_2\}$. Then $f_{\xi}(x) = 1$ if $x \in \mathcal{Y}_1$, $f_{\xi}(x) = 0$ if $x \in \mathcal{Y}_2$, and $|f'_{\xi}(x)| = \xi^{-1}$ if $x \in \mathcal{Y}_3$. Hence, $\|f'_{\xi}\|_p^p = \xi^{-p} meas\{\mathcal{Y}_3\} = 2n^2\xi^{1-p}$. At the same time, since every polynomial P_n of degree $\leq n$ has not more than n-1 points of monotonicity change, there exists an interval $[a,b] \subset [0,1]$ of the length at least 1/n such that P_n is monotone on [a,b]. In turn, this implies the existence of an interval $[\alpha,\beta] \subset [a,b]$ of the length 1/(2n) (in fact, $[\alpha,\beta]$ is [a, (a+b)/2] or [(a+b)/2,b]) such that either $P_n(x) \geq 1/2$ or $P_n(x) \leq 1/2$ for $x \in [\alpha,\beta]$. Suppose that $P_n(x) \geq 1/2$, $x \in [\alpha,\beta]$ (the other case is treated similarly). Then

$$|f_{\xi} - P_n||_p^p \ge \int_{\mathcal{Y}_2 \cap [\alpha,\beta]} |f_{\xi}(x) - P_n(x)|^p \, dx = \int_{\mathcal{Y}_2 \cap [\alpha,\beta]} |P_n(x)|^p \, dx \\ \ge 2^{-p} meas\{\mathcal{Y}_2 \cap [\alpha,\beta]\} \ge 2^{-p-1} n(n^{-2}/2 - \xi) \ge 2^{-p-3} n^{-1} \, .$$

(In fact, using more precise calculations one can show that $||f_{\xi} - P_n||_p^p \ge C_p$.) Finally, it is sufficient to choose

$$\xi \le \min\left\{n^{-2}/4, \left(2^{-p-4}A^{-p}n^{-Bp-3}\right)^{1/(1-p)}\right\}$$

in order to complete the proof of the theorem. \blacksquare

References

- 1. C. K. Chui, P. W. Smith and J. D. Ward, Degree of L_p approximation by monotone splines, SIAM J. Math. Anal., **11**(3) (1980), 436-447.
- R. A. DeVore, Degree of approximation, Approximation Theory II, Academic Press, New York, 1976, 117–162.
- 3. R. A. DeVore and D. Leviatan, Convex polynomial approximation in L_p (0 75 (1993), 79–84.
- R. A. DeVore, D. Leviatan and X. M. Yu, Polynomial approximation in L_p (0
- 5. Z. Ditzian, A note on simultaneous approximation in $L_p[-1,1]$, 0 , J. Approx. Theory, to appear.
- 6. Z. Ditzian, V. H. Hristov and K. Ivanov, Moduli of smoothness and K-functionals in L_p , 0 , Constr. Approx., to appear.
- 7. Y. K. Hu, K. A. Kopotun and X. M. Yu, On positive and copositive polynomial and spline approximation in $L_p[-1,1]$, 0 , manuscript.
- K. A. Kopotun, Uniform estimates of convex approximation of functions by polynomials, Math. Notes, 51 (1992), 245-254.
- 9. D. Leviatan and H. N. Mhaskar, The rate of monotone spline approximation in the L_p -norm, SIAM J. Math. Anal., **13**(5) (1982), 866–874.
- P. Petrushev and V. Popov, Rational Approximation of Real Functions, Cambridge University Press, Cambridge, England, 1987.
- I. A. Shevchuk, On coapproximation of monotone functions, Soviet. Math. Dokl., 40(2) (1989), 349–354.
- 12. I. A. Shevchuk, One example in monotone approximation, manuscript.
- I. A. Shevchuk, Approximation by Polynomials and Traces of the Functions Continuous on an Interval, Kiev, Naukova Dumka, 1992.
- O. Shisha, Monotone approximation, Pacific J. Math., 15(2) (1965), 667-671.
- A. S. Shvedov, Orders of coapproximation of functions by algebraic polynomials, Math. Notes, **30** (1981), 63–70.
- X. M. Yu and Y. P. Ma, Some notes on monotone approximation and convex approximation, J. Nanjing Normal University, 1 (1988).
- X. M. Yu and S. P. Zhou, On monotone spline approximation, SIAM J. Math. Anal., 25(4) (1994), 1227–1239.

Kirill Kopotun

Department of Mathematical Sciences University of Alberta Edmonton, Alberta Canada T6G 2G1 kopotun@approx.math.ualberta.ca