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_ Abstract

Some estimates for unconstrained and convex polynomial approzximation in the uniform metric are obtained.

These results are given in terms of the Ditzian-Totik moduli of smoothness w3 (oM 4 o(x)) ™Y, 0<A

. 2 % . . . .
<1 with g(z)= v 1—2z°. The construction of the approzimating polynomials does not depend on A,

1. Introduction

Let IT, denote the set of all polynomials of degree not exceeding » and ¢(z), = 1 — 22,
Recently, Z. Ditzian and D. Jiang™®! proved that for every function f(z) € C[—1,1]and 0<
A< 1 there exists a sequence of polynomials p, € II, satisfying

[f(x) = £, ()| SC(r,Da(f yn~ 1 (0! + p(2))), ¢))
where o3 (f,0): = «f3(f,8,[— 1,1)) is the Ditzian-Totik modulus of smoothness in the uni-
form metric, which is given by (see [2]) .

Gfi0,[ab]: = sup | B2 Nl cpapy

and
- o r : . r
o= g(_l)(iJf(x+(?_:)?)' if xﬂ:—z—’?e[“’b]s
0, otherwise
is the symmetric rth difference.
This result bridged the gap between pointwise estimates in terms of the usual modulus of

smoothness o (f,n™! 1 —2* + n?) (the case A = 0), which were studied by A.F.
Timan, V.K.Dzjadyk, G.Freud, Yu. A. Brudnyi (see [6], for example), and uniform
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estimates in terms of &, (f,n1)(A=1), which were obtained by Z. Ditzian and V. Totik [2.
Chap. 7].

It was shown by Z. Ditzian, D. Jiang and D. Leviatan™* that for 7 = 2 the quantity ™'
+ ¢(z) in (1) can be replaced by ¢(x), and the result can be extended to shape preserving
polynomial approximation in C[— 1,1].

Theorem A [4, Theorem 1.1]). For f€C[—1,1] and 0<CAKC], there exists p, € I,
with p,(£1)=f(Z1) such that :

[f(z) — b, ()= C(A)af;(f,ﬂ_lsﬂ(:f)l_") . — PRes 1, (2)
where C(R) independent of n and f. Moreover, if f is monotone or convex , or both, P, can be
chosen to be monotone or convex or both, respectively. The choice of p, may be made independent
of A

For A= 0 Theorem A was proved by R. A. De Vore and X. M. Yu" in the monotone case
and by D. Leviatan" in the convex one, For A = 1 it was proved by D. Leviatan"'*!, An
immediate consequence of the work of A, S. Shvedov'®) is the fact that estimate (2) is not
correct with the moduli aJ:,A and wf;l for monotone and convex approximation, respectively.

Thus Theorem A leaves open the case concerning the estimate of the rate of convex poly-
nomial approximation in terms of the w} modulus. the main goal of the paper is to close this
gap (see Theorem 1).

It would also be natural to assume that constants in the estimates (1), (2) change “ con-
tinuously” while A changes from 0 to 1. This would imply that they can be replaced by those
independent of A. However, it does not follow directly from the proofs in [3,4] as one of the
central moments there was the employment of the following equivalence of the Ditzian-Totik
modulus and K - functional ([2,Theorem 2.1.1]):

there exists such a constant M which depends on A that

M7 e (fo) <K, 2(f,0) SMd(f,0),
where K, 2(f,¢)=inf (|| f—g | +£ 1147 .

gec’
In this paper we strengthen estimate (1) proving, in particular, that constant in (1) can

be replaced by C = C(r) (see Theorem 4).

The following theorem on convex approximation is the main result of the paper.

Theorem 1. For a convex function fEC[—1,1] and every n=>2 there exists a convex
polynomial p, € I, such that for any A€ [0,1] and z€ [—1,1]
@) — £,(2) | S Ch(fyn™ (7t + @@ ™. 3
If fEC' [—1,1], then the following estimate also holds;
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|/ (z) — p ()| < Cﬂ;‘(f'; LTl e(x)) ), (4)
Moreover, for fE€C:[—1,1] there is also the following estimate
Phlc gEol HE oL 5 Cws,,*(f", nlnt + p(a)) ), (5)

where C are absolute constants.

It is known that n7! 4+ ¢(z) in (3) can not be replaced by ¢(z).

For A = 0 and A = 1 Theorem 1 was proved in [9]. Also, in the case A = 0 a weaker
version of the inequality (3) was obtained by Y.Hu, D. Leviatan and X.M. Yu!”? who
showed that for a convex function f there exists a convex polynomial p, € IT, such that || f—
?, oo SC&(fyn ).

The following corollaries immediately follow from Theorem 1.

Corollary 2. For a nondecreasing function f € C[—1,1] there exists a nondecreasing
polynomial p, € IT, such that for any A€ [0,1] and z€[—1,1]

|f(z) = p,(2) | SChr(f, n " (n™" + p(x))™H).
If fEC[—1,1], then the following estimate also holds
[ e) =gl < CopXfim (L plad) "),

Corollary 3. For a nonnegative function f € C[—1,1] and every n==>2 there exists a

nonnegative polynomial p, € IT such that for any 0<A<1
ite) =2 (o)l Cai(f, n il oz} 7)), 7 & [—1:1].

Note that the proof of Theorem 1 is not heavily based on the fact that f is a convex func-
tion (of course, we need this condition to construct a convex approximating polynomial).
Namely, the same proof works if we drop the condition for f and #, to be convex. Moreover,
in that case we are able to replace, respectively, o, wf; y and w3, by oz, 3 and 7% with
arbitrary r > 3.

Theorem 4. For an integer r,vr=>3 and arbitrary function fE€C[—1,1 ] there exists a
sequence of polynomials p, € I, , n=2r—1 satisfying for any A€ [0,1] and z€[—1,1]

|f(z) = £, (@) | S CEOG S, n7 (07! 4 oz)) ). (6)
If fFEC'[—1,1], then the following estimate also holds _
|F'(2) = p,42) | SCEYT (S, v (7! 4 p@d)'="), (7N
Moreover, for f€C?[—1,1] there is also the following estimate
) = p. (2} | <TG, o S o(@)) 1), (®)

It might be of interest to compare the last result with the following theorem on simultane-

ous approximation of a function f and its derivatives, which was recently proved by Z. Ditzian,

D. Jiang and D. Leviatan™.
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Theorem B. Suppose s and r aré integers, 520, r=1, 0<AK 1 and [ (z)E€C[—1,
1]. Tﬁen, for n=>r-+s—1 there exists a polynomial p, € II, satisfying :
|79 (2)— pP (@) L CGrys (1 @)) 1 p (fP 0 (! 4 2)) ),
og;és,xe[—l,ll (9
Theorem 4 is stronger than Theorem B in one sense and weaker in another. The main its
disadvantage is that we have simultaneous approximation only up to the second derivative. Sec-
ondly, even fors = 2 estimates (9) for j = 0 and 1 in some sense are better than (6) and (7)
near the endpoints of [—1,1], i.e., whenz € [—1, =1+ 2]U [1 —n?,1]. On the
other hand, forz & [— 1, — 1+ n 2] U [1 — n ?,1] estimates (6) — (8) are better (in
a sense) than (9) for 0 < i< 2 and any s > 2. Also, as a minor advantage of Theorem 4 we
mention that constants in (6) — (8) do not depend on A.
Remark. Estimates (3) and (6) can be improved near the endpoints (see e. g. ,[15]
and [9, ineq. (8)]). However, since it is known that 4, (z) in the estimate by & (f,4, (z)),
)
n

generally, can not be replaced by ¢(z)n™! for r Z> 3 (it can be replaced by +

-2 = ; : s
Vl—nwﬂf“’s/’ which is less interesting quantity than ¢(z)n™'), we omit the discussions of
this subject.

As already was mentioned, the methods of the proofs of Theorems 1 and 4 are the same
(in fact, they are not different from the one used in [9]). A complete proof of Theorem 4 is
given in Section 5. In Section 6 we discuss what changes are necessary in order to make ap-

proximating polynomial #, convex in the case for convex f and r = 3.
2. Definitions and notations

Throughout this paper we use the following notations (cf. [8,9,13—15D):

I:=[—1,}_]; A”(IL_—__R—I '{ = +ﬂ_2, .1'617-'

s i ik oy i :r]
Ty = CO8 —, J=0sn; x;; =cos -ﬂ——z—“
pice IR TR f__'if] i 2 L R
z —»—L‘OS{n 4m'lf}<2’ g =cos| = — ), 1= o
I_,- ) [Ij,l‘juij, hﬁ =l ool i= 1_:?;,

ty =ikz =7 )~2cos’ 2narcosz + (z — z,)7 *sin’ 2narcosz

t, is the algebraic polynomial of degree 4n — 2 (see [6,13]):
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Let
! ¢ r
H,— (E.c,#): i I—l(y 85 x_,') (If—l ag y) r;l(y)dy!

then

(v = z) (g, = )t (p)dy
H,- &5 ’
is the algebraic polynomial of degree 2/(2n — 1) + € 4 { + 1, which is well defined because

Q¢ @) = =1,n

I, (§,%, 1) is never zero (see Proposition E).

_ 3 1, if.z € [a,b],
We also denote ¥;; = ‘l“““‘“";"l““_}:?,“ and Y[a,b](z); = 0, otherwise.

Ob\rlously. all the above definitions depend on n, To emphaswe this in the last section we will
use the notations z;,, , h;,, etc.

L(t,f3t, 41,44, ;) denotes the Lagrange polynornial, of degree not exceeding v,
which interpolates the function f(z) at the points ¢ sty 9" slygy

C are positive absolute constants which are not necessarily the same even when they occur
on the same line,

A,, i € N denote constants which are lirger than 1 and remain fixed throughout the pa-
per.

In order to emphasize that the constant C depends only on the parameters Uy sty U, We
will use the notation C(v, ,++,7,).

Without further mentioning the inequalities ;., <3k, and 4, (z) <h; <54, (z) forz €
I, are used.

3. Some propérties of o), 0<SA<T] moduli of smoothness

Lemma 5. Let [a,b]C[—1,1] be such that b—a<<A, 4 (a) where A\ =1 is an absolute
constant, Then for any integer r there exists a constant C(r) such that for any A€ [0,1] and =z
&f] | % |

C(r)'d (f,4,(x),[a,b]) < 2 (f,n 4, (=)', [a,b])
L C(N (f,4,(x),[a,b]). (10)

Lemma 5 shows that moduli 2 (f, n 24 (2)' %, [a,b]) are equivalent for all 0 <A< 1
if [b—a|~4,(z), z € [a,b]. Of course. neither of the inequalities in (10) is true if we drop

the last condition. For examaple,
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w,(f,171) X Ca(f 4, (2)),
since ,(fyn ') ~n"! and @ (2,4, (z)) ~ 4, (), and
a,(f 171 # Calf 14, (2)),

since o, (Vz + 1, 71y ~n 1 and w( Jr+1, A (z)) ~ JA ().
Proof of Lemma 5.  First of all, for every z € [a,6] the quantities 4, () and A, (a) are
equivalent, i. e, '
A4 (a) <4, (2) < 4,4, (a) (1D
with some absolute constant A, which depends only on 4, .

This is a consequence, for example, of the following inequalities
A@D=V1-2@+& - 20 +1 < 12 + 24 A @' 402 <

<A@ + 24,4 @' <3 A, 4@
and, using ya 4 b > \/: — ymax{— 56,0} fora>0and a 4 b >0, and recalling that A,

>3,
A@=V1—@+2@ —Zn ' + 12> A @) — Jmax(2 — Z,00n! >

> A (@) —min{ JZA A (2), 1 — @} >

: Lo
= 213 ) a).
/mm{l 2A,+1’4A1+1}A"()

Now we are ready to prove (10). For convenience the following two cases are considered

separately .
DN =11+ JUN =% 1D=g
and
(i) [a,6] N A= 1, = 1A JU 1 —r 21D £ 4.
Case (i). In this case [a,b] is separated from the endpoints of I and, thus, ¢(z)n™! <
4, (z) < 2¢(x)n"! for any = € [a,b].
Taking this into account one has together with (11)

b <48 <8 <k
Hence the following estimates are valid for = € [a,b]
G A @ T [a0D = s [ &uf ey <
o<h<n "4 ()
< sup I fgp*f I Elat]

ﬁ,_—.a(m_(aa)“gAza_(a)
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= su - -y f < oosup A =
ﬁ{a"‘gf“’ I 4 Ya @ I Ccla,b] Hiéﬁﬁ(a) I ‘A k £ Cla,5]

= mr(fv-Aga.. (a) . [ﬂ,b]) “-<-~ C(")‘J (f;‘fl,, &r] ,[d,b])_
Similarly, the inequalities in the other direction can be written as follows:
‘Jp“(fyn_l‘ﬂ,, (I)l_a![asbj) :/> sup || 4:"?‘a_(a)—*5 f || Cla,b] ;

F<A A (@)

= sap | Ar(zs. )*‘ﬁf I Cla,b] =
F<aTla @ :

= f,%A;M,(a),[a,b} > C(d (f, 4 (), [a,b]).

This completes the proof of (10) in the case (i).
Case (ii). We assume that [a,6] 1 [— 1, — 1 4+ 2] # & and note that for the other
case the considerations are analogous.
Inequality (11) implies that n™2 < 4, (z) < 54,n" % for every « € [a,b] and therefore,
i (fon [ (2) ", [a b < sup . I A:¢* £ Cla,5] <

0<h<sA T

< sup ; I ‘QAZH*‘af | Claddic} oo 4 [ &1 Cla,t] =

o<hg542n*‘ Ri=54," Agzsazn‘
= o (f,2542n 2,[a,b]) < C(N (f,4,(2),[a,b].
Thus it remains only to verify (10) in the other direction. At this point we would like to re-

mind that by the definition the difference 4 f(z) = 0if z + %17 & [a,b], 7 = 9(z). This

implies the inequality || & f || cp, 9 = szlg & f(xz)| for any set S. Hence we have

i(fon 8 (@), [a,6]) sup | B f lepun =
o<hn' T
> sup sup | &gt f(2) | 2

’lg'!l_-g €S ={z|r— i—}lﬂ(z_nB—*l 1

V

sup sup
B e %h”‘z"*’g%n“’ r€S={x|z—Fh=~1)

& f(x)].
The last inequality is valid because of the following implications:

2E€S=>1—2> %hzf‘z—”:;

R
h.l.lrf(2—tl) S qD(I)J' } %h.x/(z—.u

}whzﬂz-- D

and therefore for every z € S the inequality ho(z)* > > = h holds. Now using again

the definition of the symmetric difference we conclude that if
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£ & SN {e]z+ 2h € [a,6]] (n fact, 2]z £ T € [ap]) 5,

then 4 f(2) = 0 and thus || &f ¢y = | &S | ¢rarsy- Finally we have
2 (f o A ()R, [ayb]) > sup I &S ey = sup I 265 cpas
ﬁg—n ﬁg—n
= w’(f,—n 2 day b]} C(nd (f,4, (z),[a,b]).

Thus the proof of (10) is complete.
It is well known (see [2, Theorem 4. 1. 2], for example) that the Ditzian-Totik moduli
of smoothness have the following basic property
d (fyp2) < C(r D) (e + 1) Ja(fi0). (12)
In our proof we need some inequality analogous to (12) but with a constant independent of .
Such an inequality is gi;;en in the follc;wing lemma.
Lemma 6. For any integer r there exists a constant C=C(r) such that for every t>0, 0
gzg_i and p=>1 the following inequality holds
o (fy ) SCHE s (f ). (13)
Proof. We give a simple combinatorial proof of (13). Obviously, it is sufficient to
prove it in the case when g is an integer. To emphasize this, instead of x we write n. The fol-

lowing identity which can be easily proved by induction is used:

i #—11 o8
£ f@ = Sy A x+ i+ i - D, (14)
i]==0 i =0
We write
“f‘(f nt) = SUP || 4'.‘-{ “cu) =¥ sup ||Ah f”cu)
It follows from the definition of the symmetric dlfference that if the inequality 1 — |z| =

l»‘wzrt;ﬂ(:r)’ does not hold, then & Af(:r) = (0. Therefore, if ~2—hnr = max {Q—|=zHa -

)V} =1, then | &, 2f ey, = 0. thus
da(fynt) = sup sup |4, f(2) |

oh<min{e, 2} 2,1 |z|=Lhnrg)
Now fixing # and z such that 0 <h < min{t,;z;} and 1 — |z| = -%—hnrgp(:rjx and using (14)

we have
e
4,2/ (@) < _Z 2

For brevity we denote 8(z): = z + (11 i ad g} Ton

1)?’

b4f

:r—i—(z—l— cti ]h;v( )‘] (15)

Q’_:z_l_)jj he(z)*. Suppose we showed
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that ¢(x)* < A( /1 — 6(z)?)* with A independent of z and h (The best situation is when A

,_

in this inequality is an absolute constant. We show its validity with A = 3 \/ n , which will do

in our case).

Thus we would have

825 6GE)| < sup WD B syt B | <

o<h<min{t, 2} 2,1~ ‘r];%fmrp(:}l
< su sup AL ] —=saeyy A 2 f(y) L da(f,AD,
oskgr y:—?(::e[ 1,1] |na-h P 0@2: | &2/ 9D leay < AL edl)
Together with (15) it would yield the estimate |4, 1/ (2) | < W ef3(f,At) and, therefore,

da (f ynt) '3 (f, A1),
If A=3 \/? then we have the following inequality for all ¢ > 0
dp(font) A (f,3 n D),

- - 5 - Th : e
Now denoting £; = 3 v/ n ¢t and choosing n so that n; = 3 isan integer one has o (f ,nt)

< (97 )'m'A(f,f), which is the inequality (13) with C = ¢, Thus to complete the proof of

the lemma it is sufficient to show that ¢(z)* < 3 \/_( V1 — 6(z)?) for h and z such that
the following holds.

0 hnr < 2 (16)

and
1 =1zl = —fmr;o(:c)* (17)

We write

b 2

—[ || + hen = 1)r;o<x)*)z.

Note that if z #+ 1, then it follows from (17) that ¢(z)*~* > %fmr. Now let us consider the
following two cases:
@ %ﬁnr < wa P < 3har

and
T €5 e < 3har,
Case (i). Inequality (17) yields

=] + %ﬁ(n — Drpa) = |z| + %"”fwr‘ lhw(x)‘ e —*f%'f)‘
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It follows from the inequality (16) that

5
1=9G@P>1= [ e %hrgo(:c)*

> -l-hr;o(x)" =

= -;J—hqu(:c)J‘[ = lhrp(:c)*

2
= —hrga(z)?-ga(x)* %3 hrqo(r)?‘((ihrn) ! 5”(;) ;

Hence

o(z) < (6n(1 — 6PN L3 n <\/1—a<:e>2)*.

Case (ii). Inequality p(z)*™*

J 2o gtad
3hnr
l—r"] 1—2_1—2

; 3 > 6?? .

1—5(1)221—(|I]+?h(n—1)r¢(:c)“) >1 {| ]—J——hn

=1-{ Rl #1255 51— e+

The proof is now complete.
4. Auxiliary statements and results

Let us recall that a spline s(t) of degree m has the defect & (1 <<k <<m + 1) at a knot ¢,
if functions s(¢), s'(£),++,s" % (¢) are continuous at ¢ and the derivative s % (¢) is dis-
continuous at this point.

Lemma C ([10,Proposition 2. 3.11). T spline s(t) of degree m which has defect k,
(1<k<m+1) at the knots t,(i=1,2,+yN—1) (8, <t, <++<ty) is uniquely presented in the
form

s(t)=icu(r t)-I—EEa(t—t)’”’ it
v=0

i=] j=0

where

Av)
s (%)
£ o= 0

g UI
g, = (0@t + 0) — "2 @, — 0))/(m — D1,
!—29 s d ]. 1—019 k,-'_l-

Using Lemma C and sufficiently good polynomial approximation of the truncated power

. v=20,1,",m

functions (¢t — ¢, 24 ~’ we are thus able to construct the polynomial which approximates the

spline s(t).
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Proposition D (see 1[13514], for example). ~The following inequalities hold ;
min{(‘r = Iq)-_zs(x e E')_z} gt}(:‘:) *-~<.‘ max{(r Y x?).-z'p(x T “I'j)—Z}‘ Z e I?
t,(z) < qu’h_ v E Bty :

i - = 3 PRE n
:r—-x> >%j,xj_l——x}.>—}1—hf,xj—-xgg-gh.whzfejgg,

e —:.:>"12—’> &EhS xj>%hj,:c?-—;€%hjwhzle}>—-
max{(xw—xf)"'z,(x—xj)_?‘ Hﬁ:i([x—-x}.l-i-hj)_z, z & L

and _
(| =z |+ - <@ <4 10|z =, | +4)7% z€L
Proposition EC,  The foi!aw:ng inequalities are valid ;
C(#)_l hr2#+5+§+1 é H_,; (E,g"u) .=

1
: =J (v — 2, (z;_, — 9 (9)dy < P o] O g LA

where &, ¢ and p are integers satis fying £220, (=0 and p=9(E+E+1D.
The remaining statements in this section are generalizations of Lemmas 1 and 2 in [9].

Lemma 7. The following inequalities hold ;

1
1—5, <] QELWO<1= 3, (18)
<
Q&8 m () | S CWEF = EhT, (19
1%,(2) = Q (6,8, (@) | SC@E T, (20)

where 4=29(6+t+2), z€1 and 1;(2):=1[%;,11(2).

Proof. The lemma was proved in [9] for ;(1,0,10), €;(0,1,10) and Q,;(0,0,9)
(see [9,Lemma 17). Since the method of the proof for @, (§,§, ) is exactly the same we omit
the details in this paper.

It follows from the inequality (18) that for j = 1,7 — 1one can choose &, € [0,1]so that
for polynomail

R, ,(z); =R, ,(&,{,)(x): =

= r @Q .5, + (1 =), (6,5, (),
—il
the following equality occurs:
R}»‘J(l) ~— 1 g IJ;-

Let R_,-.,,, (I): = Rj_m (Ea;a.u) (I): = (x = xj)ij'o (e!g’f"‘)(‘r) y M = 0
Lemma 8. The following inequalities hold
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TEETR S SN 3T L o) comiminaia " (21
Pt~ R TR RS CWE S T (22)
[mimi= = 2, )57 2= R (@) | < CW i ag (23)

where &1, m=>1, p=9¢+{+m+2) and

(z = 2, 0x1)2), . 2if v 2D,

0, otherwise,

Proof. The case m = 1 for (§,¢,») = (1,0,10), (0,1,10) and (0,0,9) was

considered in [9,Lemma 27]. In the general case the considerations are similar and, therefore,

v e
(I .I‘j)+; e

we omit the details, :
Now the inequalities (21), (22) and (23) for m > 1 follow from the case m = 1 and the

estimates
|z =2 — R 1 (D) | = |7 — 1 "= | (= =) — R (@) <
ST ST :
By £2) —m(z Sz ] P
=fz—z VRl tdm ~ DESF "R ley=8z—2 1 L[
Sm—-1Dlz—gz 2y |R;o(2) — (z — 7)), | + |7z — 1 |m_I IR;.O(I) - %@ | <
L CQuyWer—tt—mpn=t
Mo @ =mlns =D " | =
=i(r = "R (@) 4 2m — D@2 )1TR 5@ T
+(m—1)(m—2)(z —z,)" R, ((2) =m(m — Dz —z,)a7% | <
Sz =4[ R @) | + 20m — Dz — 7, "R, ((2) = ()| +
Fm = D=z =2,V R (&) = (=), | €
T i el

respectively,
5. Unconstrained polynomial approximation

Following the ideas of [17] we construct a spline S(z) of degree <7 — 1 which sufficiently
approximates the function f = f(z), f € C(I), that is :
[f(z) = S$(2) | S C(da(fn 24 (2)' ), z € L (24)
Then we approximate S(z) by an algebraic polynomial so that
|S(z) = #,(2) | SC()f (fyn 4 (2)' ™), z € L (25)
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This proves the estimate (6).
Construction of the spline

Let8(x); = Liz &, iz 1.--',11,._,‘{._1), €L, j=r—1, r—1,nend S(2), = L€xfsz,_,,
z,_, e 4x,) for the other z. Then S(z) is a spline of degree r — 1 which satisfies (24). To
show this we need the well known Whitney's inequality ; .
g(@) — L(x,8 5ty sty + hyersty + k) | SCRISH (g,hy [t 08, + £ D),
where g € C[t, 2, + kh] and = € [1,,, + kh]. Using Lemma 5 and the same considerations
as in [9, ineq. (57)] one has the estimate
|f(z) = $(2)| SCS(f,4 @), [2558; 11 D S
SCrne (i L e@) M- €1,

which is the inequality (24).

Remark. In fact, without loss in the rate of approximation instead of the spline S(z) for
z € 1, we could choose §(z); = Lz, /32,7, 47,4y
— | <C() (e jis “not far from ” 7). This observation is used in Section 6 for the proof
of Theorem]. :

Taking into account that the spline S(z) is of degree r — 1 one gets the following analytic

) where 7 is an index such that |;

representation (see Lemma C) which is used for construction of the approximating polynomial.

r—1

S(@) = 3 -5V (— D+ 1 +

v=0
n— 1 =
+ > Z S Sl et A (SR N OIS Pl S o) (e e €T
= = 1—‘})7
Construction of the polynomial
Let
r—1
£ - ;};S‘"’(— DG+ 1+
v=0 $
e g} E (r })l (Sr—l‘—j) (I'. + 0) — S'('_i_f}(r'. i Rf.r—j—z('r)' = E i

This polynomial is well defined sincer —j—2>r —k —12>0.
Let us estimate |, () — S(2) |, = € 1. First of all, using Markov’s and then Whitney’s
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inequalities we have
ISPz 4 0) = SUTITP (5, = 0) | =
= |L"TV Rz, g g7 e m ) T (g fy ) Ty | S
SR II (R
X | L(.r,f;x,.,:r‘._] !'"!Ii—r+1) BT L(‘I’fi_xivﬂ yEeat T
< C(")hs_r+l+j"f(f!4. (z;) ?[Ii+1 WA Ty :I) (26)

‘Now we choose ¢, € and { so that the conditions of Lemma § are valid. For example, let p =
36rand 06, <1,

The inequalities (26), (21) and (10) imply the estimate

,1',-_‘,_‘_2) I Clepz,_ ] <

n—1 is_l
i 1 (r—1—1) o ) D g
|2,(2) — S |< ,.El Z} ges g A (7, +0) — 8P (z; — 0)
o N B e ):L_f_] ]g
n—1 L
g Z C(?’)h(._,+j+lwr (ngn (I!-), [I‘-_l_l ,x-__,+1 :I)g’?orh: el \“<\
i=1 j=0
n—1
SOy GIT A (o e S
i=1
=1
KO D i (f on A () )W,
i=1

Taking into account Lemma 6 and also the inequalities (see [13,14])
& (y) < 44, (z)(|z — 3| + 4,(2))
and
2|z = 3| +4@)> [z =y + AW > F(z =y + 4G, s €1,y €1
we have
S (o2 (2
< @ (fia WA @Ur =2 | + 4 () 22) =

by e I-‘F F Ap.(:"') (1—»‘)/2}
4, (z) J

— wrl
P

<

f,n“A.(r)‘““( 4 |
i

GO r(1—2)
~.._<‘_‘C(?')( 4. |~1' ‘z‘l(j')ﬂh(x)] w;‘ (f,ﬂ'_‘a.ﬂn(f)lhk) g

<C(r)[ |z — % + 4@-))“““
e

4. (z)
SCOYT(fn '8 (@) ™), zel @n

H(fon 4 ()7 <
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Now using (27) one has the following inequalities

n==1
|5, (2) = S(2) | COIG(f i A () H DT <
f=]

LCOHR S A @)D, €L
This completes the proof of (25) and, therefore, of (6).
For the proofs of the inequalities (7) and (8) we need the following proposition.
Proposition F  (see [15, Lemma 1. 4.2]). For the function FEC (232 . )s kE
N,j=r— 1>k the following inequality holds
|fP @) = LY (@, f335,2;_15008 40 | <
< ekl Pndis| i@y s f3d D T@IT.2 - | (28)
Recalling the construction of the spline S(x), that is, '
S(x)y =Lz, fyxpya,2 oy 0 )y € Iy ji= ri—=1,n,
Sy S g Lr ) 31 )+ for theother o,
and using Proposition F we conclude that for z € I
|2 () = 5@ | S COHd " (F7 4 () [7;,2,, 1, D
wherev = 1 or 2 when f € C*(I) or f € C*2(I), respectively, and
[:rj ’Ij-—r+lj: o [y St Ui P i
Hence it follows from Lemma 5 that
|2 () = 82 (0) | S Clrydr (1%, RrAEY ) el
It remains to estimate | p” (z) — 8" (z)|.
It follows from (26) that for f € C"(I) the estimate
IST1P (2, + 0) — $T10 (g, — )| <
< C(r)hf’““"""af_” (f® 4, (I,-)!I;H U--u I!_MH)
is valid, and therefore by (10) :
|S(r—1—;‘J (z, + 0) — SU=1-D (g — 0] <
L C(k " Fltite v (0 —J.AH(I)I I o= terd
Now using Lemma 8 and the same arguments as for (27) we obtain the following estimate for
any r € i
[P (2) — §(2) | <

E—

et

n—1}

=1 T SR
(r‘—l—})lls (£, +0) =S fx, — O X

i=1 j=0

.,

X |RD. ., (x) — g

ar"
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ne k1

2 Zc(r)h~ r+:+1+vmr " (f —141(1 y- A)q,eorhr 5
i=]1 j=0Q
L COF” (f” ,n 24, (2)' *)2 v <

i=1
KCEOAF"(f 24 (2) ).
Therefore for anyz € I and v = 1 or 2
G ) < CO)dF P o R ).

The proof of Theorem 4 is now complete.
6. Convex polynomial approximation

Theorem 1 would be proved as long as we chose a convex spline S(z) to be constructed so
that for z € I, S(z) = L(z, f3%;,7;_,,%;_,) with |7 — j| < const and convex polynomial
#, (z) in the same form as the polynomial in the proof of Theorem 4.

Such spline and polynomial are presented in [9].

Namely,
S(z) = max{L(z,f;7;,%;_;,%;_4)s LGz, f32,,, 47,2, ) ),
z €1, j=2n—1,
§(z) = L(z,f;z,,7,,1,), zel,
and

S(I) s L(x;f;x,,s-r,,_l "In——z)'-' i e In, :

or in its analytic representation

S FLO D 862D+ 1)+ S" INE+H 1)+

+ EAh(x ), —(z— )} +

i=Z,n—1
:‘.EIUIEI

+ D) Bihy,G@—1z),+ @ —z)1},
senun
where 4, = [z 7,5 3f] — [2y2_ .7, _,3f),i=2,n—1and B, =— A fori =
[P
There exists such an absolute constant M that if n, ; = Mn, and i is chosen so that =, v

= z;, then the polynomial

)= f(—1D + 3%+ DGE F D+ %S"(— RXCE L)
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+ > A{hR o 5,0(0,0,9(@) — R, ,(1,0,10)(2)} +
;Tez‘lﬂu_ull

+ 2 BilhyiR,0(0,0,9 (@) =Ry, (0,1,10)(2))
;EII‘I'EJ_If[

is convex on 1.
All the necessary proofs and definitions (for example, z, € 1 |J I1I and z, € ITJ III) can
be found in [9].
Now the same arguments as in section 5 can be used to verify the inequalities (3)— (5).
Acknowledgement.  The author is indebted to Prof. Z. Ditzian for useful discussions of

the subject.
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