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Simultaneous Approximation by Algebraic Polynomials 

K. Kopotun 

Abstract. Some estimates for simultaneous polynomial approximation of a function 
and its derivatives are obtained. These estimates are exact in a certain sense. In particular, 
the following result is derived as a corollary: 

For f ~ cr[-1, 1], m E N,  and any n _> max{m + r - 1 ,2r  + 1}, an algebraic 
polynomial Pn of degree __< n exists that satisfies 

]f(k)(x)- p(nk)(f, X) I ~ C(r,m)Fnrmk(x)r-kfom ( f(r), Fnrmk(X)), 

for 0 < k < r and x ~ [ - l ,  1], where w v ( f  (k), 3) denotes the usual vth modulus of 
smoothness of f(k), and 

Fnrmk (X) := 
{ n-1 ~ / I  - - x  2 , if 

(1--X2)(r-k+l)/(r-k+m)(-~) (m-I)/('-k+m) if 

Moreover, for no 0 < k < r can (1 - X2)(r-k+l)/(r-k+m)(1/n2) (m-I)/(r-k+m) be 

replaced by (1 - xe)~kn e~k-2, with c~k > (r - k + 1) / ( r  - k + m). 

xE[-- l+n-2,1-n -2] 

x ~ [--1,--1 + n - 2 ]  

U [1 - n -2, 1]. 

1. Introduction 

We begin by recalling some standard notations. The symmetric mth difference of a 
function f is given by 

A~(f ,x ,[a ,b]):-~ ~ ( - 1 ) m - i f ( x - 2 ~ q - i r l )  ' 
o 

m 
if x 4- ~-r/~ [a, b], 

otherwise. 

The Ditzian-Totik modulus of smoothness is (see [5] and [6]) 

Am co~(f, 3, [a,b]) := sup [[ hv(x?(f,x, [a,b])llCla,b], 
0<h56 
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where ~0(x) :=  ~/1 - x 2 and [a, b] C [ - 1 ,  1]. Note that if)~ = 0, then 

coT(f, 3, [a, b]) = :  wm(f ,  3, [a, b]) 

is the usual modulus. Also, we denote the set of  all algebraic polynomials  of  degree < n 
m by I-In, and we let A . ( x )  : =  n - l ~ i  - - x 2 q-- n -2 and c%~(f, 3) :=  w ~ ( f ,  6, [ - 1 ,  1]). 

The following results on simultaneous approximation of a function and its derivatives 
in terms of  the usual moduli of smoothness are known. 

T h e o r e m  A. Let f �9 C r [ - 1 ,  1]andm �9 N. Thenthereexistsanintegerno = no(r ,m) 
such that for  any n > no there is a polynomial Pn �9 Fin satisfying, for  0 < k < r and 
x �9 [ - 1 ,  1], 

(1) If(k)(x) - P~(k)(x)l _< C(r, m ) A n ( x ) ~ - k w ~ ( f  (r), An(x)) .  

T h e o r e m  B. Let f �9 c r [ -1 ,  1]andm �9 N. Thenthereexistsanintegerno = no(r, m) 
such that for  any n > no, there is a polynomial Pn �9 Fin satisfying 

(2) If(k~(x) -- P(nk)(X)l < C(r, m) corn f(r),  , 

forO < k < min{r - m + 2 ,  r} a n d x  �9 [ - 1 ,  1]. 
Moreover, the condition k < r - m + 2 cannot be removed. 

Remark. In Theorem A, the exact lower bound on n is no = m + r - 1. Indeed, it is 
easy to see that for n = m + r - 1, Theorem A is valid (choose Pm+r-I to be a Lagrange 
interpolation polynomial  of degree < m + r ,  1), and that for n < m + r - 1, (1) is 
no longer true (consider f �9 1-Im+r_l). At  the same time, the exact lower bound on n 
in Theorem B, as far as we know, is not found (at least not for all r and m). It follows 
from Corollary 2-3.1 in Section 2 (see also [22]) that n0 < 2r + 1. Also, i t i s  not difficult 
to see that (2) implies f ( k ) ( + l )  = P~k)(-4-1) for k = 0, 1 . . . . .  fc + [(r - fr where 

fc : =  min{r - m § 2, r}, and, therefore, no > max{m § r - 1, 2fc + 2[(r - / c ) / 2 ]  + 1}. 
Thus, in the case 3 _< m < r + 1 the question about the exact value of  no in Theorem B 
remains unanswered. 

The following is a brief history of  proofs of Theorems A and B. Estimate (1) with 
k --- 0 and m = 1 was obtained by A. F. Timan [28] in 1951. In 1955, A. O. Gelfond [10] 
proved Theorem A with n -1 instead of An(x) and m = 1. In 1962, R. M. Trigub [29] 
showed the validity of Theorem A in the case m = 1 and remarked that the same proof 
works for m = 2 (see also V. N. Malosemov [23]). In 1963, Yu. A. Brudnyi [1] (see also 
[2]) extended Timan's  result showing that (1) is valid for k = 0 and arbitrary m �9 N. In 
1966-67, S. A. Telyakovskii [27] and I. E. Gopengauz [12] independently proved (2) in 
the cases m = 1, k = 0 and m = 1, 0 < k < r ,  respectively. In 1967, I. E. Gopengauz 
[13] proved Theorem A in general. In 1975, R. A. DeVore [4] being the first to prove 
estimates involving (.om(~/T-- x2 /n)  with m > 1, obtained (2) for m = 2 and r = 0. 
Eight years later, in 1983, E. Hinnemann and H. H. Gonska [16] proved the case m -- 2, 
r >_ 0 and k = 0 in Theorem B. In 1985, they [11] also showed the validity of  (2) for 
the cases k = 0, m < r + 2 and 0 < k < r - m, m _< r. In 1985, X. M. Yu [30] showed 
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that (2) is not true i f k  = 0 and m _> r + 3. Finally, W. Li [22] in 1986 and R. Dahlhaus 
[3] in 1989 independently settled Theorem B as stated. 

W. Li [22] also proved the following result showing that the obtained estimate is the 
best possible in some sense (we refer the reader to Theorem 11 of [22] for details). 

T h e o r e m  C [22]. L e t . f  E c r [ - 1 ,  1[ a n d m  > r + 2 .  Then, for  any n > m + r - 1, 
there exists a linear operator Qn: c r [ - - t ,  1] V-+ Fin such that 

(3) If(k)(x) - Q ~ ) ( f , x ) l  

) <_ C(r, m) m (r), + (nv/1 _ X2)(r+2-k)/m , 
n 

f o rO < k < r a n d x  ~ [ - 1 ,  1]. 

The following result is an immediate corollary of Theorem C. 

Corol la ry  D. Let f ~ C r [ - - l ,  1] and  m E N. Then there exists a sequence o f  linear 
operators Qn : c r  [ - 1 ,  1] W-~ Fin such that f o r  every O < k < r and x ~ [ - 1 ,  I], 

(4) If(k)(x) _ Q~k)(f, x)l < C(r, m) (.om(f (r), An(X)). 

Indeed, i f m  > r + 2, then ~/I  - x 2 / n  + 1/n2(nl~/'-f-~-x2)(r+2-k )/rn < CAn(x )  and, 
therefore, (4) is valid. For 1 < m < r + 2, (4) follows from the case m ----- r + 2 and 
the inequality o)r+2(f (r), 3) _< C(r)com(f  (r), 3). Estimate (4) is not as strong as (2), 
but, on the other hand, it is valid for all 0 < k < r while (2) is not true in general for 
k > r - m + 2 .  

Recently, the following analog of Theorem B and Corollary D in terms of co~ moduli 
was obtained by Z. Ditzian, D. Jiang and D. Leviatan [7]. 

T h e o r e m  E [7]. For a funct ion  f c C r [ - 1 ,  1], m ~ N and  0 < X < 1 there exists a 

sequence o f  polynomials Pn ~ Fin for  which 

(5) 

and 

(6) 

( ~ )  r-k m (r) -X 1-~. 
[ f ( k ) ( x ) - p 2 k ) ( x ) f < C  c%~(f  ,n  An(x) ), 0 < k < r  

Ip,~k>(x)l < CAn(x)r-k( .o '~ 'x(J  ~ ' -  n - X A n ( X ) l - X ) ,  k > m + r, 

where x c [ - 1 ,  1]. 

Clearly, (5)coincides with (4) when )~ = 0. For m = 1, 2, better estimates than those 
in Theorem E were proved in [7]. 
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TheoremF [7]. For f ~ c r [ - 1 ,  1] and 0 < ~. < 1, there exists a sequence o f  

polynomials  Pn c 1-In such that f o r  all x ~ [ - 1 ,  1], 

(7) I f (k)(x)  P~k)(x)l _< C _ oglox f (r ) ,  n-~. 

f o r l  = 1 , 2 a n d O  < k < r, and 

(8) ip(k)(x)l  < CAn(x)r-kc@z f ( r ) , n - X  , 

for l + r < k < ko, with some ko ~ N. 

(In Theorem 1.2 of [7] it was stated that (8) holds for all k > l + r. This is a misprint 
since the only polynomials such that P(k) (+ l )  = 0 for all k > l +  r are those of  degree 
< r + 1 - 1. One should add the restriction k < k0.) 

Other ~:esults on simultaneous approximation of a function and its derivatives can be 
found in [14], [15], [17], [21], [26], and [31]. 

2. Main Results 

In this paper we  obtain some results on simultaneous polynomial approximation of a 
function together with its derivatives which improve the estimates quoted in Section 1. 
Our proof is different from those employed in the above-mentioned papers (it seems 
that it is closest to the one used by Yu. A. Brudnyi in [2]) and, hence, can be viewed 
as an alternative proof of  Theorems A-E Moreover, not only do we improve the esti- 
mates (1)-(8), but also our construction (see Theorem 2) yields a polynomial P, (f ,  x) 
(more precisely, a linear operator Pn( f ,  x): C r [ - 1 ,  1] ~ YI~), which fits all the above 
cases simultaneously. Furthermore, unlike the polynomials in Theorems E and F, which 
are different for different )~'s, Pn( f ,  x)  is constructed independently of L (for further 
discussions see Theorem 2 and the comment  after it). 

We Start with the following result which is of  the same type as Theorem A, and which 
improves (1)-(8) inside the interval [ - 1 ,  1], i.e., f o r x  E [ - 1  + n -z,  1 - n-2]. 

Theoreml .  L e t r  c N0, m 6 N a n d f  ~ c r  [ - 1 , 1 ] .  Then f o r  any n > r e + r -  1, 
there exists a linear operator Pn( f ,  -): c r [ - 1 ,  1] ~ I-In such that f o r  every 0 < X < 1 

a n d x  ~ [ - 1 ,  1], 

(9) if(k)(x) _ p~k)(f ,  x)l _< C(r, m)A~(x)rk-kw'~ +r-~k (f(r~), n-ZAn(X)l-X), 

f o r  0 < k < r and any rk E No satisfying k < rk < r. 
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Also, the following estimates hold for  every 0 < X < 1 and x ~ [ - 1 ,  1]: 
~-k m+r-? (F) -,k 1-X (10) IP(k)( f ,x ) t  < C ( k ) A n ( x )  oJo~ ( f  , n  An(x) ), 

for  k > m + r and any F E No, O < ~ < r. 

S Note that the properties of the c%~ moduli (see Chapter 6 of  [5]), unfortunately, make 
it impossible to simplify the assertion of Theorem 1 without losing its generality (we 
encounter the same problem for Theorem 2 whose assertion is even more forbidding). 
When )~ > 0, the cases for different rk's and ~'s are independent. This is determined by 
the fact that the inequality 

S ( l l )  w ~ ( g ,  n-ZA~ (x) 1-~) < CA~(x)wS~l(g  ', n-XAn (x) 1-~) 

is not, in general  true if )~ > 0. Indeed, for any 0 < )~ < 1 and s 6 N, 

wsc~ (x s, ~) = s! tnin{~ ~, (2/s)~}. 

Therefore, if g(x)  = x ~ andn  > s/2,  then 

s n - L A  1-~ c%~(g, n(X) ) = C(s ) (n -XAn(x ) l -Z )  s 

and 
oos--l/ t R - x A  ~x.1-L~ ~ t g ,  nt ) ) = C(s ) (n -ZAn(x ) l -X)  s-l .  

Hence, if (11) were correct for )~ > 0, we would have An (x) > C n -  1 for all x 6 [ -  1, 1 ], 
which, of  course, is not true. On the other hand, for )~ = 0 (11) is correct and, hence, the 
assertion of Theorem 1 for 3. = 0 is much simpler (estimates (9) and (10) for rk > k and 
F > 0 follow from the Case rk = k and F = 0). 

C o r o l l a r y l . 1 .  For f ~ C r [ - 1 ,  1],m E N, and any n > m + r - 1, a linear operator 
Pn(f ,  "): C r [ - 1 ,  1] ~ I-In exists such that for  x ~ [ - 1 ,  1], 

(12) If(k)(x) - P(nk)(f, X)I < C(r, m)ogm+r-k(f (k), An(x)), 

for  O < k < r, and 

(13) [P(k)(f, x)t < C(k)An(x)-ko9 m+r ( f ,  An(x)) ,  

f o r k > m + r .  

Corollary 1.1 not only implies Theorem A, but also (12) is better than (I)  since the 
inequality, co m (f ,  6) < C3w m-1 ( f ' ,  3), generally cannot be reversed. 

Our next result is an analog of  Theorems B - F  (i.e., the rate of  approximation is 
estimated by the qu~mtity which ~s zero at the endpoints of  the interval [ - 1 ,  1]) in 
terms of co~ moduli, which improves ( I ) - (8)  near the endpoints of  [ - 1 ,  1] (i.e., for 

x 6 [ - 1 ,  - 1  + n - 2 ]  CI [1 - n - 2 ,  1J). 

Theorem2.  L e t r  c No, m 6 N, ko > m + r ,  a n d f  E c r [ - 1 , 1 ] .  T h e n f o r a n y  
n _> max{m + r - 1, 2r + 1} there exists a linear operator Pn(f ,  '): c r [ - 1 ,  1] w-~ Fin 
such that fo r  every sequence {ak}~,=o C [1/ m, 1], and for  O < )~ < 1 and O < k < r, the 
following inequalities hold: 

(14) If(k)(x) - Pn(k)(f, X)[ _< C ( k o ) A n ( x ) r - k w ~ ( f !  r), n -XAn(x ) l - x ) ,  
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for  x ~ [ -1  + n -2, 1 - n - 2 ] ,  and 

(15) [f(k)(x) -- Pff)(f ,  x)[ < C(ko)n2-Z"~m(1 - x 2 )  r - k+ l - e t km  

x o ) ~ ( f  (r), n-Z((1 - X2)~kn2ak-2)l--X), 

f o r x  ~ [--1,--1 + n  -2] LJ [1 - - n  -2, 1]. 
Also, there exists a constant no = no(ko) such that if  n > no, then for  every 

ko ko {Otk}k=m+r C [1/m,  1], {rk}k=m+r C [0 ,  ko], and for  0 < )~ < 1 and m + r < k < ko, 
operator P~ (f ,  x) satisfies 

(16) IPff~(f, x)[ < C(ko)An~x~r-ko)m r r(r) _ ~ J ~ w  ,n-~A~(x)1-~),  

f o r x  E [ - 1  -}-n -z, 1 - n - 2 ] , a n d  

(17) IPff~(f, x)l _< C(ko)n2(r~-r+k+~-~km~(1 - x2) rk+l-~m 

x co m (f(r~, n-X((1 - x2)C~kn2C~k-2)l-~) ,  qo x 

f o r x  c [ - 1 , - 1  + n -2 ]  U [1 - - n  - 2 ,  1]. 

Even though Theorem 2 looks somewhat formidable (even the case )~ = 0 is rather 
involved), it has some nice applications, and, in particular, all the results from Section 1 
(the direct part of  Theorem B) immediately follow from it. Subsequently we present a 
few corollaries of Theorem 2 for the particular case )~ = 0. To simplify the exposition 
we omit the estimates of the higher derivatives of approximating polynomial Pn (x) (or 
operator Pn (f,  x)) in these corollaries. 

We emphasize one more time (it is already done in the statement of Theorem 2) 
that (15) and (17) are valid for all choices of o~k's and r~'s (which can be different for 
different k's) satisfying 1/m < c~ < 1 and 0 _< r~ < k0. In fact, the upper bound k0 in 
the restrictions on the rk's is not important. We need it only to stress that the r~'s cannot be 
boundlessly large. Any positive integer (say, kl) would do. In that case the construction 
of  Pn (f,  x) and all the constants in (14)-(17) would depend on k l. However, rather than 
introduce one more parameter we employ what is already in use, the number k0. In that 
way we do not over-complicate the statement and, at the same time, it is very easy to 
see that by employing k0 doing so we lose no generality of Theorem 2 (k0 can always 
be chosen larger than kl). 

We also remark that the lower bound on n in Theorem 2, n > max{m + r - 1, 2r + 1 }, 
is exact. 

In addition, the natural question, How sharp are the estimates of Theorem 2, is partially 
resolved in this paper. First, since Theorem 2 (~. = 0, m > r + 2, and Oek = (r + 2 -- 
k) / (2m)  for 0 < k <_ r) implies (3) which cannot be improved in some sense (see 
Theorem 11 of W. Li [22]), then (15) cannot be improved uniformly for all )~ in the same 
sense. More details for the case )~ = 0 are given in Theorem 3. In particular, the negative 
part of Theorem B follows as its corollary. In fact, the proof of Theorem 3 is based on a 
slight modification of the ideas of X. M. Yu [30] which, in turn, were used in the proof 
of Theorem B in [3]. 
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T h e o r e m  3. Let r E No, m c N, and let a > O, ~, g c R be such that ~ + m~ > r + 1. 
Then f o r  every constant K c R, a function f c c m + r - l [ - 1 ,  1] exists such that 

| I f ( x )  - P . (x ) l  
inf max 

P.6I'I,, Ixc[-l+n-a,l-n-2] An(x)r  o)m(f(r), An(X)) 

+ sup I f ( x )  - Pn(x)l / 
xe[-1,-l+n 2]U[l-n 2,1] (1 --x2)C~n2C~-2ro)m(f (r), (1 --X2)~n?') / > K. 

We have the following corollaries of Theorems 2 and 3. 

Coro l l a ry  2-3.1. Let f c c r [ - l ,  1] and m ~ N. Then f o r  any n >_ max{m + r - 1, 
2r + 1} there exists a linear operator Pn( f ,  "): cr[  -1 ,  1] ~ l"I n such that f o r  every 

0 < k < r, the following inequalities hold: 

(18) I f (~ (x )  - Pf f ) ( f ,  x)[ < C(F, m ) A n ( x ) r - k o ) m ( f  (r), An(x) )  

f o r  x ~ [-- 1 + n -2, 1 -- n-2], and 

(19) [f(k)(x ) _ p(k) ( f ,  x)[ < C(r, m)I'nrmk(x)r-kcom(f  (r), I~nrmk(X)), 

f o r x  ~ [ - -1 , - -1  + n  -2] U [1 -- n -2, 1] ,where 

Fnrmk (x) :=  (1 - x2) (r-k+l)/(r-k+m) ( 1 / n 2 )  (m-  l)/(r-k+m). 

Moreover, these estimates are exact in the sense that f o r  no 0 < k < r can Fnrmk(X) 
be replaced by (1 - x2)~kn 2~k-2 with ~k > (r -- k + 1) / ( r  - k + m). 

Corollary 2-3.1 improves the estimates of  Theorem B. First, Fnrmk (X) ~ ~/1 -- x 2 / n  
f o r a n y 0  < k < r + 2 -  m a n d f o r a l l x  c [ - 1 ,  - 1  + n  -2] tJ [1 - n -2, 1]. Second, (18) 
and (19) hold for all 0 < k < r while (2) may not be true i fk  > r + 2 - m. It is also of 
interest to consider the special case m = 1 in Corollary 2-3.1. 

Co ro l l a ry  2-3.2 (m --  1). For a function f ~ C r [ - 1 ,  1] and any n > 2r + 1 there 
exists a linear operator Pn( f ,  '): c r [  - 1 ,  1] W-~ Fin such that f o r  every 0 < k < r and 
x 6 [ ' 1 ,  1], the following inequality holds: 

If(k~(x) - Pf f ) ( f ,  x)l _< C(r)l-'nrk(x)r-ko)(f (r), ~nrk(X)), 

where f'nrk(X) :=  min{1 - x 2, ~/1 - x2/n} .  

Moreover, ['nrk(X) cannot be replaced by min{(1 - x2) a, ~/1 - x2 /n}  with c~ > 1. 

The following result follows from Corollary 2-3.2 by the argument used by D. Leviatan 
in the proof  of Theorem 2 of [21]. 

Co ro l l a ry  2-3.3. Let f ~ C r [ - -1 ,  1]. Then f o r  any n > 2r § 1 there is a polynomial 
Pn c Fin such that f o r  every O < k < r and x E [ - 1 ,  1], 

I f(k)(x)--p(nk)(x)]  < C ( r )  min l - -x2 ,  ~ / l ~ x 2 ] )  En_r(f(r)) ,  

where Es(g) :=  infp, cn, Ilg - esllct-l,13. 
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Corollary 2-3.3 improves the estimate 

[ f (~(x)  - P~(k~(x)[ < C(r)  En_r(f(r~), 

which was obtained by T. Kilgore [17]. 
The most general case in Theorem 2 for ~. = 0 is when c~k = 1/m for all k. Therefore, 

for )~ = 0, Theorem 2 (without (16) and (17)) can be restated as follows: 

Corollary 2-3.4. Le t r  ~ N0, m ~ N, a n d f  E C r [ - 1 ,  1]. Then for  any n > m a x { m +  
r - 1, 2r + 1} a linear operator Pn(f ,  "): c r [  - l ,  1] ~ l'-I n exists such that for  every 
0 < k < r, the following inequalities hold: 

. (20) [f(k)(x) -- P(nk)(f, X)[ < C(r, m)An(x ) r - ko )m( f  (r), An(X)) , 

f o r x  E [--1 + n  -2, 1 - n - 2 ] , a n d  

(21) ] f ( l ~ ) ( x ) - P ( n k ) ( f , x ) l < _ C ( r , m ) ( 1 - x 2 ) r - k o ~ m ( f ( r l , ( l - x 2 ) l / m ( - ~ ) ( m - W m ) ,  

f o r x  ~ [ - 1 , - 1  + n  -2] tO [1 - n  -2, 1]. 
Moreover, for  any }, ~ R the quantity (1 - x2)I/m(1/n2) (m-1)/m in (21) cannot be 

replaced by (1 - x2)an y with ol > 1/m.  

It should be mentioned that (20) and (21) coincide with (3) when k = r and m > r +2 .  
Even though for k < r (3) is weaker than (21), it can be shown (using the Taylor 
expansion) that (21) with k < r follows from the case k = r if P~(k~(4-1) = f(k)(4-1) for 
all k = 0 . . . . .  r. Therefore, for m > r + 2 and large n, the direct part of Corollary 2-3.4 
follows from Theorem C. (Similarly, it can be shown that Corollary 2-3.3 follows from 
Theorem B with m = 1.) 

In the next section we recall some definitions and introduce notations which are used 
throughout the paper. Then following section contains auxiliary results for the proofs 
of Theorems 1 and 2. In Section 5 we separately consider auxiliary results intended for 
the proofs of  the case )v > 0 (therefore, this section can be skipped by the reader only 
interested in the case )v = 0). Finally, the proofs of Theorems 1 and 2, and Theorem 3 
are given in Sections 6 and 7, respectively. 

3. Definitions and Notations 

Throughout this paper we use the following notations (cf. [8], [9], [24]-[26]): 

xj :---- cos( jrr /n) ,  0 < j < n, 

lj := [xj ,x j_l] ,  hj := xj_l - xj ,  l < j < n. 



Simultaneous Approximation by Algebraic Polynomials 75 

(Note that hj:L] < 3hi and An(x) < hj < 5An(x) fo rx  6 Ij.) 

[ x j , x j  +11, if m + r - l < j < n, 
:=  [[Xm+r-t ,1],  if 0 _ < j  < m + r - 1 ,  

w h e n m + r - 1  > 0 ,  and 

Ij ,  if l <_ j <_n, 
:=  Ii, if j - - - 0 ,  

when m + r - 1 = 0 (i.e., when m = 1 and r = 0). Also, 

COS 2n arccos x | / sin 2n arccos x "~ 2 
t j (x )  :=  x + \ x - ~ j j  / 

is the algebraic polynomial of  degree 4 n -  2, where 2j :=  c o s ( j z r / n -  rr/2n),  1 <_ j <_ n, 
x ~ :=  c o s ( j z r / n  - rc/4n),  1 < j < n / 2  and x ~ :=  c o s ( j z r / n  - 3zr/4n), n / 2  < j < n. 
This polynomial was introduced by V. K. Dzyadyk (see also I. A. Shevchuk [26]) and 
extensively used in [9], [241-[26], and [18]. 

Let 

f i nj(n, t,, ~ ) :=  ( 1 - y 2 ) Q j ( y ) U d y ,  
1 

Tj(n,/z, ~)(x) :=  Flj(n, # ,  ~)-I  (1 - y2)~t j (y)Udy,  
1 

We also denote 

and 

and 

Rj,m(n, 1.6, ~ ) (x )  :=  (x - x j )mTj (n ,  Iz, ~ ) (x ) .  

1, if x > x j ,  
Xj(X) :=  0, otherwise, 

hj 
~ f j  ~  

[x-xjl +hi '  
and note that ~pj < 1 for all x ~ [ - 1 ,  1] and 1 < j _< n. 

L (f ,  t; tl . . . . .  tv+l) is the Lagrange polynomial of  degree < v which interpolates the 
function f at the points tl . . . . .  &+l. 

Finally, all C are positive constants which are not necessarily the same, even when 
they occur in the same line. In order to emphasize that C depends only on the parameters 
P 1 . . . . .  P k the notation C ( p  I . . . .  , vk) is used. 

4. Auxiliary Statements and Results 

The following proposition contains simple but important inequalities which are used in 
almost all proofs later on. 
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Proposition 4. The following inequalities hold for  all x ,  y E [ -1 ,  1] and 1 ~ j < n: 

(22) 

(23) 

(24) 

(25) 

(26) 

(iX -- Xjl q- hj) ~2 <_ tj(x) < 4 .  103(Ix - xjl q- hj) -2, 

An(y)  2 < 4A.(x)  (Ix - yl + An(x)), 

([x - yl + A,(x)) /2  _< Ix - Yl + An(y) _< 2(Ix - y[ + An(x)), 
l + x  1 - x  

<_ C O l  1 a n d  - -  <_ C 7 ~ f  1, 
1 --}-xj_ I 1 --Xj 

c~p~an(x) < an(xj) _< c ~ f ~ a , ( x ) ,  

and 

(27) • ~ < C, for  any o~ > 2. 
i=1 

Proof. Estimates (22)-(24) and (27) are verified by straightforward computations, and 
can be found in [24]-[26], for example. To show the validity of (25) we write 

x - x j _ t  Ix - x j - l l  CV~7~, l+-----~x - - 1 + - - < 1 +  _< 
1 + x j _ ~  1 + x j - i  - hj 

and 

xj  - x ix - x j l  1 - x  _ 1 +  < 1 + - -  _ ~ f l .  
l - - X j  1 - - x j  --  hj 

The right-hand side inequality in (26) follows from (23) and (24) since 

4An(x) Ix - xjl + A , ( x )  An(Xj) <_ 
% ( x j )  

< 8%(x)lX -x~l + An(x1) < C ~ f ~ A , ( x ) .  
- % ( x j )  - 

Finally, using the last inequality, we have 

An (x) 2 
An(xj) > 4(}x - xjl + A.(xj)) 

a.(x) a,(x) an(x;) C ~ 2 a n ( x ) ,  
4 An(xj) Ix -- xjl + An(xj)  - 

which is the left-hand side inequality in (26). 

The following proposition is needed to describe the behavior of the polynomials 
Tj, Rj.m, and their derivatives (see Lemmas 6 and 7 below). To some degree it is a 
generalization of the inequalities (17.8) and (17.10) of [26]. 
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Proposition 5. Let # ~ N and ~ c No be such that lz > ~ + 1. Then the following 
inequalities are valid for any 1 <_ j <_ n: 

(28) C(iz) < FIj(n, #, ~)(1 + xj_D-~(1 - xj)-~h y~-I < C(l~). 

Proof, The estimates (28) can be proved using the method from [24] and [26] (i.e., 
by estimating separately each of the following three parts of the original integral: f~x], 

xJ-' f~ , ). However, there is a simpler proof. Since the function (1 - yZ)~tj (y)~ f~j , and 1 
does not change sign in [ -1 ,  1], then (22) implies 

(l + xj-1)~(1-  xj) ~ ~ 1 (l + xj-T)~ -- xj) 

Now, 

l=Ij > 

>_ 

>_ 

1 

(ly - xjl -4- hi) 2udy =: I=lj" 

f x j  ~-hj/3 1 -  y2 ~ 1 
;+hj/3 ( (I + xj--T)-~ -- Xj) ) (,y - xj] + hj) 2u dy 

i x J - ' - h J / g ( ( l + x j + h j / a ) ( 1 - X j _ l + h j / 3 ) ) ~  1 dy 
+h;/3 (1 ~ - - - ~ j ) -  (2hi) 2u 

Ch gU+~ ' 

and, hence, the left-hand side inequality in (28) is proved. For the proof of the right-hand 
side inequality (using (25)) we write 

f _ l ( h  j )-2~ l h j ) 2 u d Y  (-Ij < C 
- ~ lY - x j ]  +hj  (lY - x j l  + 

1 hj 2/z-2~ 

= c f_l ( ] y _ x j i + h j  ) h72Vdy 

< Ch721zl~176 ( hj x 2p.-2~ dt < Chj-2/x+l. m 
\ t  + h j /  

Lemma 6. Let #, ~ ~ N be such that # > ~ + 1, and let 1 <__ j < n be a fixed index. 
Then for the polynomial 

Tj(X) := Tj(n,/s ~)(x) = I-Ij(n,/z, ~) -1 (1 -y2)~tj(y)Udy, 
1 

of degree < 4nl* the following inequalities hold for x 6 [ -  1, l]: 

( 1 -  X 2 ~-k+ll~2#_7k+7hfk 
(29) ITj(k)(x)l < C(#) (1 +x-j_-[)--~-xj),l 

and 

(30) 

l < k < ~  

1 - 

]Tj(x) -- Xj(X)[ < C([s (1 +Xj - l ) (1  - xj) ) ~r2#-~-I 
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I Tj(x)I 
1 -- x 2 )~  

< C (1 + X j - l ) ( 1  - x j )  tj(x)tXh~-I 

_<< C (l § Xj_I)(1 -- Xj) ~2~hfl' 

which is inequality (29) with k = 1. 
For the proof of  (30), we consider two cases: x < xj and x > xj. First, for x < xj 

(using (29) with k = 1 and the second inequality in (25)) we have 

IZj(x) - Xj(x)l = ITj(x)l = f l  Tj'(y)dy 

C 1 1-+--xj--1/ l y - x j l + h j /  h f ldY  

( f l + x  h u-~- l  
< C 1 +xj_l (xj - y + hi) -2u+~ dy 

< C (1 §  --Xj)  ~r2#--~-l" 

Similarly, for x > xj we write 

fx l dy ITj(x) - )~j(x)l = l1 - Tj(x)[--= Tj'(y) 

l ( 1 - - y ~  hj ~21z-~ 
< - C f x  \ ~ x j l  ( ] y - x j [ + h j /  h f ldY  

( 1 -  x "~h}U_~_ | (y - xj + hi) -2u+~ dy 
<- c 2 1 _ x j  / 

_< C (1 +xj_~)(1  - x j )  

This verifies inequality (30). 
Thus, it remains to prove (29) for 1 < k < ~. We need the following inequality of 

V. K. Dzyadyk [8] (see also [9] and [26]) for algebraic polynomials: 

For any Pn ~ 1-In and any s c R the inequality 

(31) IIAn(x)S+~P~)(x)ll 5 C(v)lla~(x)SG(x)ll 

holds for any v E N, where [r " II :=  II �9 Ilcl 1,1~- 



Simultaneous Approximation by Algebraic Polynomials 79 

Now the fact that tj (x) is an algebraic polynomial of degree < 4n - 2, together with 
(31) and (23), implies 

( A n ( x )  ) 2 
IlAn(x)~+zt)~)(x)l[ < CllAn(x)2tj(x)lI < C Ix - xjl --}-hi 

< C 4An(xj)_~(lx--xj_l +A__~(xj)) < C hj < C. 
-- (ix -- xjl + hj) 2 - Ix - xjl -t- hj - 

Therefore, for any v > 1 and x e [ -1 ,  11 (using (23) and (24)) we have 

(32) [tj(~)(x)l < CA~(x) -~-2 < c ( [ X - X j l Z A n ( x ) ~  ~+2 
_ _ _ An(xj) 2 / 

< c ( I X - x j l + h ; )  ~+2 -v - -2  hy hj < C(~jhj) -v-2. 

Using the last inequality, we have, for 1 < k < ~, 

I]j(n, I z, ~)lrJ~/(x)l = 

< 

< 

< 

I[(1 - x2)  ~ t i ( x ) ' l ( k - 1 )  I 

v=O P 

) C E  k - 1  k - l - v  
~=o v z=o 1 [(1 - x)~](~-'-~-O[(1 + x)~] q) 

N E I'}i')(X)''''} iv)(X)ltj(X)tx-v 
i I ,:..,iv>_O 

i l + : . - + i v = u  

k-1 k-l-v 
C E  E (1 - -  X ) ~ - k + l + v + l ( 1  + X.) ~-I  

v=0 1=0 

X E I(~jhj) - i ' -2"'" (Ojhj)-i"-2l(Ix - xjl + hi) -2/~+2v 
i I , ,iv>_O 

i l + - , + i v = u  

k-1 k-l-v 
C E E ( 1 -  x)~-k+'+"+'(l -1- x)~-t~"-5"hf 2"-~. 

v=0 l=0 

Therefore, Proposition 5 yields 

k-lk-l-v( 1__X 2 )~-k+l ( l ~ V + l  
[Tff)(x)[ < C Z Z (1 +xj_l) (1  -- xj) ] 

v=O l=0 

x ( l l + X  ~ - 1 - 1 (  h j ) k - , - , - t  
1 -~-Xj_I/ 
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Now, using (25), inequalities 1 - xj > h j, and 1 § xj - l  > hj, and the fact that 7tj < 1, 
we have 

1 - -  x 2 \ ~ - k + l  k - l  
Tff ~ ( x ) )  S-" ~2~,-6~-~+1 h-k  < c (1 J 

v = 0  

( l - x 2  ) ~-k+l pjZU_Tk+7h~_k. 
_< c + x j _ ] ) 7  - xj)  

The proof of (29) is complete. 

L e m m a  7. Let 1 < j < n be a fixed index, and let mo, k0,/z, ~ E N be such that 
> 2k0 and It > 10~ + too. Then for any 0 <_ m < mo the polynomial Rj,m(X) := 

Rj,m (n, #,  ~)(x) = (x - xj)mTj (n, IZ, ~)(x) satisfies the following inequalities for x E 
[ - 1 , 1 ] a n d 0 < k < k 0 :  

(33) 
1 - x 2 ~ / 2  

[R),km) (x) -- [(x -- xj)m](k)xj(X)[ < C(Iz) (1 -q- xj_~)(1 - xj),] r 

Note that [(x - xj)m] (k) ~- 0 for k > m + 1. Therefore for these k, (33) becomes an 
estimate of the kth derivative of the polynomial Rj,m. This observation is used in the 
proofs of (10), (16), and (17). 

Proof.  We have 

(k) 
Ig),,~(x) - [(x - xj)m](k)xj(X) I 

[ [ (X  - -  x j )ml (k ) (T j (x )  -- Xj(x))I + Z ]Tj(V)(x)[ I[(x - xj)m](k-v)l 
v = l  

= Sl  (x)  + & ( x ) .  

Note that if k > m + 1, then St (x)  ~ 0. For 0 < k < m (using (30)) we have the 
following: 

S1 (X) ~ C i x _ x j l m - k (  1 - - x a  ) e  
(1 + X j _ l ) ( 1  - -  Xj) ~21z-~-I  

<_ c ( l  + x j _ ~ ) ( 1 -  x j )  " " " 

In order to estimate S2(x) (using Lemma 6) we write 

S2(x )  <_ c y]~ (1 + x j_ l ) (1  - x j )  
v = m a x { l , k - m }  

v'jl[r x - xj  I m-k+v 
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1 - x 2 ~ 1 2  k 1].r2#-~-2~b'2U-7v+71ltk-m-vhm-k 
Z wj Vj "t'j j _< c (1 + ~ _ S ) U - x ~ ) /  ~=max~l,k-m~ 

( l--X2 )~/21~r21z_~._5k_m+5hT_ k 
< C (l+x-~'--1-)7-xj)  " 

Combining the estimates for $1 (x) and S2(x) together, and keeping in mind that ~pj _< 1, 
we obtain (33). �9 

For the proof of Theorem 1 we need the following lemma. 

Lemma G. Let  r ~ N0, m 6 N, and f ~ c r  ( ~ ), where  j > m + r - 1 is a f i xed  index. 
Then the fo l lowing  inequali t ies hold f o r  all  0 < k < r: 

(34) [ f (k )  (x)  -- L (k) ( f ,  x;  x j ,  x j - I  . . . . .  x j  . . . .  +1)1 

< C(r,  m)ogm+r-k( f  (k), h j ,  ~'), x E ~ .  

Proof. For r = 0, the assertion of the lemma immediately follows from the well- 
known Whitney inequality. For r > 0, it was proved by I. A. Shevchuk (Lemma 1.4.2 of 
[26]). �9 

The following consequence of Lemma G is used for the proof of Theorem 2. 

Corollary I-I. Let  r E No, m 6 N, and f ~ Cr(~.), where j > m + r - 1. Then the 
fo l lowing  inequalit ies hold f o r  all  0 < k < r: 

(35) [f(k)(x) -- L (k ) ( f  , X; Xj, x j_  1 . . . . .  Xj_m_r+l) [ 

< C(r,  m)h~-kogm( f  (r), h j , / ~ ) ,  x E ~. 

Also, for the proof of Theorem 2 we consider Lagrange polynomials concurrently 
with Lagrange-Hermite polynomials when interpolating f and its derivatives at 1 (or 
-1) .  

Lemma8.  Let r 6 No, m E N, f E Cr(/l).  Let  L ( f , x )  be the Lagrange-Hermi te  
interpolation po lynomia l  o f  degree < m + r - 1 such that L ( f ,  x j )  = f (x j ) ,  1 < j < 

m - 1 and L(k ) ( f ,  1) = f(k)(1), 0 < k < r. Then the fo l lowing  inequali t ies h o l d f o r a l l  
O < k < r a n d x  ~ [ 1 - n  -2,1]: 

(36) if<k)(x) _ / ( k ) ( f ,  x)l 

< C(r,  m)(1 - x)r-k09 m (r) (1 -- X) 1/m 

Changing variable x to - x  (i.e., considering the symmetric case), we immediately get 
the following result for/~(f,  x) :--- L ( f ( - x ) ,  - x ) .  
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L e m m a  9. Let  r e No, m c N, f E cr ([n) .  Let  L ( f ,  x )  be the Lagrange-Hermite  
interpolation polynomial  o f  degree <_ m + r - 1 such that L (f ,  x j )  = f (x j ) ,  n - m + 1 < 

j < n -  1 a n d / , ( k ) ( f , - 1 )  = f ( k ) ( _  1), 0 < k < r. Then the fo l lowing inequalities hold 
f o r  all O < k < r and x c [ - 1 , - 1  + n-2] :  

(37) If(k~(x) - L(~)(f, x)l 

( (~)(m--l)/rn in) 
<_ C(r, m)(1 + x)  ~ ko)m f(r), (1 + X) 1/m , . 

Proof of  L e m m a  8. In the proof  it is convenient to denote the interval [1 by J .  Then 
IJI --  max{1 - Xm+r-1, 1 -- xlJ.  Also,  let 

L( f , x )  :~-- L(f,X;Xm+r_ 1 . . . . .  xo) 

be the Lagrange interpolation polynomial  of  degree < m + r - 1 (it is important that 
L ( f ,  x )  has the same degree as L ( f ,  x))i First, we prove that fo r /~ ( f ,  x) an inequality 
similar to (35) is satisfied (i.e., to obtain the estimates of  local approximation near +1  
of  the same type as (35) we can use either Lagrange or Lagrange-Hermite  interpolation 
polynomials).  The following identity is valid: 

f ( x )  -- L ( f ,  x )  -- f ( x )  - L ( f ,  x )  - L ( f  - L ( f ,  .), x) .  

Using the Taylor formula, we write the polynomial  [~( f  - L ( f ,  .), x )  in the form 

r 

L ( f  - L ( f ,  .), x )  = Z ( i ! ) - l ( f ( ~  - L I ~  1))(x - 1) i + (x - 1)r+lPm_2(f ,  x),  
i=0 

where P m - z ( f , x )  E Fire-2 if m > 2, and P m - 2 ( f , x )  =-- 0 if m = 1. Now f ( x j )  = 

L ( f ,  x j ) ,  1 < j < m - 1, imply L ( f  - L ( f ,  .), xj) = 0, 1 _< j _< m - 1. Therefore, 

r 
~_~( i ! ) - l ( f ( i ) (1 )  - L(O( f ,  1))(xj - 1) i + (xj - 1)r+lpm_2(f ,  x j )  = O, 
i=0  

for 1 _< j _< m - 1. Using the fact that n -2  _< Ixj - II -< I JI _< Cn -2 (C = 3 m+~ will 
do), we have, for 1 _< j < m - 1, 

]Pm-2(f, Xj)I~ Cn2r+2 ~ If(i)(1) -- L(i ) ( f ,  1)In -2i, 
i=0  

and, applying Corollary H, we have 

r 

IPm-2(f ,  xj)l  <_ Cn  2r+2 y ~  n-Zr+2io9 m ( f (r) ,  n 2, j ) n - 2 i  

i=0  

< Cn2o)m(f (r), n -z, J). 

Now, since 

m l( H x )  Z -- Xi 
Pm-2(f, x )  = - -  Pm-2(f, xj), 

j = l  \l<i<m--l,i#j Xj ~ 
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the estimate 

IPm-z(f,  x)[ < CnZwm(f  (r), n -a, J) 

follows for all x ~ J .  This implies 

I L ( f  - L ( f ,  .), x)l < Cn-2rogm(f (r), n -  2, J), x ~_ J. 

Applying the Markov inequality we have 

I I / / ~ ) ( / -  L ( f ,  .), x)ll _< C I j l - k l l L ( f  -- L ( f ,  .), x)]l < Cn-2r+Zko)m(f (r),/,/-2, j ) .  

Therefore, together with (35), we have 

if(k)(x) _ ~(k)(f, x)l <_ ]f(k)(x) -- t (k) ( f ,  x)[ + IL(k)(f - t ( f ,  .), x)l 

< Cn--2r+2kcom(f (r), n -2, J) ,  x E J. 

Now we improve the last inequality near 1 using the fact that ~(k)(f, 1) = f(k)(1), 
0 < k < r, and the techniques developed in [9] and [26]. First, we consider the case 
k = r. Denoting f(r)(x) - L(~)(f, x) by g(x), we conclude that 

[g(x)[ _< cogm(f  (r), n -2, J) = corn(g, n -2, J) ,  x c J, 

since L(~)(f, x) is of  degree _< m - 1. Now, using the equality g(1) = 0, we have the 
following for any x 6 [1 - n -2, 1]: 

[g(x)[ ---- [g(1) - g(x)] _< w(g, 1 - x, J). 

Therefore, if m = 1, then (36) is proved for k = r. I f  m _> 2~ then using the Marchaud 
inequality, we have 

(38) Ig(x)l < w(g, 1 -- x, J) 

) < C(1 - x )  u-2com(g, u, J) du+lJ[- l[ lg[[c( j)  
\ , / 1 - x  

(f'" ) < C(1 - x) u-2wm(g, u, J) du.-[-[J[-loAm(g,[J],J) 
\ d  1--x 

< C ( 1 - x )  f l f l u - 2 c o m ( g , u , J ) d u .  

The last inequality is valid since, for all u < [J], we have [Jl-mo)m(g, [J], J) < 
Cu-m(.om (g, u, J) .  Therefore, 

f l  IJI u-Zo)m (g, U, J) du 
- - x  

Estimate (38) implies 

f 
lJI 

C IJl-mum-2c~ [JI, J) du 
d 1 - - x  

>- ClJl-loJm(g, IJI, J) .  

f 
lJI 

]f(r)(x) - L(r)(f, x)[ < C(1 - x )  u -2wm( f (~ ) , u , J )du .  
l--x 
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Now let us denote  f2x : =  (1 - x ) l /m(1 /n2 )  (m-l)/m. Clearly,  1 - x < f2x _< n 2 < I J[  

for  any x E [1 - n -2 ,  1]. Hence,  

(fl I f ( r ) ( x ) - L ( r ) ( f , x ) l  <_ C ( 1 - x )  4 -  u - 2 o ) m ( f ( r ) , u , J ) d u  
-x d g2~ / 

< C(1 - x) U--2wm(f (r), f2x, J) du 
-x 

) 4- ~'2-mum-20)m( \a  , ~x,  J) du 
dO 

< Cogm(f  (r), ~2x, J ) ( l  + Qxm(1 - x ) [ J [  m- l )  

c ~  (r), Qx, J ) ,  x c [1 - n  -2,  1]. 

Thus, (36) is proved for any m 6 N for the case  k --- r .  
For  0 < k < r - 1 (using the Taylor  formula)  we have 

f ( r ) (~x)  - L ( r ) ( f '  (~) (x - 1) r-~ 
If(~)(x)  - L(~)(f ,  x) l  = ( r - -  k--~.v 

for  some fix ~ [x, 1]. Finally,  using the last  equal i ty  and (36) with k ---- r ,  we have, for  
0 < k < r - l a n d x  6 [ 1 - n  - 2 , 1 ] ,  

I f ( k ) ( x ) - - L ~ k ) ( f , x ) l  <_ ( 1 - - x ) r - k w  m f ( r ) , ( 1 - ( ~ ) X / m \ - ~ ]  , J  

< C(1 --x)r-ko)m(f(r) , (1 --x)l /m ( - ~ ) ( m - 1 ) / m , J ) ,  

which comple tes  the p roof  of  the lemma.  []  

The fo l lowing  l e m m a  shows how any spl ine can be presented  as a l inear  combina t ion  
of  the t runcated power  functions (t - ti)v+. 

L e m m a  I ( P r o p o s i t i o n  2 .3 .1  o f  [20 ] ) .  The spline S ( t ) o f  degree M with the knots at ti, 
1 < i < N - 1 (to < tl < �9 " < tN) is uniquely presented  in the f o r m  

(39) 
i 1 

S( t )  = E -~. S(~)(t~ - t~ 
v=O 

N--1 M l 

i=1 j=0 

f o r  t ~ [to, tN]. 

- -  (s(M-J)(t i  4- O) -- s (m-J)( t i  -- 0)) ( t  -- ti) m j 

Note that if  S(x )  has defect  ki (1 < ki _< m + 1) at a knot  ti, then s(m-J)(ti  4- O) -- 
S(m-J)(ti -- 0) = 0 for  ki <_ j <_ m. 
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5. Auxiliary Results for the Case A > 0 

This section contains results which are used only in the case ~. > 0. The following lemma 
shows that, in fact, it does not matter whether we use co m or co~ moduli to estimate the 

degree of local approximation. Whatever is convenient to use (in most cases, the usual 
modulus of smoothness) will d o  

L e m m a J [ 1 9 ] .  Let[a ,b]  C [ - 1 , 1 ]  be such that b - a < CA~(a)i  where C is an 
absolute constant. Then for  any integer m, there exists a constant C (m) such that for 
any X E [0, 1]andx  ~ [a,b], 

(40) m C(m)~om(f, An(X), [a, b]) < c%z(f, n-~An(x)  l-z, [a, b]) 

< C(m)com(f, An(x),  [a, b]). 

Note that only the first inequality in (40) is used in our proofs. For the proof 
of  Theorem 2 we also need the following refinement of the above lemma for x 
{xll --X 2 ~ n-2}. 

LemmalO.  Foranym EN,  X c [0 ,1 ] ,0  <or < 1, andx c { x i l - x  2 < n - 2 } , t h e  
following inequality holds: 

(41) c0m (f ,  (1 -- x2)an 2a-2) < C(m)oom~ (f,  n-;'((1 - x2)an2a-2)l-~').  

Note that (41) cannot be reversed (at least not for all X) since, for x = 1 and ~ # 0, 
the left-hand side of  (41) is equal to zero; at the same time, for X = 1, the right-hand 
side of (41) does not vanish if f is not in lqm-1. 

Proof  of  L e m m a  10. Using the definition of 09 m, moduli, we have the following in- 
equalities: 

Jz :=  co m (f,  n-Z((1 - x 2 ) C ~ n 2 a - 2 ) l - X  ) tp;' 

= suP{h Amh(I~v/~-y2I~(f'y) C[-1,1] ' 0 < h -< n-)~((1 -- x2)C~n2C~-2)l-)~ } 

~- h:=(hnZ) '/O-x'sup {Ah,_~nZ(1/-~_y~)~(f,y)C[_l,l],O<~l<(1--X2)c~n2~-2] 
> 

sup A'~,_~n_~(~)~ ( f ,  y) C[-l+(m/2) 2/'2-z'~, 0<,~<(1 -x2)r ~-2 l-(m/2)2/r 

Now, note that for any y ~ [ -  1 + (m/2)2/(2-Z)h, 1 - (m/2)2/(2-X)h] the inequality 1 - 
y2 > (m/2)2/(2-~)~ is valid, and, therefore, since/Tt < n - 2 ,  then/~l-~n-Z(x/1 - y2)Z > 
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(m/2)z/(2-z)ft. Hence, we have (by the same argument as in Section 5 of  [18]) 

m 
Jz > sup IIA(m/2?/~z_~f~( f ,  y)llc[_l+(m/2)2/~2 ;~j~,l_(m/2)2/~2-xlfz] 

0 < f ~ < ( l - x 2 ) ~ n  2c~-2 

= sup II A h (f ,  Y)II ct-~+~A/2, i-m~/21 
O<h:=(m/2)~/I 2 ~.)h<(m/2)z/12-Z~(l-x2)~n 2~-2 

: con( f ,  (m/2)U(2-z~(1 - x2)~n 2~-2) 

>_ 2-mcom(f, (1 - x2)~n2~-2). 

Thus, the proof of the lemma is complete. 

The following proposition is needed only to make the constants in (9), (10), and 
(14)-(17) independent of  ;~. 

Proposit ion K [ 1 9]. For any integer m there exists a constant C = C (m ) such that for 
every t > O, 0 < )~ < 1, and tz > 1, the following inequality holds: 

(42) m 2m com co~'~(f, ut) _< c (  )lz ~ ( L  t). 

6. Proofs of Theorems 1 and 2 

The idea behind the proofs of both Theorems 1 and 2 is quite natural, and to a certain 
extent was used in the literature (see [2], [4], [18], and [26], for example). Namely, if 
the spline S is defined to be a Lagrange or Lagrange-Hermite interpolation polynomial 
o n  l j ,  then Lemmas 8, 9, and G imply that f(k) is sufficiently approximated by S ~k). 
Using Lemma I, we construct a polynomial Pn which has the same form as the analytic 
representation (39) of the spline, but with Ri, M - j  instead of (. - xi)~ - j .  Finally, using 
Lemma 7, we show that p~k) sufficiently approximates S (~ and, therefore, f~k). 

Everywhere in this section we use the following convention which simplifies notations. 
Let 

I L ( f , x ; x j , x j _ l  . . . . .  X j _ m _ r + ] )  , if m + r - l < j < n ,  
lj(x) :---- [ L ( f ,  x; X m + r - l ,  X m + r - 2  . . . . .  X0), if 0 < j < m + r -- 1. 

Then for any j = 0 . . . . .  n, function lj (x) is the Lagrange interpolation polynomial of 
degree < m + r - 1. 

Note that Ij C 6 for all j = 1 . . . . .  n and I~1 -< C(r, m)l/j l  (therefore, the condition 
in the assertion of Lemma J is satisfied for any [a, b] C ~).  Also, note that it is sufficient 
to prove (9), (10), and (14)-(17) almost everywhere in [ - 1 ,  1], since all the functions 
being considered in these inequalities are assumed to be continuous. Everywhere in this 
section it is presumed that x :fi x j, 1 < j _< n - 1. Thus, for example, when we consider 
derivatives of  the spline S(x) we do not emphasize (though it is implied) that S (k) (x) is 
defined for x 6 [ - 1 ,  1] \ {xl . . . . .  Xn--1}-  

Now we are ready to prove Theorem 1. 
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6.1. Proof of  Theorem 1 

Let S(x) :=  lj(x) fo rx  c lj, 1 < j _< n. Then S(x)  is a spline of  degree _< m + r - 1. 
Using Lemmas G and J, and properties of  the classical moduli of smoothness, we have 
the following estimates for x ~ (x j ,x j_ l ) ,  1 < j < n, and for all 0 < k < r and 
k <rk  <r :  

(43) [f(kl(x) - S(k)(x)l = [f(~)(x) -- l)k)(X)[ 

< c09m+r-k( f  (k), An(X) ,  ~ )  

<_ CAn(x)rk-%Y"+~-~(f (r~), An(X), ~) 
< CAn(x)rk-ko)r~?r-rk( f  (rk), n-~'An(X) 1-)', ~ )  

< CAn(x)rk-k(Dr~?r-rk (f(rk), n-ZAn(x)l -x) .  

Taking into account that the spline S(x) is of degree at most m + r - 1 we get the 
following analytic representation (see (39)), which will be used for the construction of  
an approximating polynomial. 

n-I m+r-I 
(44) S(x )  = Pm+r-I(X) -[- Z Z A i j ( x  - xi)~-+r-l-J '  x c [ - 1 , 1 ] ,  

i=1 j=O 

m+r--I u )v where Pm+r-i(X) = Y~v=O (1 /v ! )S  ( ) ( - 1 ) (x  + 1 is a polynomial of degree < m + 
r - 1, and coefficients Aij are given by 

n-I m+r-i 
Pn(x) ---- Pm+r-l(x) + Z Z AijRi ,m+r-l- j(x) .  

i=1 j=0 

Then Pn(x) is a polynomial of  degree < 4n~z + m + r and P4m~+m+r(f, '): f ~-+ Pn is 
a linear operator. 

Let us estimate _,P(k)(x) -- s(k)(x), x C [--1, 1]. First, we consider Aij. Using the 
Markov inequality first and then the Whitney inequality (Lemma G with k -- 0), we 
have f o r l  < i  < n - l , 0 < j  < m + r - l ,  a n d a n y O < F < r ,  

(46) IAijl = C[S(m+r-l-J)(xi  ~- O) -- s (m+r- l -J) (x  i -- 0) 1 
..-~,l(m+r--l--j)~ ~ = t.-[/i+ 1 ~Xi) -- l~m+r-l-J)(xi)[ 
- - - -m-r+l+j  

< Uai Hli+l - lillc(ll) 
~h-m-r+l+J[  l 

5 w'-'rt i k i+I -- fllc(L+,) + [If - l i l l c j i ) )  
h-m-r+l+J o) m+r ~)  <_ C i ( f ,  An(Xi), ~+11,..J 

ChTm-r+l+J+F~ ( f  (F), An(x i ) ,  /~'+1 U ~)  

< Ch-m-r+l+j+F~"m+r-f(re(?) n - L A n ( x i )  I-)~, /~+1 (-) ~) .  

Aij .--'-- (m + r - 1 - j)!'" (s(m+r-l-J)(xi -[- O) -- s(m+r-l-J)(xi  -- 0)). 

Now let 

(45) 
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Now we choose /z  and ~ to be large in comparison with r and m. For example, let 
= 4(m + r)  and # = 50(m + r).  We continue to write "#"  and "~" understanding that 

now these variables are functions of r and m. 
For any x e [ - 1 ,  1] \ {Xl . . . . .  x~-l}, 0 < k < 2(m + r)  and 0 5 7 _< r (using 

Lemma 7, Proposition K, and estimates (46), (25), (26), and (27)) we have 

(47) I P~ ~) (x) - S (k) (x)l 

_< 
n-1 m+r-1 
Z Z  
i=1 j=O 

Ri,m+r 1 j ( x )  ok " "m+r-l-Jl IAijl (k) -- ~ (x - ~i)+ [ 

_< 
n-I  m+r-1 

i=1 j=O 

h-m-r+j+l+76o m+r=?(F(~) n ) ' A n ( x i )  1 X) 

X 1/t il~-~ h i m + r - j - l - k  

< 
n -1  

i=1 

n-I  
i'-k m+r-T (~) -X I-X ~ l[flz-~-2m-2r-2k 

_< CAN(x  ) w o ~ ( f  ,n  An(X) ) z...,cr~ 
i=1 

?-k re+r-7 (~) -X I-X < CAN(x  ) cox ( f  ,n  zX~(x) ). 

Therefore for any x e [ - 1 ,  1] and for fixed 0 < k < r, choosing T = r~ together with 

(43), we have 

I f  (~) (x) - P,f)(x)[ ~ C A~ (x) ~ - Q o ~  ~-~ (f(~k), n -~ A~ (x) l -x) ,  

which is the desired inequality (9). Estimate (10) for m + r < k < 2(m + r)  follows 

from (47) since S (k) (x) = 0 a.e. for k > m + r. 
Finally, for k > 2(m § r) ,  inequality (10) follows from the above estimates and 

Theorem 4.1 of [6]. (Note that Theorem 4.1 in [6] was proved with constants which 
s + # )c%~(g, 3) (see depend on )~. However, using the inequality c%~ (g, /z6) < C(s)(1 2s ~ 

s s o)s Proposition K), instead of  ~o,)~(g, 1~6) <_ C(s ,  )0(1 +/X ) ~ ( g '  3)' and following its 
proof word for word one can show that this dependence on X is not necessary and can 

be eliminated.) 
The proof  of  Theorem 1 is now complete for sufficiently large n, say, n _> no (in fact 

we proved (9) and (10) for n _> 201(m + r)).  For m + r - 1 < n < no the assertion 
of Theorem 1 follows from the case n = m + r - 1 for which it is sufficient to choose 
P..+~-l( f ,  x )  :=  L (f ,  x; - 1 ,  --1 § 2 / ( m  4- r -- 1) . . . . .  1). 
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6.2. Proof of Theorem 2 

For  the p roo f  of  Theorem 2 we change  the construct ion of  the spl ine S(x) f rom the 
previous  subsect ion near  the endpoints  of  the interval  [ -  l ,  1 ]. Namely,  let  

(48) S(x) : =  

lj(x),  x E lj, 2 <_ j <_n--1,  

L ( f ,  x), x E 11, 
L ( f , x ) ,  x E In. 

where  L ( f ,  x)  and L ( f ,  x)  are the Lagrange-Hermi te  in terpolat ion po lynomia l s  of  degree 
< m § r - 1 defined in L e m m a s  8 and 9, respectively.  

Inequal i ty  (43) with rk = r ,  together  with the es t imates  (36) and (37) impl ies  for  any 
0 < k < r :  

(49) I f (k)(x)  -- s(k~(x)I < C 

An(X)r-ko)m(f (r), An(X), ~),  i f x  E (Xj, Xj_j), 
2 < j < n - - 1 ,  

(1 - x2)r-k( ,o  m f("~, (1 - x2) 1/m 

x E ( x j , x j - 1 ) , j  = 1 o r n .  

Now since S(x) is a spl ine of  degree  < m + r - 1, it has the analyt ic  representat ion 
(44). Let  the po lynomia l  Pn(x) be defined by (45) with S(x) given by (48). Since the 
Lagrange  (Lagrange-Hermi te )  interpolat ion process  is a l inear  mapp ing  f rom C [ - 1 ,  1] 
( C r [ - 1 ,  1]) to the subspace  of  the a lgebraic  po lynomia l s  of  some degree  (of  degree  
< m + r - 1 in our case), then the opera tor  P4n~+m+~(f, '): f t-+ P ,  is also a l inear  
operator.  

Inequal i ty  (46) with Y = r impl ies  that  for  any 2 < i < n - 2 and 0 < j _< m § r - 1, 

(50) p ~ - m + l + j  .m [Aij[ <_ crl i c % z ( f  (r), n-ZAn(x i )  1-)~, ~-+-1 [,-J ~) .  

Inequal i ty  (50) also holds for  i = 1 and i = n - 1, s ince for  i = 1 (the case i = n - 1 
is t reated similar ly) ,  we have (using L e m m a  8 and Corol la ry  H) 

(m § r -- 1 -- j ) ! IAl j l  = Is(m+r-l-J)(xl -~ O) - s(m+r--l--J)(xl -- 0)l 

= Is Xl) -- l~m+r-l-J)(xl)l 

<- Chl"-r+l+Jl lL( f ,  ") -/211c(1,/ 

< Ch[m-r+I+J(llL(f, ") - fllc(i,~ + IIf - 12llc(i2)) 

<- Chlm-r+l+JhrlC~ An(xI ) ,  [1 tJ [2) 

Ch-m+l+jo)m ,'x-(r) iv/-,kA i x ,,1-.,~ [2). --< 1 ~ J  , nk 1) , [ 1  U 
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Therefore, for any x ~ [ - 1 , 1 ]  and 0 < k < ko, (47) with ? = r holds for 
the above-defined P~(x) and S(x). Now, considerations similar to those from the 
previous subsection imply (14) and (16). It remains to prove (15) and (17) for x E 
[ - 1 ,  - 1  + n -2] U [1 - n -2, 1] =:  g~. The inequality 

(51) tlmo)m(g, h) <- 2mt2mo)m(g, t2), tl > t2, 

yields, for any x c En and 1 < i < n - 1, 

hmrl 2m-2 / 
(52) O)m(f(r)'hi) <- i---S-z1 - x O)m {\f(r), (1 _ X2) I/m (_.~)(m l)/m). 

Therefore, for any 0 < k _< ko, 0 < r~ < ko, and x ~ En (choosing ~ = 4ko and 
/z = 50ko, for example, and using Lemma 7, (50) with )~ = 0, (52), (26), and (27)) we 
have 

(53) I P~ ~)ix) - s~k/(x)l 
n-1 m+r-I In(k)  ok 

- -  X i )  + < ~ Z [Aijl [l~i,m+r--l--J (x) -- ~X k (X ,m+r-l-j 
i=1 j=O 

n-1 m+r-l 
< - - C Z  Z h'/-rn+J+l~ 

i=1 j=0  

• (1 -'[- ~ ) - ~  - -  Xi) ~i 'i 

--< CO)m (.f(r), ( 1 - - X 2 )  1/m ~k H2 L ~ (m-1)/mx~/ 

n-1 hmn2m- 2 (1--x2~/21[flZhr_ k 
• Y - - F  ,, V-i j r e ,  

i= l  

= C ( 1 -  x2)r~o)m(~ ( 1 -  X2) 1/m ~rl2/(L~(m-1)/m~/ 

n - l ( 1 _  x2~/2-r'-l(n2hi)m_lh;_k_r~o~ x~-~.\ hi l 
i=1 

< C ( 1 -  x2)rkmn(x)r--k--r'o)m(f(r),(1--X2) l/m (L'~(m-l)/m~ 

n-s 1 ~'/2-r'-mllrlx_2r_2k_2r , 
X ~,n2hi ] re 

i= l  

< C(1 - x2)rkmn(x)r-k-rko) m f(r), (1 - x2) 1/m 
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Now, choosing rk in (53) to be r - k (in the case 0 < k < r) together with (49), we 
have, for any x 6 gn and 0 < k  < r, 

(54) [f(k)(x)- P(k)(x)l _< C ( 1 -  x2)r-ko)m(f (r), ( 1 -  X2) l/m (L~n2] (m-1)/m~,/ 

which is (15) for ~. = 0 and oek = 1/m. Also, since S(k)(x) =- 0 a.e. for k > m + r, then 
(53) implies, for m + r < k < k0 and any 0 < rk _< k0, 

(55) Ig(k)(x)l < 6(1 -- y2)rkmn(x)r--k--rko)m(f(r), (1 --X2) l/m (L~`m-l)/m) 

Now (51)implies, fo rx  c Sn and all oe E [ l / m ,  1], 

(56) o)m(f `r,, ( 1  X2) Vm \n2 ]{1~ (m-l)/m']] 

< C(n2(1 - X2))l--amo)m(f (r), ( 1  - -  x2)~n2~-2). 

Finally, (54) and (56), together with Lemma 10, imply 

if(k)(x) _ p~k)(f, X)I 
< Cn2-2c~km(1 X2"~r--k+l--otkmo)m _ J ~ (f(r), n-X((1 _ X2)~kn2~k--2)~--Z), 

fo rx  C g~, 0 < k < r, and any ~k c [1/m, 1]. 
Similarly, using Lemma 10 and (55) and (56), we obtain (17). The proof of Theorem 2 

is now complete for sufficiently large n (n _> no :=  201k0). 
For max{m + r - 1 ,2r  + 1} < n < no, the assertion of  Theorem 2 follows from the 

case fi = max{m + r - 1, 2r + 1 }, for which it is sufficient to choose P~ (f,  x) :=  P~ (x), 
where P~(x) is the polynomial such that P ,~)(+I)  = f(k)(:t:l) for all k = 0, 1 . . . . .  r; 
and, i f m  > r + 2 ,  P ~ ( - l + 2 i / ( m - r - 1 ) )  = f ( - l + 2 i / ( m - r - 1 ) )  for all 
i = 1, 2 . . . . .  m - r - 2. Using considerations similar to those employed for the proof 
of Lemma 8, one can show that P~(f, x) satisfies (14) and (15). �9 

7. Proof  of  Theorem 3 

As we have already mentioned, the method of the construction of a counterexample 
and the proof is a minor modification of  the method introduced by X. M. Yu [30]. For 
completeness of  exposition and, since the proof is not long, we adduce it here. 

Suppose that the assertion of  the theorem is not correct. Then there is a constant K 6 R 
such that for every f c cm+r-l[-1, 1], a polynomial Pn E Hn exists satisfying 

(57) I f (x )  - P,(x)[ _< KAn(x)rwm(f (r), An(X)), 

fo rx  C [--1 + n  -2, 1 - n - 2 ] , a n d  

(58) I f (x )  - P~(x)[ _< K(1 -X2)~ (r), (1 --x2)~n• 

fo rx  ~ [ - -1 , - -1  + n - 2 ] t A [ 1  - - n  -2, 1]. 
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( x -  l + A n - 2 )  'n+~, x ~ [ 1 - A n  -z ,1], 
f ( x ) : =  0, x 6 [ - l , l - A n - 2 ] ,  

where A < 1 is a constant which will be chosen later. Then f 6 C " + ~ - l [ - 1 ,  1], and 
the following inequalities are satisfied: 

(59) 

and 

(6O) 

I f (x ) l .5  (An-2) re+r, -1  < X < 1, 

~o"~(f (r), t) 5 (m + r)!min{t m, (An-Z)m}, t > O. 

The last inequality implies 

I f (x)  - P~(x)f <_ K (m + r)!(1 - x2)~+mr 2~-2~+m• 

for x 6 [1 - n -z, 1], and, since a + mfi > r + 1, we have f(k)(1) = P~k)(1) for all 
k = 0, 1 . . . . .  r + 1. Also, (57), (58), and (60) yield 

I f (x)  - P,(x)l < K (m + r)!An(x)r (an-2) ~, 

for x ~ [ -  1 + n -2 ,  1 - -  n - z ] ,  and 

I f (x)  - Pn(x)[ < K(m + r)!2~n-er(An-2)m, 

fo rx  E [ - l , - 1  + n -2] U [1 - n  -z, 1]. Therefore, 

I f (x)  - P,(x)l <_5 K(m + r)!2aAn(x)r(an-2) m, 

for all x ~ [ - 1 ,  1]. Hence, for every x 6 [ - 1 ,  1] (applying (59)) we have 

IPn(x)[ < I f  (x)t + I f ( x ) -  Pn(x)] < (1 + K (m + r)!) 2" An(X)r (An-;) ". 

Now applying the Dzyadyk inequality (see (31)), we conclude that 

}}A,(x)P~r+l)(x){I < C~IIA,(x)-~P,(x)It < Cr (1 + K(m + r)!) 2~(An-2) m, 

and thus, 

(61) 

On the other hand, 

(62) 

Now, choosing 

P,}r+~)(1)l < Cr (1 + K(m + r)!)2c~Am~ -2m+2. 

(m + r)! Am_Jn_2m+e , 
}P"(~+I)(1)] = ] f ( r+~) (1 ) l -  (m - 1)! 

(m + r)! } 
A----rain 1 , 2 C r ( m _ l ) ! ( l + K ( m + r ) ! ) 2 c  ~ , 

we conclude that (61) and (62) cannot hold simultaneously, thus obtaining a contradic- 
tion. The proof  is complete. III 
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