CONSTRUCTIVE APPROXIMATION © 1996 Springer-Verlag New York Inc.

K. Kopotun

Abstract. Some estimates for simultaneous polynomial approximation of a function and its derivatives are obtained. These estimates are exact in a certain sense. In particular, the following result is derived as a corollary:

For $f \in C^r[-1, 1]$, $m \in \mathbb{N}$, and any $n \ge \max\{m + r - 1, 2r + 1\}$, an algebraic polynomial P_n of degree $\le n$ exists that satisfies

$$\left|f^{(k)}(x) - P_n^{(k)}(f,x)\right| \le C(r,m)\Gamma_{nrmk}(x)^{r-k}\omega^m\left(f^{(r)},\Gamma_{nrmk}(x)\right),$$

for $0 \le k \le r$ and $x \in [-1, 1]$, where $\omega^{\nu}(f^{(k)}, \delta)$ denotes the usual ν th modulus of smoothness of $f^{(k)}$, and

$$\begin{split} \Gamma_{nrmk}(x) &:= \\ \begin{cases} n^{-1}\sqrt{1-x^2}, & \text{if } x \in [-1+n^{-2}, 1-n^{-2}] \\ (1-x^2)^{(r-k+1)/(r-k+m)} \left(\frac{1}{n^2}\right)^{(m-1)/(r-k+m)}, & \text{if } x \in [-1, -1+n^{-2}] \\ & \cup [1-n^{-2}, 1]. \end{cases} \end{split}$$

Moreover, for no $0 \le k \le r$ can $(1 - x^2)^{(r-k+1)/(r-k+m)}(1/n^2)^{(m-1)/(r-k+m)}$ be replaced by $(1 - x^2)^{\alpha_k} n^{2\alpha_k - 2}$, with $\alpha_k > (r - k + 1)/(r - k + m)$.

1. Introduction

We begin by recalling some standard notations. The symmetric mth difference of a function f is given by

$$\Delta_{\eta}^{m}(f, x, [a, b]) := \begin{cases} \sum_{i=0}^{m} \binom{m}{i} (-1)^{m-i} f\left(x - \frac{m}{2}\eta + i\eta\right), & \text{if } x \pm \frac{m}{2}\eta \in [a, b], \\ 0, & \text{otherwise.} \end{cases}$$

The Ditzian-Totik modulus of smoothness is (see [5] and [6])

$$\omega_{\varphi^{\lambda}}^{m}(f,\delta,[a,b]) := \sup_{0 < h \le \delta} \|\Delta_{h\varphi(x)^{\lambda}}^{m}(f,x,[a,b])\|_{C[a,b]},$$

Date received: January 11, 1994. Date revised: November 8, 1994. Communicated by Vladimir N. Temlyakov. *AMS classification*: 41A10, 41A25, 41A28.

Key words and phrases: Simultaneous approximation, Timan-Gopengauz type estimates, Ditzian-Totik moduli of smoothness.

K. Kopotun

where $\varphi(x) := \sqrt{1 - x^2}$ and $[a, b] \subset [-1, 1]$. Note that if $\lambda = 0$, then

$$\omega_1^m(f,\delta,[a,b]) =: \omega^m(f,\delta,[a,b])$$

is the usual modulus. Also, we denote the set of all algebraic polynomials of degree $\leq n$ by \prod_n , and we let $\Delta_n(x) := n^{-1}\sqrt{1-x^2} + n^{-2}$ and $\omega_{\omega^{\lambda}}^m(f, \delta) := \omega_{\omega^{\lambda}}^m(f, \delta, [-1, 1])$.

The following results on simultaneous approximation of a function and its derivatives in terms of the usual moduli of smoothness are known.

Theorem A. Let $f \in C^r[-1, 1]$ and $m \in \mathbb{N}$. Then there exists an integer $n_0 = n_0(r, m)$ such that for any $n \ge n_0$ there is a polynomial $P_n \in \prod_n$ satisfying, for $0 \le k \le r$ and $x \in [-1, 1]$,

(1) $|f^{(k)}(x) - P_n^{(k)}(x)| \le C(r,m)\Delta_n(x)^{r-k}\omega^m(f^{(r)},\Delta_n(x)).$

Theorem B. Let $f \in C^r[-1, 1]$ and $m \in \mathbb{N}$. Then there exists an integer $n_0 = n_0(r, m)$ such that for any $n \ge n_0$, there is a polynomial $P_n \in \prod_n$ satisfying

(2)
$$|f^{(k)}(x) - P_n^{(k)}(x)| \le C(r,m) \left(\frac{\sqrt{1-x^2}}{n}\right)^{r-k} \omega^m \left(f^{(r)}, \frac{\sqrt{1-x^2}}{n}\right).$$

for $0 \le k \le \min\{r - m + 2, r\}$ and $x \in [-1, 1]$.

Moreover, the condition $k \leq r - m + 2$ *cannot be removed.*

Remark. In Theorem A, the exact lower bound on n is $n_0 = m + r - 1$. Indeed, it is easy to see that for n = m + r - 1, Theorem A is valid (choose P_{m+r-1} to be a Lagrange interpolation polynomial of degree $\leq m + r - 1$), and that for n < m + r - 1, (1) is no longer true (consider $f \in \prod_{m+r-1}$). At the same time, the exact lower bound on nin Theorem B, as far as we know, is not found (at least not for all r and m). It follows from Corollary 2-3.1 in Section 2 (see also [22]) that $n_0 \leq 2r + 1$. Also, it is not difficult to see that (2) implies $f^{(k)}(\pm 1) = P_n^{(k)}(\pm 1)$ for $k = 0, 1, \ldots, \tilde{k} + [(r - \tilde{k})/2]$, where $\tilde{k} := \min\{r - m + 2, r\}$, and, therefore, $n_0 \geq \max\{m + r - 1, 2\tilde{k} + 2[(r - \tilde{k})/2] + 1\}$. Thus, in the case $3 \leq m \leq r + 1$ the question about the exact value of n_0 in Theorem B remains unanswered.

The following is a brief history of proofs of Theorems A and B. Estimate (1) with k = 0 and m = 1 was obtained by A. F. Timan [28] in 1951. In 1955, A. O. Gelfond [10] proved Theorem A with n^{-1} instead of $\Delta_n(x)$ and m = 1. In 1962, R. M. Trigub [29] showed the validity of Theorem A in the case m = 1 and remarked that the same proof works for m = 2 (see also V. N. Malosemov [23]). In 1963, Yu. A. Brudnyi [1] (see also [2]) extended Timan's result showing that (1) is valid for k = 0 and arbitrary $m \in \mathbb{N}$. In 1966-67, S. A. Telyakovskii [27] and I. E. Gopengauz [12] independently proved (2) in the cases m = 1, k = 0 and m = 1, $0 \le k \le r$, respectively. In 1967, I. E. Gopengauz [13] proved Theorem A in general. In 1975, R. A. DeVore [4] being the first to prove estimates involving $\omega^m(\sqrt{1-x^2}/n)$ with m > 1, obtained (2) for m = 2 and r = 0. Eight years later, in 1983, E. Hinnemann and H. H. Gonska [16] proved the case m = 2, $r \ge 0$ and k = 0 in Theorem B. In 1985, they [11] also showed the validity of (2) for the cases k = 0, $m \le r + 2$ and $0 \le k \le r - m$, $m \le r$. In 1985, X. M. Yu [30] showed

that (2) is not true if k = 0 and $m \ge r + 3$. Finally, W. Li [22] in 1986 and R. Dahlhaus [3] in 1989 independently settled Theorem B as stated.

W. Li [22] also proved the following result showing that the obtained estimate is the best possible in some sense (we refer the reader to Theorem 11 of [22] for details).

Theorem C [22]. Let $f \in C^r[-1, 1]$ and $m \ge r + 2$. Then, for any $n \ge m + r - 1$, there exists a linear operator Q_n : $C^r[-1, 1] \mapsto \prod_n$ such that

(3)
$$|f^{(k)}(x) - Q_n^{(k)}(f, x)| \le C(r, m) \left(\frac{\sqrt{1-x^2}}{n}\right)^{r-k} \omega^m \left(f^{(r)}, \frac{\sqrt{1-x^2}}{n} + \frac{1}{n^2} (n\sqrt{1-x^2})^{(r+2-k)/m}\right),$$

for $0 \le k \le r$ and $x \in [-1, 1]$.

The following result is an immediate corollary of Theorem C.

Corollary D. Let $f \in C^r[-1, 1]$ and $m \in \mathbb{N}$. Then there exists a sequence of linear operators Q_n : $C^r[-1, 1] \mapsto \prod_n$ such that for every $0 \le k \le r$ and $x \in [-1, 1]$,

(4)
$$|f^{(k)}(x) - Q_n^{(k)}(f,x)| \le C(r,m) \left(\frac{\sqrt{1-x^2}}{n}\right)^{r-k} \omega^m(f^{(r)},\Delta_n(x)).$$

Indeed, if $m \ge r+2$, then $\sqrt{1-x^2}/n + 1/n^2(n\sqrt{1-x^2})^{(r+2-k)/m} \le C\Delta_n(x)$ and, therefore, (4) is valid. For $1 \le m < r+2$, (4) follows from the case m = r+2 and the inequality $\omega^{r+2}(f^{(r)}, \delta) \le C(r)\omega^m(f^{(r)}, \delta)$. Estimate (4) is not as strong as (2), but, on the other hand, it is valid for all $0 \le k \le r$ while (2) is not true in general for k > r - m + 2.

Recently, the following analog of Theorem B and Corollary D in terms of $\omega_{\varphi^{\lambda}}^{m}$ moduli was obtained by Z. Ditzian, D. Jiang and D. Leviatan [7].

Theorem E [7]. For a function $f \in C^r[-1, 1]$, $m \in \mathbb{N}$ and $0 \le \lambda \le 1$ there exists a sequence of polynomials $P_n \in \prod_n$ for which

(5)
$$|f^{(k)}(x) - P_n^{(k)}(x)| \le C\left(\frac{\sqrt{1-x^2}}{n}\right)^{r-k} \omega_{\varphi^{\lambda}}^m(f^{(r)}, n^{-\lambda}\Delta_n(x)^{1-\lambda}), \quad 0 \le k \le r$$

and

(6)
$$|P_n^{(k)}(x)| \le C\Delta_n(x)^{r-k}\omega_{\varphi^{\lambda}}^m(f^{(r)}, n^{-\lambda}\Delta_n(x)^{1-\lambda}), \quad k \ge m+r,$$

where $x \in [-1, 1]$ *.*

Clearly, (5) coincides with (4) when $\lambda = 0$. For m = 1, 2, better estimates than those in Theorem E were proved in [7].

Theorem F [7]. For $f \in C^r[-1, 1]$ and $0 \le \lambda \le 1$, there exists a sequence of polynomials $P_n \in \prod_n$ such that for all $x \in [-1, 1]$,

(7)
$$|f^{(k)}(x) - P_n^{(k)}(x)| \le C\left(\frac{\sqrt{1-x^2}}{n}\right)^{r-k} \omega_{\varphi^{\lambda}}^l \left(f^{(r)}, n^{-\lambda}\left(\frac{\sqrt{1-x^2}}{n}\right)^{1-\lambda}\right)$$

for l = 1, 2 *and* $0 \le k \le r$ *, and*

(8)
$$|P_n^{(k)}(x)| \leq C \Delta_n(x)^{r-k} \omega_{\varphi^{\lambda}}^l \left(f^{(r)}, n^{-\lambda} \left(\frac{\sqrt{1-x^2}}{n} \right)^{1-\lambda} \right),$$

for $l + r \leq k \leq k_0$, with some $k_0 \in \mathbf{N}$.

(In Theorem 1.2 of [7] it was stated that (8) holds for all $k \ge l + r$. This is a misprint since the only polynomials such that $P^{(k)}(\pm 1) = 0$ for all $k \ge l + r$ are those of degree $\le r + l - 1$. One should add the restriction $k \le k_0$.)

Other results on simultaneous approximation of a function and its derivatives can be found in [14], [15], [17], [21], [26], and [31].

2. Main Results

In this paper we obtain some results on simultaneous polynomial approximation of a function together with its derivatives which improve the estimates quoted in Section 1. Our proof is different from those employed in the above-mentioned papers (it seems that it is closest to the one used by Yu. A. Brudnyi in [2]) and, hence, can be viewed as an alternative proof of Theorems A-F. Moreover, not only do we improve the estimates (1)–(8), but also our construction (see Theorem 2) yields a polynomial $P_n(f, x)$ (more precisely, a linear operator $P_n(f, x)$: $C^r[-1, 1] \mapsto \Pi_n$), which fits all the above cases simultaneously. Furthermore, unlike the polynomials in Theorems E and F, which are different for different λ 's, $P_n(f, x)$ is constructed independently of λ (for further discussions see Theorem 2 and the comment after it).

We start with the following result which is of the same type as Theorem A, and which improves (1)–(8) inside the interval [-1, 1], i.e., for $x \in [-1 + n^{-2}, 1 - n^{-2}]$.

Theorem 1. Let $r \in \mathbf{N}_0$, $m \in \mathbf{N}$ and $f \in C^r[-1, 1]$. Then for any $n \ge m + r - 1$, there exists a linear operator $P_n(f, \cdot)$: $C^r[-1, 1] \mapsto \prod_n$ such that for every $0 \le \lambda \le 1$ and $x \in [-1, 1]$,

(9)
$$|f^{(k)}(x) - P^{(k)}_n(f,x)| \le C(r,m)\Delta_n(x)^{r_k-k}\omega_{\omega^{\lambda}}^{m+r-r_k}(f^{(r_k)},n^{-\lambda}\Delta_n(x)^{1-\lambda}),$$

for $0 \le k \le r$ and any $r_k \in \mathbb{N}_0$ satisfying $k \le r_k \le r$.

Also, the following estimates hold for every $0 \le \lambda \le 1$ and $x \in [-1, 1]$: (10) $|P_n^{(k)}(f, x)| \le C(k)\Delta_n(x)^{\tilde{r}-k}\omega_{\omega^{\lambda}}^{m+r-\tilde{r}}(f^{(\tilde{r})}, n^{-\lambda}\Delta_n(x)^{1-\lambda}),$

for $k \ge m + r$ and any $\tilde{r} \in \mathbf{N}_0, 0 < \tilde{r} \le r$.

Note that the properties of the $\omega_{\varphi^{\lambda}}^{s}$ moduli (see Chapter 6 of [5]), unfortunately, make it impossible to simplify the assertion of Theorem 1 without losing its generality (we encounter the same problem for Theorem 2 whose assertion is even more forbidding). When $\lambda > 0$, the cases for different r_k 's and \tilde{r} 's are independent. This is determined by the fact that the inequality

(11)
$$\omega_{\varphi^{\lambda}}^{s}(g, n^{-\lambda}\Delta_{n}(x)^{1-\lambda}) \leq C\Delta_{n}(x)\omega_{\varphi^{\lambda}}^{s-1}(g', n^{-\lambda}\Delta_{n}(x)^{1-\lambda})$$

is not, in general, true if $\lambda > 0$. Indeed, for any $0 \le \lambda \le 1$ and $s \in \mathbf{N}$,

 $\omega_{\omega^{\lambda}}^{s}(x^{s},\delta) = s! \min\{\delta^{s}, (2/s)^{s}\}.$

Therefore, if $g(x) = x^s$ and n > s/2, then

$$\omega_{\varphi^{\lambda}}^{s}(g, n^{-\lambda}\Delta_{n}(x)^{1-\lambda}) = C(s)(n^{-\lambda}\Delta_{n}(x)^{1-\lambda})^{s}$$

and

$$\omega_{\varphi^{\lambda}}^{s-1}(g', n^{-\lambda}\Delta_n(x)^{1-\lambda}) = C(s)(n^{-\lambda}\Delta_n(x)^{1-\lambda})^{s-1}$$

Hence, if (11) were correct for $\lambda > 0$, we would have $\Delta_n(x) \ge Cn^{-1}$ for all $x \in [-1, 1]$, which, of course, is not true. On the other hand, for $\lambda = 0$ (11) is correct and, hence, the assertion of Theorem 1 for $\lambda = 0$ is much simpler (estimates (9) and (10) for $r_k > k$ and $\tilde{r} > 0$ follow from the case $r_k = k$ and $\tilde{r} = 0$).

Corollary 1.1. For $f \in C^r[-1, 1]$, $m \in \mathbb{N}$, and any $n \ge m + r - 1$, a linear operator $P_n(f, \cdot)$: $C^r[-1, 1] \mapsto \prod_n$ exists such that for $x \in [-1, 1]$,

(12)
$$|f^{(k)}(x) - P_n^{(k)}(f, x)| \le C(r, m)\omega^{m+r-k}(f^{(k)}, \Delta_n(x)),$$

for $0 \le k \le r$, and

(13)
$$|P_n^{(k)}(f,x)| \le C(k)\Delta_n(x)^{-k}\omega^{m+r}(f,\Delta_n(x)),$$

for $k \ge m + r$.

Corollary 1.1 not only implies Theorem A, but also (12) is better than (1) since the inequality, $\omega^m(f, \delta) \leq C\delta\omega^{m-1}(f', \delta)$, generally cannot be reversed.

Our next result is an analog of Theorems B-F (i.e., the rate of approximation is estimated by the quantity which is zero at the endpoints of the interval [-1, 1]) in terms of $\omega_{\varphi^{\lambda}}^{m}$ moduli, which improves (1)–(8) near the endpoints of [-1, 1] (i.e., for $x \in [-1, -1 + n^{-2}] \cup [1 - n^{-2}, 1]$).

Theorem 2. Let $r \in \mathbf{N}_0$, $m \in \mathbf{N}$, $k_0 \ge m + r$, and $f \in C^r[-1, 1]$. Then for any $n \ge \max\{m + r - 1, 2r + 1\}$ there exists a linear operator $P_n(f, \cdot)$: $C^r[-1, 1] \mapsto \prod_n$ such that for every sequence $\{\alpha_k\}_{k=0}^r \subset [1/m, 1]$, and for $0 \le \lambda \le 1$ and $0 \le k \le r$, the following inequalities hold:

(14)
$$|f^{(k)}(x) - P_n^{(k)}(f,x)| \le C(k_0)\Delta_n(x)^{r-k}\omega_{\varphi^{\lambda}}^m(f^{(r)}, n^{-\lambda}\Delta_n(x)^{1-\lambda}).$$

K. Kopotun

for $x \in [-1 + n^{-2}, 1 - n^{-2}]$, and (15) $|f^{(k)}(x) - P_n^{(k)}(f, x)| \leq C(k_0)n^{2-2\alpha_k m}(1 - x^2)^{r-k+1-\alpha_k m} \times \omega_{\varphi^{\lambda}}^m (f^{(r)}, n^{-\lambda}((1 - x^2)^{\alpha_k} n^{2\alpha_k - 2})^{1-\lambda}),$

for $x \in [-1, -1 + n^{-2}] \cup [1 - n^{-2}, 1]$.

Also, there exists a constant $n_0 = n_0(k_0)$ such that if $n \ge n_0$, then for every $\{\alpha_k\}_{k=m+r}^{k_0} \subset [1/m, 1], \{r_k\}_{k=m+r}^{k_0} \subset [0, k_0]$, and for $0 \le \lambda \le 1$ and $m + r \le k < k_0$, operator $P_n(f, x)$ satisfies

(16)
$$|P_n^{(k)}(f,x)| \le C(k_0)\Delta_n(x)^{r-k}\omega_{\varphi^{\lambda}}^m(f^{(r)},n^{-\lambda}\Delta_n(x)^{1-\lambda}),$$

for $x \in [-1 + n^{-2}, 1 - n^{-2}]$, and

(17)
$$|P_n^{(k)}(f,x)| \leq C(k_0)n^{2(r_k-r+k+1-\alpha_k m)}(1-x^2)^{r_k+1-\alpha_k m} \times \omega_{\omega^{\lambda}}^m (f^{(r)}, n^{-\lambda}((1-x^2)^{\alpha_k}n^{2\alpha_k-2})^{1-\lambda}),$$

for $x \in [-1, -1 + n^{-2}] \cup [1 - n^{-2}, 1]$.

Even though Theorem 2 looks somewhat formidable (even the case $\lambda = 0$ is rather involved), it has some nice applications, and, in particular, all the results from Section 1 (the direct part of Theorem B) immediately follow from it. Subsequently we present a few corollaries of Theorem 2 for the particular case $\lambda = 0$. To simplify the exposition we omit the estimates of the higher derivatives of approximating polynomial $P_n(x)$ (or operator $P_n(f, x)$) in these corollaries.

We emphasize one more time (it is already done in the statement of Theorem 2) that (15) and (17) are valid for all choices of α_k 's and r_k 's (which can be different for different k's) satisfying $1/m \le \alpha_k \le 1$ and $0 \le r_k \le k_0$. In fact, the upper bound k_0 in the restrictions on the r_k 's is not important. We need it only to stress that the r_k 's cannot be boundlessly large. Any positive integer (say, k_1) would do. In that case the construction of $P_n(f, x)$ and all the constants in (14)–(17) would depend on k_1 . However, rather than introduce one more parameter we employ what is already in use, the number k_0 . In that way we do not over-complicate the statement and, at the same time, it is very easy to see that by employing k_0 doing so we lose no generality of Theorem 2 (k_0 can always be chosen larger than k_1).

We also remark that the lower bound on *n* in Theorem 2, $n \ge \max\{m+r-1, 2r+1\}$, is exact.

In addition, the natural question, How sharp are the estimates of Theorem 2, is partially resolved in this paper. First, since Theorem 2 ($\lambda = 0, m \ge r + 2$, and $\alpha_k = (r + 2 - k)/(2m)$ for $0 \le k \le r$) implies (3) which cannot be improved in some sense (see Theorem 11 of W. Li [22]), then (15) cannot be improved uniformly for all λ in the same sense. More details for the case $\lambda = 0$ are given in Theorem 3. In particular, the negative part of Theorem B follows as its corollary. In fact, the proof of Theorem 3 is based on a slight modification of the ideas of X. M. Yu [30] which, in turn, were used in the proof of Theorem B in [3].

Theorem 3. Let $r \in \mathbf{N}_0$, $m \in \mathbf{N}$, and let $\alpha \ge 0$, β , $\gamma \in \mathbf{R}$ be such that $\alpha + m\beta > r + 1$. Then for every constant $K \in \mathbf{R}$, a function $f \in C^{m+r-1}[-1, 1]$ exists such that

$$\inf_{P_n \in \Pi_n} \left\{ \max_{x \in [-1+n^{-2}, 1-n^{-2}]} \frac{|f(x) - P_n(x)|}{\Delta_n(x)^r \omega^m(f^{(r)}, \Delta_n(x))} + \sup_{x \in [-1, -1+n^{-2}] \cup [1-n^{-2}, 1]} \frac{|f(x) - P_n(x)|}{(1-x^2)^\alpha n^{2\alpha - 2r} \omega^m(f^{(r)}, (1-x^2)^\beta n^\gamma)} \right\} > K.$$

We have the following corollaries of Theorems 2 and 3.

Corollary 2-3.1. Let $f \in C^r[-1, 1]$ and $m \in \mathbb{N}$. Then for any $n \ge \max\{m + r - 1, 2r + 1\}$ there exists a linear operator $P_n(f, \cdot)$: $C^r[-1, 1] \mapsto \prod_n$ such that for every $0 \le k \le r$, the following inequalities hold:

(18)
$$|f^{(k)}(x) - P_n^{(k)}(f,x)| \le C(r,m)\Delta_n(x)^{r-k}\omega^m(f^{(r)},\Delta_n(x))$$

for $x \in [-1 + n^{-2}, 1 - n^{-2}]$, and

(19)
$$|f^{(k)}(x) - P^{(k)}_n(f,x)| \le C(r,m)\Gamma_{nrmk}(x)^{r-k}\omega^m(f^{(r)},\Gamma_{nrmk}(x)),$$

for $x \in [-1, -1 + n^{-2}] \cup [1 - n^{-2}, 1]$, where $\Gamma_{nrmk}(x) := (1 - x^2)^{(r-k+1)/(r-k+m)} (1/n^2)^{(m-1)/(r-k+m)}.$

Moreover, these estimates are exact in the sense that for no $0 \le k \le r \operatorname{can} \Gamma_{nrmk}(x)$ be replaced by $(1-x^2)^{\alpha_k} n^{2\alpha_k-2}$ with $\alpha_k > (r-k+1)/(r-k+m)$.

Corollary 2-3.1 improves the estimates of Theorem B. First, $\Gamma_{nrmk}(x) \le \sqrt{1-x^2}/n$ for any $0 \le k \le r+2-m$ and for all $x \in [-1, -1+n^{-2}] \cup [1-n^{-2}, 1]$. Second, (18) and (19) hold for all $0 \le k \le r$ while (2) may not be true if k > r+2-m. It is also of interest to consider the special case m = 1 in Corollary 2-3.1.

Corollary 2-3.2 (m = 1). For a function $f \in C^r[-1, 1]$ and any $n \ge 2r + 1$ there exists a linear operator $P_n(f, \cdot)$: $C^r[-1, 1] \mapsto \prod_n$ such that for every $0 \le k \le r$ and $x \in [-1, 1]$, the following inequality holds:

$$|f^{(k)}(x) - P_n^{(k)}(f,x)| \le C(r)\tilde{\Gamma}_{nrk}(x)^{r-k}\omega(f^{(r)},\tilde{\Gamma}_{nrk}(x)),$$

where $\tilde{\Gamma}_{nrk}(x) := \min\{1 - x^2, \sqrt{1 - x^2}/n\}$. Moreover, $\tilde{\Gamma}_{nrk}(x)$ cannot be replaced by $\min\{(1 - x^2)^{\alpha}, \sqrt{1 - x^2}/n\}$ with $\alpha > 1$.

The following result follows from Corollary 2-3.2 by the argument used by D. Leviatan in the proof of Theorem 2 of [21].

Corollary 2-3.3. Let $f \in C^r[-1, 1]$. Then for any $n \ge 2r + 1$ there is a polynomial $P_n \in \prod_n$ such that for every $0 \le k \le r$ and $x \in [-1, 1]$,

$$|f^{(k)}(x) - P_n^{(k)}(x)| \le C(r) \left(\min\left\{ 1 - x^2, \frac{\sqrt{1 - x^2}}{n} \right\} \right)^{r-k} E_{n-r}(f^{(r)}).$$

where $E_s(g) := \inf_{P_s \in \Pi_s} \|g - P_s\|_{C[-1,1]}$.

K. Kopotun

Corollary 2-3.3 improves the estimate

$$|f^{(k)}(x) - P_n^{(k)}(x)| \le C(r) \left(\frac{\sqrt{1-x^2}}{n}\right)^{r-k} E_{n-r}(f^{(r)}),$$

which was obtained by T. Kilgore [17].

The most general case in Theorem 2 for $\lambda = 0$ is when $\alpha_k = 1/m$ for all k. Therefore, for $\lambda = 0$, Theorem 2 (without (16) and (17)) can be restated as follows:

Corollary 2-3.4. Let $r \in \mathbf{N}_0$, $m \in \mathbf{N}$, and $f \in C^r[-1, 1]$. Then for any $n \ge \max\{m + r - 1, 2r + 1\}$ a linear operator $P_n(f, \cdot)$: $C^r[-1, 1] \mapsto \prod_n$ exists such that for every $0 \le k \le r$, the following inequalities hold:

(20)
$$|f^{(k)}(x) - P_n^{(k)}(f, x)| \le C(r, m)\Delta_n(x)^{r-k}\omega^m(f^{(r)}, \Delta_n(x)),$$

for $x \in [-1 + n^{-2}, 1 - n^{-2}]$, and

(21)
$$|f^{(k)}(x) - P_n^{(k)}(f,x)| \le C(r,m)(1-x^2)^{r-k}\omega^m \left(f^{(r)}, (1-x^2)^{1/m}\left(\frac{1}{n^2}\right)^{(m-1)/m}\right),$$

for $x \in [-1, -1 + n^{-2}] \cup [1 - n^{-2}, 1]$.

Moreover, for any $\gamma \in \mathbf{R}$ the quantity $(1 - x^2)^{1/m} (1/n^2)^{(m-1)/m}$ in (21) cannot be replaced by $(1 - x^2)^{\alpha} n^{\gamma}$ with $\alpha > 1/m$.

It should be mentioned that (20) and (21) coincide with (3) when k = r and $m \ge r+2$. Even though for k < r (3) is weaker than (21), it can be shown (using the Taylor expansion) that (21) with k < r follows from the case k = r if $P_n^{(k)}(\pm 1) = f^{(k)}(\pm 1)$ for all k = 0, ..., r. Therefore, for $m \ge r+2$ and large n, the direct part of Corollary 2-3.4 follows from Theorem C. (Similarly, it can be shown that Corollary 2-3.3 follows from Theorem B with m = 1.)

In the next section we recall some definitions and introduce notations which are used throughout the paper. Then following section contains auxiliary results for the proofs of Theorems 1 and 2. In Section 5 we separately consider auxiliary results intended for the proofs of the case $\lambda > 0$ (therefore, this section can be skipped by the reader only interested in the case $\lambda = 0$). Finally, the proofs of Theorems 1 and 2, and Theorem 3 are given in Sections 6 and 7, respectively.

3. Definitions and Notations

Throughout this paper we use the following notations (cf. [8], [9], [24]-[26]):

$$\begin{aligned} x_j &:= \cos(j\pi/n), \quad 0 \le j \le n, \\ I_j &:= [x_j, x_{j-1}], \quad h_j &:= x_{j-1} - x_j, \quad 1 \le j \le n. \end{aligned}$$

(Note that $h_{j\pm 1} < 3h_j$ and $\Delta_n(x) \le h_j \le 5\Delta_n(x)$ for $x \in I_j$.)

$$\tilde{I}_j := \begin{cases} [x_j, x_{j-m-r+1}], & \text{if } m+r-1 \le j \le n, \\ [x_{m+r-1}, 1], & \text{if } 0 \le j < m+r-1, \end{cases}$$

when m + r - 1 > 0, and

$$\tilde{I}_j := \begin{cases} I_j, & \text{if } 1 \le j \le n, \\ I_1, & \text{if } j = 0, \end{cases}$$

when m + r - 1 = 0 (i.e., when m = 1 and r = 0). Also,

$$t_j(x) := \left(\frac{\cos 2n \arccos x}{x - x_j^0}\right)^2 + \left(\frac{\sin 2n \arccos x}{x - \bar{x}_j}\right)^2$$

is the algebraic polynomial of degree 4n-2, where $\bar{x}_j := \cos(j\pi/n - \pi/2n)$, $1 \le j \le n$, $x_j^0 := \cos(j\pi/n - \pi/4n)$, $1 \le j < n/2$ and $x_j^0 := \cos(j\pi/n - 3\pi/4n)$, $n/2 \le j \le n$. This polynomial was introduced by V. K. Dzyadyk (see also I. A. Shevchuk [26]) and extensively used in [9], [24]–[26], and [18].

Let

$$\Pi_j(n,\mu,\xi) := \int_{-1}^1 (1-y^2)^{\xi} t_j(y)^{\mu} dy,$$

$$T_j(n,\mu,\xi)(x) := \Pi_j(n,\mu,\xi)^{-1} \int_{-1}^x (1-y^2)^{\xi} t_j(y)^{\mu} dy,$$

and

$$R_{j,m}(n,\mu,\xi)(x) := (x - x_j)^m T_j(n,\mu,\xi)(x)$$

We also denote

$$\chi_j(x) := \begin{cases} 1, & \text{if } x \ge x_j, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$\psi_j := \frac{h_j}{|x - x_j| + h_j},$$

and note that $\psi_j \leq 1$ for all $x \in [-1, 1]$ and $1 \leq j \leq n$.

 $L(f, t; t_1, \ldots, t_{\nu+1})$ is the Lagrange polynomial of degree $\leq \nu$ which interpolates the function f at the points $t_1, \ldots, t_{\nu+1}$.

Finally, all C are positive constants which are not necessarily the same, even when they occur in the same line. In order to emphasize that C depends only on the parameters v_1, \ldots, v_k the notation $C(v_1, \ldots, v_k)$ is used.

4. Auxiliary Statements and Results

The following proposition contains simple but important inequalities which are used in almost all proofs later on.

Proposition 4. The following inequalities hold for all $x, y \in [-1, 1]$ and $1 \le j \le n$:

(22)
$$(|x - x_j| + h_j)^{-2} \le t_j(x) \le 4 \cdot 10^3 (|x - x_j| + h_j)^{-2},$$

(23)
$$\Delta_n(y)^2 \le 4\Delta_n(x) (|x - y| + \Delta_n(x)),$$

(24)
$$(|x - y| + \Delta_n(x))/2 \le |x - y| + \Delta_n(y) \le 2(|x - y| + \Delta_n(x))$$

(25)
$$\frac{1+x}{1+x_{j-1}} \leq C\psi_j^{-1} \quad and \quad \frac{1-x}{1-x_j} \leq C\psi_j^{-1},$$

(26)
$$C\psi_j^2\Delta_n(x) \leq \Delta_n(x_j) \leq C\psi_j^{-1}\Delta_n(x),$$

and

(27)
$$\sum_{i=1}^{n} \psi_i^{\alpha} \leq C, \quad \text{for any} \quad \alpha \geq 2.$$

Proof. Estimates (22)–(24) and (27) are verified by straightforward computations, and can be found in [24]–[26], for example. To show the validity of (25) we write

$$\frac{1+x}{1+x_{j-1}} = 1 + \frac{x-x_{j-1}}{1+x_{j-1}} \le 1 + \frac{|x-x_{j-1}|}{h_j} \le C\psi_j^{-1},$$

and

$$\frac{1-x}{1-x_j} = 1 + \frac{x_j - x}{1-x_j} \le 1 + \frac{|x-x_j|}{h_j} = \psi_j^{-1}.$$

The right-hand side inequality in (26) follows from (23) and (24) since

$$\begin{aligned} \Delta_n(x_j) &\leq 4\Delta_n(x) \frac{|x-x_j| + \Delta_n(x)}{\Delta_n(x_j)} \\ &\leq 8\Delta_n(x) \frac{|x-x_j| + \Delta_n(x_j)}{\Delta_n(x_j)} \leq C \psi_j^{-1} \Delta_n(x). \end{aligned}$$

Finally, using the last inequality, we have

$$\begin{split} \Delta_n(x_j) &\geq \frac{\Delta_n(x)^2}{4(|x-x_j|+\Delta_n(x_j))} \\ &= \frac{\Delta_n(x)}{4} \frac{\Delta_n(x)}{\Delta_n(x_j)} \frac{\Delta_n(x_j)}{|x-x_j|+\Delta_n(x_j)} \geq C \psi_j^2 \Delta_n(x), \end{split}$$

which is the left-hand side inequality in (26).

The following proposition is needed to describe the behavior of the polynomials T_j , $R_{j,m}$, and their derivatives (see Lemmas 6 and 7 below). To some degree it is a generalization of the inequalities (17.8) and (17.10) of [26].

Proposition 5. Let $\mu \in \mathbf{N}$ and $\xi \in \mathbf{N}_0$ be such that $\mu \ge \xi + 1$. Then the following inequalities are valid for any $1 \le j \le n$:

(28)
$$C(\mu) \leq \prod_{j \in \mathbb{N}} (n, \mu, \xi) (1 + x_{j-1})^{-\xi} (1 - x_j)^{-\xi} h_j^{2\mu - 1} \leq C(\mu).$$

Proof. The estimates (28) can be proved using the method from [24] and [26] (i.e., by estimating separately each of the following three parts of the original integral: $\int_{-1}^{x_j}$, $\int_{x_j}^{x_{j-1}}$, and $\int_{x_{j-1}}^{1}$). However, there is a simpler proof. Since the function $(1 - y^2)^{\xi} t_j(y)^{\mu}$ does not change sign in [-1, 1], then (22) implies

$$\frac{\Pi_j(n,\mu,\xi)}{(1+x_{j-1})^{\xi}(1-x_j)^{\xi}} \sim \int_{-1}^1 \left(\frac{1-y^2}{(1+x_{j-1})(1-x_j)}\right)^{\xi} \frac{1}{(|y-x_j|+h_j)^{2\mu}} dy =: \tilde{\Pi}_j.$$

Now,

$$\begin{split} \tilde{\Pi}_{j} &\geq \int_{x_{j}+h_{j}/3}^{x_{j-1}-h_{j}/3} \left(\frac{1-y^{2}}{(1+x_{j-1})(1-x_{j})}\right)^{\xi} \frac{1}{(|y-x_{j}|+h_{j})^{2\mu}} \, dy \\ &\geq \int_{x_{j}+h_{j}/3}^{x_{j-1}-h_{j}/3} \left(\frac{(1+x_{j}+h_{j}/3)(1-x_{j-1}+h_{j}/3)}{(1+x_{j-1})(1-x_{j})}\right)^{\xi} \frac{1}{(2h_{j})^{2\mu}} \, dy \\ &\geq Ch_{j}^{-2\mu+1}, \end{split}$$

and, hence, the left-hand side inequality in (28) is proved. For the proof of the right-hand side inequality (using (25)) we write

$$\begin{split} \tilde{\Pi}_{j} &\leq C \int_{-1}^{1} \left(\frac{h_{j}}{|y - x_{j}| + h_{j}} \right)^{-2\xi} \frac{1}{(|y - x_{j}| + h_{j})^{2\mu}} dy \\ &= C \int_{-1}^{1} \left(\frac{h_{j}}{|y - x_{j}| + h_{j}} \right)^{2\mu - 2\xi} h_{j}^{-2\mu} dy \\ &\leq C h_{j}^{-2\mu} \int_{0}^{\infty} \left(\frac{h_{j}}{t + h_{j}} \right)^{2\mu - 2\xi} dt \leq C h_{j}^{-2\mu + 1}. \end{split}$$

Lemma 6. Let $\mu, \xi \in \mathbb{N}$ be such that $\mu \ge \xi + 1$, and let $1 \le j \le n$ be a fixed index. Then for the polynomial

$$T_j(x) := T_j(n, \mu, \xi)(x) = \prod_j (n, \mu, \xi)^{-1} \int_{-1}^x (1 - y^2)^{\xi} t_j(y)^{\mu} \, dy,$$

of degree $\leq 4n\mu$ the following inequalities hold for $x \in [-1, 1]$:

$$(29) |T_j^{(k)}(x)| \le C(\mu) \left(\frac{1-x^2}{(1+x_{j-1})(1-x_j)}\right)^{\xi-k+1} \psi_j^{2\mu-7k+7} h_j^{-k}, \quad 1 \le k \le \xi$$

and

(30)
$$|T_j(x) - \chi_j(x)| \le C(\mu) \left(\frac{1 - x^2}{(1 + x_{j-1})(1 - x_j)}\right)^{\xi} \psi_j^{2\mu - \xi - 1}.$$

Proof. For any $x \in [-1, 1]$ (using Proposition 5 and (22)) we have

$$\begin{aligned} |T_j'(x)| &\leq C \left(\frac{1-x^2}{(1+x_{j-1})(1-x_j)} \right)^{\xi} t_j(x)^{\mu} h_j^{2\mu-1} \\ &\leq C \left(\frac{1-x^2}{(1+x_{j-1})(1-x_j)} \right)^{\xi} \psi_j^{2\mu} h_j^{-1}, \end{aligned}$$

which is inequality (29) with k = 1.

For the proof of (30), we consider two cases: $x < x_j$ and $x \ge x_j$. First, for $x < x_j$ (using (29) with k = 1 and the second inequality in (25)) we have

$$\begin{aligned} |T_j(x) - \chi_j(x)| &= |T_j(x)| = \left| \int_{-1}^x T_j'(y) \, dy \right| \\ &\leq C \int_{-1}^x \left(\frac{1+y}{1+x_{j-1}} \right)^{\xi} \left(\frac{h_j}{|y-x_j| + h_j} \right)^{2\mu - \xi} h_j^{-1} \, dy \\ &\leq C \left(\frac{1+x}{1+x_{j-1}} \right)^{\xi} h_j^{2\mu - \xi - 1} \int_{-\infty}^x (x_j - y + h_j)^{-2\mu + \xi} \, dy \\ &\leq C \left(\frac{1-x^2}{(1+x_{j-1})(1-x_j)} \right)^{\xi} \psi_j^{2\mu - \xi - 1}. \end{aligned}$$

Similarly, for $x \ge x_j$ we write

$$\begin{aligned} |T_j(x) - \chi_j(x)| &= |1 - T_j(x)| = \left| \int_x^1 T_j'(y) \, dy \right| \\ &\leq C \int_x^1 \left(\frac{1 - y}{1 - x_j} \right)^{\xi} \left(\frac{h_j}{|y - x_j| + h_j} \right)^{2\mu - \xi} h_j^{-1} \, dy \\ &\leq C \left(\frac{1 - x}{1 - x_j} \right)^{\xi} h_j^{2\mu - \xi - 1} \int_x^\infty (y - x_j + h_j)^{-2\mu + \xi} \, dy \\ &\leq C \left(\frac{1 - x^2}{(1 + x_{j-1})(1 - x_j)} \right)^{\xi} \psi_j^{2\mu - \xi - 1}. \end{aligned}$$

This verifies inequality (30).

Thus, it remains to prove (29) for $1 < k \le \xi$. We need the following inequality of V. K. Dzyadyk [8] (see also [9] and [26]) for algebraic polynomials:

For any $P_n \in \prod_n$ and any $s \in \mathbf{R}$ the inequality

(31)
$$\|\Delta_n(x)^{s+\nu} P_n^{(\nu)}(x)\| \le C(\nu) \|\Delta_n(x)^s P_n(x)\|$$

holds for any $\nu \in \mathbf{N}$, where $\|\cdot\| := \|\cdot\|_{C[-1,1]}$.

Now the fact that $t_j(x)$ is an algebraic polynomial of degree $\leq 4n - 2$, together with (31) and (23), implies

$$\begin{split} \|\Delta_n(x)^{\nu+2}t_j^{(\nu)}(x)\| &\leq C \|\Delta_n(x)^2 t_j(x)\| \leq C \left\| \left(\frac{\Delta_n(x)}{|x-x_j|+h_j|} \right)^2 \right\| \\ &\leq C \left\| \frac{4\Delta_n(x_j)(|x-x_j|+\Delta_n(x_j))}{(|x-x_j|+h_j|^2)} \right\| \leq C \left\| \frac{h_j}{|x-x_j|+h_j|} \right\| \leq C. \end{split}$$

Therefore, for any $\nu \ge 1$ and $x \in [-1, 1]$ (using (23) and (24)) we have

(32)
$$|t_{j}^{(\nu)}(x)| \leq C\Delta_{n}(x)^{-\nu-2} \leq C\left(\frac{|x-x_{j}|+\Delta_{n}(x)}{\Delta_{n}(x_{j})^{2}}\right)^{\nu+2}$$
$$\leq C\left(\frac{|x-x_{j}|+h_{j}}{h_{j}}\right)^{\nu+2}h_{j}^{-\nu-2} \leq C(\psi_{j}h_{j})^{-\nu-2}.$$

Using the last inequality, we have, for $1 \le k \le \xi$,

$$\begin{split} \Pi_{j}(n,\mu,\xi)|T_{j}^{(k)}(x)| &= |[(1-x^{2})^{\xi}t_{j}(x)^{\mu}]^{(k-1)}| \\ &= \left|\sum_{\nu=0}^{k-1} {\binom{k-1}{\nu}} [(1-x^{2})^{\xi}]^{(k-1-\nu)}[t_{j}(x)^{\mu}]^{(\nu)}\right| \\ &\leq C\sum_{\nu=0}^{k-1} {\binom{k-1}{\nu}} \sum_{l=0}^{k-1-\nu} {\binom{k-1-\nu}{l}} [(1-x)^{\xi}]^{(k-1-\nu-l)}[(1+x)^{\xi}]^{(l)} \\ &\times \sum_{\substack{i_{1},\dots,i_{\nu}\geq 0\\i_{1}+\dots+i_{\nu}=\nu}} |t_{j}^{(i_{1})}(x)\cdots t_{j}^{(i_{\nu})}(x)|t_{j}(x)^{\mu-\nu} \\ &\leq C\sum_{\nu=0}^{k-1} \sum_{l=0}^{k-1-\nu} (1-x)^{\xi-k+1+\nu+l}(1+x)^{\xi-l} \\ &\times \sum_{\substack{i_{1},\dots,i_{\nu}\geq 0\\i_{1}+\dots+i_{\nu}=\nu}} |(\psi_{j}h_{j})^{-i_{1}-2}\cdots (\psi_{j}h_{j})^{-i_{\nu}-2}|(|x-x_{j}|+h_{j})^{-2\mu+2\nu} \\ &\leq C\sum_{\nu=0}^{k-1} \sum_{l=0}^{k-1-\nu} (1-x)^{\xi-k+1+\nu+l}(1+x)^{\xi-l}\psi_{j}^{2\mu-5\nu}h_{j}^{-2\mu-\nu}. \end{split}$$

Therefore, Proposition 5 yields

$$\begin{aligned} |T_{j}^{(k)}(x)| &\leq C \sum_{\nu=0}^{k-1} \sum_{l=0}^{k-1-\nu} \left(\frac{1-x^{2}}{(1+x_{j-1})(1-x_{j})} \right)^{\xi-k+1} \left(\frac{1-x}{1-x_{j}} \right)^{\nu+l} \\ &\times \left(\frac{1+x}{1+x_{j-1}} \right)^{k-1-l} \left(\frac{h_{j}}{1-x_{j}} \right)^{k-1-\nu-l} \left(\frac{h_{j}}{1+x_{j-1}} \right)^{l} \psi_{j}^{2\mu-5\nu} h_{j}^{-k}. \end{aligned}$$

Now, using (25), inequalities $1 - x_j \ge h_j$, and $1 + x_{j-1} \ge h_j$, and the fact that $\psi_j \le 1$, we have

$$\begin{aligned} \left| T_{j}^{(k)}(x) \right| &\leq C \left(\frac{1-x^{2}}{(1+x_{j-1})(1-x_{j})} \right)^{\xi-k+1} \sum_{\nu=0}^{k-1} \psi_{j}^{2\mu-6\nu-k+1} h_{j}^{-k} \\ &\leq C \left(\frac{1-x^{2}}{(1+x_{j-1})(1-x_{j})} \right)^{\xi-k+1} \psi_{j}^{2\mu-7k+7} h_{j}^{-k}. \end{aligned}$$

The proof of (29) is complete.

Lemma 7. Let $1 \le j \le n$ be a fixed index, and let $m_0, k_0, \mu, \xi \in \mathbb{N}$ be such that $\xi \ge 2k_0$ and $\mu \ge 10\xi + m_0$. Then for any $0 \le m \le m_0$ the polynomial $R_{j,m}(x) := R_{j,m}(n, \mu, \xi)(x) = (x - x_j)^m T_j(n, \mu, \xi)(x)$ satisfies the following inequalities for $x \in [-1, 1]$ and $0 \le k \le k_0$:

(33)
$$|R_{j,m}^{(k)}(x) - [(x - x_j)^m]^{(k)}\chi_j(x)| \le C(\mu) \left(\frac{1 - x^2}{(1 + x_{j-1})(1 - x_j)}\right)^{\xi/2} \psi_j^{\mu} h_j^{m-k}.$$

Note that $[(x - x_j)^m]^{(k)} \equiv 0$ for $k \ge m + 1$. Therefore for these k, (33) becomes an estimate of the kth derivative of the polynomial $R_{j,m}$. This observation is used in the proofs of (10), (16), and (17).

Proof. We have

$$\begin{aligned} |R_{j,m}^{(k)}(x) - [(x - x_j)^m]^{(k)} \chi_j(x)| \\ &\leq |[(x - x_j)^m]^{(k)} (T_j(x) - \chi_j(x))| + \sum_{\nu=1}^k \binom{k}{\nu} |T_j^{(\nu)}(x)| |[(x - x_j)^m]^{(k-\nu)}| \\ &= \mathcal{S}_1(x) + \mathcal{S}_2(x). \end{aligned}$$

Note that if $k \ge m + 1$, then $S_1(x) \equiv 0$. For $0 \le k \le m$ (using (30)) we have the following:

$$\begin{aligned} \mathcal{S}_1(x) &\leq C |x - x_j|^{m-k} \left(\frac{1 - x^2}{(1 + x_{j-1})(1 - x_j)} \right)^{\xi} \psi_j^{2\mu - \xi - 1} \\ &\leq C \left(\frac{1 - x^2}{(1 + x_{j-1})(1 - x_j)} \right)^{\xi/2} \psi_j^{2\mu - 2\xi + k - m - 1} h_j^{m-k}. \end{aligned}$$

In order to estimate $S_2(x)$ (using Lemma 6) we write

$$S_2(x) \leq C \sum_{\nu=\max\{1,k-m\}}^k \left(\frac{1-x^2}{(1+x_{j-1})(1-x_j)}\right)^{\xi-\nu+1} \psi_j^{2\mu-7\nu+7} h_j^{-\nu} |x-x_j|^{m-k+\nu}$$

....

....

$$\leq C \left(\frac{1-x^2}{(1+x_{j-1})(1-x_j)}\right)^{\xi/2} \sum_{\nu=\max\{1,k-m\}}^{k} \psi_j^{2\mu-\xi-2} \psi_j^{2\mu-7\nu+7} \psi_j^{k-m-\nu} h_j^{m-k}$$

$$\leq C \left(\frac{1-x^2}{(1+x_{j-1})(1-x_j)}\right)^{\xi/2} \psi_j^{2\mu-\xi-5k-m+5} h_j^{m-k}.$$

Combining the estimates for $S_1(x)$ and $S_2(x)$ together, and keeping in mind that $\psi_j \le 1$, we obtain (33).

For the proof of Theorem 1 we need the following lemma.

Lemma G. Let $r \in \mathbf{N}_0$, $m \in \mathbf{N}$, and $f \in C^r(\tilde{I}_j)$, where $j \ge m + r - 1$ is a fixed index. Then the following inequalities hold for all $0 \le k \le r$:

(34)
$$|f^{(k)}(x) - L^{(k)}(f, x; x_j, x_{j-1}, \dots, x_{j-m-r+1})| \le C(r, m)\omega^{m+r-k}(f^{(k)}, h_i, \tilde{I}_i), \quad x \in \tilde{I}_i.$$

Proof. For r = 0, the assertion of the lemma immediately follows from the well-known Whitney inequality. For r > 0, it was proved by I. A. Shevchuk (Lemma 1.4.2 of [26]).

The following consequence of Lemma G is used for the proof of Theorem 2.

Corollary H. Let $r \in \mathbf{N}_0$, $m \in \mathbf{N}$, and $f \in C^r(\tilde{I}_j)$, where $j \ge m + r - 1$. Then the following inequalities hold for all $0 \le k \le r$:

(35)
$$|f^{(k)}(x) - L^{(k)}(f, x; x_j, x_{j-1}, \dots, x_{j-m-r+1})| \le C(r, m)h_j^{r-k}\omega^m(f^{(r)}, h_j, \tilde{I}_j), \quad x \in \tilde{I}_j.$$

Also, for the proof of Theorem 2 we consider Lagrange polynomials concurrently with Lagrange-Hermite polynomials when interpolating f and its derivatives at 1 (or -1).

Lemma 8. Let $r \in \mathbf{N}_0$, $m \in \mathbf{N}$, $f \in C^r(\tilde{I}_1)$. Let $\hat{L}(f, x)$ be the Lagrange-Hermite interpolation polynomial of degree $\leq m + r - 1$ such that $\hat{L}(f, x_j) = f(x_j)$, $1 \leq j \leq m - 1$ and $\hat{L}^{(k)}(f, 1) = f^{(k)}(1)$, $0 \leq k \leq r$. Then the following inequalities hold for all $0 \leq k \leq r$ and $x \in [1 - n^{-2}, 1]$:

(36)
$$|f^{(k)}(x) - \hat{L}^{(k)}(f, x)|$$

 $\leq C(r, m)(1-x)^{r-k}\omega^m \left(f^{(r)}, (1-x)^{1/m} \left(\frac{1}{n^2}\right)^{(m-1)/m}, \tilde{I}_1\right).$

Changing variable x to -x (i.e., considering the symmetric case), we immediately get the following result for $\tilde{L}(f, x) := \hat{L}(f(-x), -x)$.

Lemma 9. Let $r \in \mathbf{N}_0$, $m \in \mathbf{N}$, $f \in C^r(\tilde{I}_n)$. Let $\tilde{L}(f, x)$ be the Lagrange-Hermite interpolation polynomial of degree $\leq m+r-1$ such that $\tilde{L}(f, x_j) = f(x_j)$, $n-m+1 \leq j \leq n-1$ and $\tilde{L}^{(k)}(f,-1) = f^{(k)}(-1)$, $0 \leq k \leq r$. Then the following inequalities hold for all $0 \leq k \leq r$ and $x \in [-1, -1 + n^{-2}]$:

(37)
$$|f^{(k)}(x) - \tilde{L}^{(k)}(f, x)|$$

 $\leq C(r, m)(1+x)^{r-k}\omega^m \left(f^{(r)}, (1+x)^{1/m} \left(\frac{1}{n^2}\right)^{(m-1)/m}, \tilde{I}_n\right).$

Proof of Lemma 8. In the proof it is convenient to denote the interval \tilde{I}_1 by J. Then $|J| = \max\{1 - x_{m+r-1}, 1 - x_1\}$. Also, let

$$L(f, x) := L(f, x; x_{m+r-1}, \dots, x_0)$$

be the Lagrange interpolation polynomial of degree $\leq m + r - 1$ (it is important that L(f, x) has the same degree as $\hat{L}(f, x)$). First, we prove that for $\hat{L}(f, x)$ an inequality similar to (35) is satisfied (i.e., to obtain the estimates of local approximation near ± 1 of the same type as (35) we can use either Lagrange or Lagrange-Hermite interpolation polynomials). The following identity is valid:

$$f(x) - \hat{L}(f, x) \equiv f(x) - L(f, x) - \hat{L}(f - L(f, \cdot), x).$$

Using the Taylor formula, we write the polynomial $\hat{L}(f - L(f, \cdot), x)$ in the form

$$\hat{L}(f - L(f, \cdot), x) = \sum_{i=0}^{r} (i!)^{-1} (f^{(i)}(1) - L^{(i)}(f, 1))(x - 1)^{i} + (x - 1)^{r+1} p_{m-2}(f, x),$$

where $p_{m-2}(f, x) \in \prod_{m-2}$ if $m \ge 2$, and $p_{m-2}(f, x) \equiv 0$ if m = 1. Now $f(x_j) = L(f, x_j), 1 \le j \le m - 1$, imply $\hat{L}(f - L(f, \cdot), x_j) = 0, 1 \le j \le m - 1$. Therefore,

$$\sum_{i=0}^{r} (i!)^{-1} (f^{(i)}(1) - L^{(i)}(f, 1))(x_j - 1)^i + (x_j - 1)^{r+1} p_{m-2}(f, x_j) = 0,$$

for $1 \le j \le m - 1$. Using the fact that $n^{-2} \le |x_j - 1| \le |J| \le Cn^{-2}$ ($C = 3^{m+r}$ will do), we have, for $1 \le j \le m - 1$,

$$|p_{m-2}(f,x_j)| \le Cn^{2r+2} \sum_{i=0}^r |f^{(i)}(1) - L^{(i)}(f,1)| n^{-2i}$$

and, applying Corollary H, we have

$$|p_{m-2}(f, x_j)| \leq C n^{2r+2} \sum_{i=0}^r n^{-2r+2i} \omega^m (f^{(r)}, n^{-2}, J) n^{-2i}$$

$$\leq C n^2 \omega^m (f^{(r)}, n^{-2}, J).$$

Now, since

$$p_{m-2}(f,x) = \sum_{j=1}^{m-1} \left(\prod_{1 \le i \le m-1, i \ne j} \frac{x-x_i}{x_j - x_i} \right) p_{m-2}(f,x_j),$$

the estimate

$$|p_{m-2}(f,x)| \le Cn^2 \omega^m(f^{(r)}, n^{-2}, J)$$

follows for all $x \in J$. This implies

$$|\hat{L}(f - L(f, \cdot), x)| \le Cn^{-2r}\omega^m(f^{(r)}, n^{-2}, J), \quad x \in J$$

Applying the Markov inequality we have

$$\|\hat{L}^{(k)}(f - L(f, \cdot), x)\| \le C|J|^{-k} \|\hat{L}(f - L(f, \cdot), x)\| \le Cn^{-2r+2k} \omega^m(f^{(r)}, n^{-2}, J).$$

Therefore, together with (35), we have

$$\begin{aligned} |f^{(k)}(x) - \hat{L}^{(k)}(f,x)| &\leq |f^{(k)}(x) - L^{(k)}(f,x)| + |\hat{L}^{(k)}(f - L(f,\cdot),x)| \\ &\leq C n^{-2r+2k} \omega^m(f^{(r)}, n^{-2}, J), \quad x \in J. \end{aligned}$$

Now we improve the last inequality near 1 using the fact that $\hat{L}^{(k)}(f, 1) = f^{(k)}(1)$, $0 \le k \le r$, and the techniques developed in [9] and [26]. First, we consider the case k = r. Denoting $f^{(r)}(x) - \hat{L}^{(r)}(f, x)$ by g(x), we conclude that

$$|g(x)| \le C\omega^m(f^{(r)}, n^{-2}, J) = C\omega^m(g, n^{-2}, J), \quad x \in J,$$

since $\hat{L}^{(r)}(f, x)$ is of degree $\leq m - 1$. Now, using the equality g(1) = 0, we have the following for any $x \in [1 - n^{-2}, 1]$:

$$|g(x)| = |g(1) - g(x)| \le \omega(g, 1 - x, J).$$

Therefore, if m = 1, then (36) is proved for k = r. If $m \ge 2$, then using the Marchaud inequality, we have

$$(38) |g(x)| \leq \omega(g, 1 - x, J)$$

$$\leq C(1 - x) \left(\int_{1 - x}^{|J|} u^{-2} \omega^{m}(g, u, J) \, du + |J|^{-1} ||g||_{C(J)} \right)$$

$$\leq C(1 - x) \left(\int_{1 - x}^{|J|} u^{-2} \omega^{m}(g, u, J) \, du + |J|^{-1} \omega^{m}(g, |J|, J) \right)$$

$$\leq C(1 - x) \int_{1 - x}^{|J|} u^{-2} \omega^{m}(g, u, J) \, du.$$

The last inequality is valid since, for all $u \leq |J|$, we have $|J|^{-m}\omega^m(g, |J|, J) \leq Cu^{-m}\omega^m(g, u, J)$. Therefore,

$$\int_{1-x}^{|J|} u^{-2} \omega^m(g, u, J) \, du \geq C \int_{1-x}^{|J|} |J|^{-m} u^{m-2} \omega^m(g, |J|, J) \, du$$

$$\geq C |J|^{-1} \omega^m(g, |J|, J).$$

Estimate (38) implies

$$|f^{(r)}(x) - \hat{L}^{(r)}(f, x)| \le C(1-x) \int_{1-x}^{|J|} u^{-2} \omega^m(f^{(r)}, u, J) \, du.$$

K. Kopotun

Now let us denote $\Omega_x := (1 - x)^{1/m} (1/n^2)^{(m-1)/m}$. Clearly, $1 - x \le \Omega_x \le n^{-2} < |J|$ for any $x \in [1 - n^{-2}, 1]$. Hence,

$$\begin{split} |f^{(r)}(x) - \hat{L}^{(r)}(f, x)| &\leq C(1-x) \left(\int_{1-x}^{\Omega_x} + \int_{\Omega_x}^{|J|} \right) u^{-2} \omega^m(f^{(r)}, u, J) \, du \\ &\leq C(1-x) \left(\int_{1-x}^{\infty} u^{-2} \omega^m(f^{(r)}, \Omega_x, J) \, du \right. \\ &\qquad + \int_0^{|J|} \Omega_x^{-m} u^{m-2} \omega^m(f^{(r)}, \Omega_x, J) \, du \right) \\ &\leq C \omega^m(f^{(r)}, \Omega_x, J) (1 + \Omega_x^{-m}(1-x)|J|^{m-1}) \\ &\leq C \omega^m(f^{(r)}, \Omega_x, J), \quad x \in [1-n^{-2}, 1]. \end{split}$$

Thus, (36) is proved for any $m \in \mathbf{N}$ for the case k = r.

For $0 \le k \le r - 1$ (using the Taylor formula) we have

$$|f^{(k)}(x) - \hat{L}^{(k)}(f, x)| = \left| \frac{f^{(r)}(\zeta_x) - \hat{L}^{(r)}(f, \zeta_x)}{(r-k)!} (x-1)^{r-k} \right|$$

for some $\zeta_x \in [x, 1]$. Finally, using the last equality and (36) with k = r, we have, for $0 \le k \le r - 1$ and $x \in [1 - n^{-2}, 1]$,

$$\begin{split} |f^{(k)}(x) - \hat{L}^{(k)}(f,x)| &\leq (1-x)^{r-k} \omega^m \bigg(f^{(r)}, (1-\zeta_x)^{1/m} \left(\frac{1}{n^2}\right)^{(m-1)/m}, J \bigg) \\ &\leq C(1-x)^{r-k} \omega^m \bigg(f^{(r)}, (1-x)^{1/m} \left(\frac{1}{n^2}\right)^{(m-1)/m}, J \bigg), \end{split}$$

which completes the proof of the lemma.

The following lemma shows how any spline can be presented as a linear combination of the truncated power functions $(t - t_i)^{\nu}_+$.

Lemma I (Proposition 2.3.1 of [20]). The spline S(t) of degree M with the knots at t_i , $1 \le i \le N - 1$ ($t_0 < t_1 < \cdots < t_N$) is uniquely presented in the form

(39)
$$S(t) = \sum_{\nu=0}^{M} \frac{1}{\nu!} S^{(\nu)}(t_0) (t-t_0)^{\nu} + \sum_{i=1}^{N-1} \sum_{j=0}^{M} \frac{1}{(M-j)!} (S^{(M-j)}(t_i+0) - S^{(M-j)}(t_i-0)) (t-t_i)_+^{M-j}$$

for $t \in [t_0, t_N]$.

Note that if S(x) has defect k_i $(1 \le k_i \le m + 1)$ at a knot t_i , then $S^{(m-j)}(t_i + 0) - S^{(m-j)}(t_i - 0) = 0$ for $k_i \le j \le m$.

5. Auxiliary Results for the Case $\lambda > 0$

This section contains results which are used only in the case $\lambda > 0$. The following lemma shows that, in fact, it does not matter whether we use ω^m or $\omega_{\varphi^{\lambda}}^m$ moduli to estimate the degree of local approximation. Whatever is convenient to use (in most cases, the usual modulus of smoothness) will do.

Lemma J [19]. Let $[a, b] \subset [-1, 1]$ be such that $b - a \leq C\Delta_n(a)$, where C is an absolute constant. Then for any integer m, there exists a constant C(m) such that for any $\lambda \in [0, 1]$ and $x \in [a, b]$,

(40)
$$C(m)\omega^{m}(f, \Delta_{n}(x), [a, b]) \leq \omega_{\varphi^{\lambda}}^{m}(f, n^{-\lambda}\Delta_{n}(x)^{1-\lambda}, [a, b])$$
$$\leq C(m)\omega^{m}(f, \Delta_{n}(x), [a, b]).$$

Note that only the first inequality in (40) is used in our proofs. For the proof of Theorem 2 we also need the following refinement of the above lemma for $x \in \{x|1-x^2 \le n^{-2}\}$.

Lemma 10. For any $m \in \mathbb{N}$, $\lambda \in [0, 1]$, $0 \le \alpha \le 1$, and $x \in \{x | 1 - x^2 \le n^{-2}\}$, the following inequality holds:

(41)
$$\omega^m(f,(1-x^2)^{\alpha}n^{2\alpha-2}) \le C(m)\omega_{\omega^{\lambda}}^m(f,n^{-\lambda}((1-x^2)^{\alpha}n^{2\alpha-2})^{1-\lambda}).$$

Note that (41) cannot be reversed (at least not for all λ) since, for x = 1 and $\alpha \neq 0$, the left-hand side of (41) is equal to zero; at the same time, for $\lambda = 1$, the right-hand side of (41) does not vanish if f is not in Π_{m-1} .

Proof of Lemma 10. Using the definition of $\omega_{\varphi^{\lambda}}^{m}$ moduli, we have the following inequalities:

$$J_{\lambda} := \omega_{\varphi^{\lambda}}^{m}(f, n^{-\lambda}((1-x^{2})^{\alpha}n^{2\alpha-2})^{1-\lambda})$$

$$= \sup_{h} \left\{ \left\| \Delta_{h(\sqrt{1-y^{2}})^{\lambda}}^{m}(f, y) \right\|_{C[-1,1]}, 0 < h \le n^{-\lambda}((1-x^{2})^{\alpha}n^{2\alpha-2})^{1-\lambda} \right\}$$

$$= \sup_{\tilde{h}:=(hn^{\lambda})^{1/(1-\lambda)}} \left\{ \left\| \Delta_{\tilde{h}^{1-\lambda}n^{-\lambda}(\sqrt{1-y^{2}})^{\lambda}}(f, y) \right\|_{C[-1,1]}, 0 < \tilde{h} \le (1-x^{2})^{\alpha}n^{2\alpha-2} \right\}$$

$$\geq \sup_{0 < \tilde{h} \le (1-x^{2})^{\alpha}n^{2\alpha-2}} \left\| \Delta_{\tilde{h}^{1-\lambda}n^{-\lambda}(\sqrt{1-y^{2}})^{\lambda}}(f, y) \right\|_{C[-1+(m/2)^{2/(2-\lambda)}\tilde{h}, 1-(m/2)^{2/(2-\lambda)}\tilde{h}]}$$

Now, note that for any $y \in [-1 + (m/2)^{2/(2-\lambda)}\tilde{h}, 1 - (m/2)^{2/(2-\lambda)}\tilde{h}]$ the inequality $1 - y^2 \ge (m/2)^{2/(2-\lambda)}\tilde{h}$ is valid, and, therefore, since $\tilde{h} \le n^{-2}$, then $\tilde{h}^{1-\lambda}n^{-\lambda}(\sqrt{1-y^2})^{\lambda} \ge 1$

 $(m/2)^{\lambda/(2-\lambda)}\tilde{h}$. Hence, we have (by the same argument as in Section 5 of [18])

$$J_{\lambda} \geq \sup_{\substack{0 < \tilde{h} \leq (1-x^{2})^{\alpha} n^{2\alpha-2}}} \|\Delta_{(m/2)^{\lambda/(2-\lambda)}\tilde{h}}^{m}(f, y)\|_{C[-1+(m/2)^{2/(2-\lambda)}\tilde{h}, 1-(m/2)^{2/(2-\lambda)}\tilde{h}]}$$

$$= \sup_{\substack{0 < \hat{h}:=(m/2)^{\lambda/(2-\lambda)}\tilde{h} \leq (m/2)^{\lambda/(2-\lambda)}(1-x^{2})^{\alpha} n^{2\alpha-2}}} \|\Delta_{\hat{h}}^{m}(f, y)\|_{C[-1+m\hat{h}/2, 1-m\hat{h}/2]}$$

$$= \omega^{m}(f, (m/2)^{\lambda/(2-\lambda)}(1-x^{2})^{\alpha} n^{2\alpha-2})$$

$$\geq 2^{-m} \omega^{m}(f, (1-x^{2})^{\alpha} n^{2\alpha-2}).$$

Thus, the proof of the lemma is complete.

The following proposition is needed only to make the constants in (9), (10), and (14)–(17) independent of λ .

Proposition K [19]. For any integer *m* there exists a constant C = C(m) such that for every $t > 0, 0 \le \lambda \le 1$, and $\mu \ge 1$, the following inequality holds:

(42)
$$\omega_{a^{\lambda}}^{m}(f,\mu t) \leq C(m)\mu^{2m}\omega_{a^{\lambda}}^{m}(f,t).$$

6. Proofs of Theorems 1 and 2

The idea behind the proofs of both Theorems 1 and 2 is quite natural, and to a certain extent was used in the literature (see [2], [4], [18], and [26], for example). Namely, if the spline S is defined to be a Lagrange or Lagrange-Hermite interpolation polynomial on I_j , then Lemmas 8, 9, and G imply that $f^{(k)}$ is sufficiently approximated by $S^{(k)}$. Using Lemma I, we construct a polynomial P_n which has the same form as the analytic representation (39) of the spline, but with $R_{i,M-j}$ instead of $(\cdot - x_i)_+^{M-j}$. Finally, using Lemma 7, we show that $P_n^{(k)}$ sufficiently approximates $S^{(k)}$ and, therefore, $f^{(k)}$.

Everywhere in this section we use the following convention which simplifies notations. Let

$$l_j(x) := \begin{cases} L(f, x; x_j, x_{j-1}, \dots, x_{j-m-r+1}), & \text{if } m+r-1 \le j \le n, \\ L(f, x; x_{m+r-1}, x_{m+r-2}, \dots, x_0), & \text{if } 0 \le j < m+r-1. \end{cases}$$

Then for any j = 0, ..., n, function $l_j(x)$ is the Lagrange interpolation polynomial of degree $\leq m + r - 1$.

Note that $I_j \subset \tilde{I}_j$ for all j = 1, ..., n and $|\tilde{I}_j| \leq C(r, m)|I_j|$ (therefore, the condition in the assertion of Lemma J is satisfied for any $[a, b] \subset \tilde{I}_j$). Also, note that it is sufficient to prove (9), (10), and (14)–(17) almost everywhere in [-1, 1], since all the functions being considered in these inequalities are assumed to be continuous. Everywhere in this section it is presumed that $x \neq x_j$, $1 \leq j \leq n-1$. Thus, for example, when we consider derivatives of the spline S(x) we do not emphasize (though it is implied) that $S^{(k)}(x)$ is defined for $x \in [-1, 1] \setminus \{x_1, ..., x_{n-1}\}$.

Now we are ready to prove Theorem 1.

6.1. Proof of Theorem 1

Let $S(x) := l_j(x)$ for $x \in I_j$, $1 \le j \le n$. Then S(x) is a spline of degree $\le m + r - 1$. Using Lemmas G and J, and properties of the classical moduli of smoothness, we have the following estimates for $x \in (x_j, x_{j-1})$, $1 \le j \le n$, and for all $0 \le k \le r$ and $k \le r_k \le r$:

$$(43) |f^{(k)}(x) - S^{(k)}(x)| = |f^{(k)}(x) - l_{j}^{(k)}(x)|$$

$$\leq C\omega^{m+r-k}(f^{(k)}, \Delta_{n}(x), \tilde{I}_{j})$$

$$\leq C\Delta_{n}(x)^{r_{k}-k}\omega^{m+r-r_{k}}(f^{(r_{k})}, \Delta_{n}(x), \tilde{I}_{j})$$

$$\leq C\Delta_{n}(x)^{r_{k}-k}\omega^{m+r-r_{k}}_{\varphi^{\lambda}}(f^{(r_{k})}, n^{-\lambda}\Delta_{n}(x)^{1-\lambda}, \tilde{I}_{j})$$

$$\leq C\Delta_{n}(x)^{r_{k}-k}\omega^{m+r-r_{k}}_{\varphi^{\lambda}}(f^{(r_{k})}, n^{-\lambda}\Delta_{n}(x)^{1-\lambda}).$$

Taking into account that the spline S(x) is of degree at most m + r - 1 we get the following analytic representation (see (39)), which will be used for the construction of an approximating polynomial.

(44)
$$S(x) = p_{m+r-1}(x) + \sum_{i=1}^{n-1} \sum_{j=0}^{m+r-1} A_{ij}(x-x_i)_+^{m+r-1-j}, \quad x \in [-1,1]$$

where $p_{m+r-1}(x) = \sum_{\nu=0}^{m+r-1} (1/\nu!) S^{(\nu)}(-1)(x+1)^{\nu}$ is a polynomial of degree $\leq m + r - 1$, and coefficients A_{ij} are given by

$$A_{ij} := \frac{1}{(m+r-1-j)!} (S^{(m+r-1-j)}(x_i+0) - S^{(m+r-1-j)}(x_i-0)).$$

Now let

(45)
$$P_n(x) = p_{m+r-1}(x) + \sum_{i=1}^{n-1} \sum_{j=0}^{m+r-1} A_{ij} R_{i,m+r-1-j}(x).$$

Then $P_n(x)$ is a polynomial of degree $\leq 4n\mu + m + r$ and $P_{4n\mu+m+r}(f, \cdot)$: $f \mapsto P_n$ is a linear operator.

Let us estimate $P_n^{(k)}(x) - S^{(k)}(x)$, $x \in [-1, 1]$. First, we consider A_{ij} . Using the Markov inequality first and then the Whitney inequality (Lemma G with k = 0), we have for $1 \le i \le n-1$, $0 \le j \le m+r-1$, and any $0 \le \tilde{r} \le r$,

$$(46) |A_{ij}| = C|S^{(m+r-1-j)}(x_i+0) - S^{(m+r-1-j)}(x_i-0)|
= C|l_{i+1}^{(m+r-1-j)}(x_i) - l_i^{(m+r-1-j)}(x_i)|
\leq Ch_i^{-m-r+1+j} ||l_{i+1} - l_i||_{C(I_i)}
\leq Ch_i^{-m-r+1+j}(||l_{i+1} - f||_{C(\tilde{I}_{i+1})} + ||f - l_i||_{C(\tilde{I}_i)})
\leq Ch_i^{-m-r+1+j}\omega^{m+r}(f, \Delta_n(x_i), \tilde{I}_{i+1} \cup \tilde{I}_i)
\leq Ch_i^{-m-r+1+j+\tilde{r}}\omega^{m+r-\tilde{r}}(f^{(\tilde{r})}, \Delta_n(x_i), \tilde{I}_{i+1} \cup \tilde{I}_i)
\leq Ch_i^{-m-r+1+j+\tilde{r}}\omega^{m+r-\tilde{r}}(f^{(\tilde{r})}, n^{-\lambda}\Delta_n(x_i)^{1-\lambda}, \tilde{I}_{i+1} \cup \tilde{I}_i).$$

Now we choose μ and ξ to be large in comparison with r and m. For example, let $\xi = 4(m+r)$ and $\mu = 50(m+r)$. We continue to write " μ " and " ξ " understanding that now these variables are functions of r and m.

For any $x \in [-1, 1] \setminus \{x_1, ..., x_{n-1}\}, 0 \le k \le 2(m + r) \text{ and } 0 \le \tilde{r} \le r \text{ (using Lemma 7, Proposition K, and estimates (46), (25), (26), and (27)) we have$

$$(47) \qquad |P_{n}^{(k)}(x) - S^{(k)}(x)| \\ \leq \sum_{i=1}^{n-1} \sum_{j=0}^{m+r-1} |A_{ij}| \left| R_{i,m+r-1-j}^{(k)}(x) - \frac{\partial^{k}}{\partial x^{k}} (x - x_{i})_{+}^{m+r-1-j} \right| \\ \leq C \sum_{i=1}^{n-1} \sum_{j=0}^{m+r-1} h_{i}^{-m-r+j+1+\tilde{r}} \omega_{\varphi^{\lambda}}^{m+r-\tilde{r}} (f^{(\tilde{r})}, n^{-\lambda} \Delta_{n}(x_{i})^{1-\lambda}) \\ \times \psi_{i}^{\mu-\xi} h_{i}^{m+r-j-1-k} \\ \leq C \omega_{\varphi^{\lambda}}^{m+r-\tilde{r}} (f^{(\tilde{r})}, n^{-\lambda} \Delta_{n}(x)^{1-\lambda}) \sum_{i=1}^{n-1} h_{i}^{\tilde{r}-k} \psi_{i}^{\mu-\xi-2m-2r+2\tilde{r}} \\ \leq C \Delta_{n}(x)^{\tilde{r}-k} \omega_{\varphi^{\lambda}}^{m+r-\tilde{r}} (f^{(\tilde{r})}, n^{-\lambda} \Delta_{n}(x)^{1-\lambda}) \sum_{i=1}^{n-1} \psi_{i}^{\mu-\xi-2m-2r-2k} \\ \leq C \Delta_{n}(x)^{\tilde{r}-k} \omega_{\varphi^{\lambda}}^{m+r-\tilde{r}} (f^{(\tilde{r})}, n^{-\lambda} \Delta_{n}(x)^{1-\lambda}).$$

Therefore for any $x \in [-1, 1]$ and for fixed $0 \le k \le r$, choosing $\tilde{r} = r_k$ together with (43), we have

$$|f^{(k)}(x) - P_n^{(k)}(x)| \le C\Delta_n(x)^{r_k - k} \omega_{\omega^{\lambda}}^{m + r - r_k}(f^{(r_k)}, n^{-\lambda}\Delta_n(x)^{1 - \lambda}),$$

which is the desired inequality (9). Estimate (10) for $m + r \le k \le 2(m + r)$ follows from (47) since $S^{(k)}(x) \equiv 0$ a.e. for $k \ge m + r$.

Finally, for k > 2(m + r), inequality (10) follows from the above estimates and Theorem 4.1 of [6]. (Note that Theorem 4.1 in [6] was proved with constants which depend on λ . However, using the inequality $\omega_{\varphi^{\lambda}}^{s}(g, \mu\delta) \leq C(s)(1 + \mu^{2s})\omega_{\varphi^{\lambda}}^{s}(g, \delta)$ (see Proposition K), instead of $\omega_{\varphi^{\lambda}}^{s}(g, \mu\delta) \leq C(s, \lambda)(1 + \mu^{s})\omega_{\varphi^{\lambda}}^{s}(g, \delta)$, and following its proof word for word one can show that this dependence on λ is not necessary and can be eliminated.)

The proof of Theorem 1 is now complete for sufficiently large n, say, $n \ge n_0$ (in fact we proved (9) and (10) for $n \ge 201(m+r)$). For $m+r-1 \le n < n_0$ the assertion of Theorem 1 follows from the case n = m+r-1 for which it is sufficient to choose $P_{m+r-1}(f, x) := L(f, x; -1, -1+2/(m+r-1), ..., 1)$.

6.2. Proof of Theorem 2

For the proof of Theorem 2 we change the construction of the spline S(x) from the previous subsection near the endpoints of the interval [-1, 1]. Namely, let

(48)
$$S(x) := \begin{cases} l_j(x), & x \in I_j, 2 \le j \le n-1, \\ \hat{L}(f, x), & x \in I_1, \\ \tilde{L}(f, x), & x \in I_n. \end{cases}$$

where $\hat{L}(f, x)$ and $\tilde{L}(f, x)$ are the Lagrange-Hermite interpolation polynomials of degree $\leq m + r - 1$ defined in Lemmas 8 and 9, respectively.

Inequality (43) with $r_k = r$, together with the estimates (36) and (37) implies for any $0 \le k \le r$:

$$(49) ||f^{(k)}(x) - S^{(k)}(x)| \le C \begin{cases} \Delta_n(x)^{r-k}\omega^m(f^{(r)}, \Delta_n(x), \tilde{I}_j), \text{ if } x \in (x_j, x_{j-1}), \\ 2 \le j \le n-1, \\ (1-x^2)^{r-k}\omega^m \left(f^{(r)}, (1-x^2)^{1/m} \left(\frac{1}{n^2}\right)^{(m-1)/m}, \tilde{I}_j\right), \\ x \in (x_j, x_{j-1}), j = 1 \text{ or } n. \end{cases}$$

Now since S(x) is a spline of degree $\leq m + r - 1$, it has the analytic representation (44). Let the polynomial $P_n(x)$ be defined by (45) with S(x) given by (48). Since the Lagrange (Lagrange-Hermite) interpolation process is a linear mapping from C[-1, 1] ($C^r[-1, 1]$) to the subspace of the algebraic polynomials of some degree (of degree $\leq m + r - 1$ in our case), then the operator $P_{4n\nu+m+r}(f, \cdot)$: $f \mapsto P_n$ is also a linear operator.

Inequality (46) with $\tilde{r} = r$ implies that for any $2 \le i \le n-2$ and $0 \le j \le m+r-1$,

(50)
$$|A_{ij}| \le Ch_i^{-m+1+j} \omega_{\varphi^{\lambda}}^m(f^{(r)}, n^{-\lambda} \Delta_n(x_i)^{1-\lambda}, \tilde{I}_{i+1} \cup \tilde{I}_i)$$

Inequality (50) also holds for i = 1 and i = n - 1, since for i = 1 (the case i = n - 1 is treated similarly), we have (using Lemma 8 and Corollary H)

$$\begin{split} (m+r-1-j)!|A_{1j}| &= |S^{(m+r-1-j)}(x_1+0) - S^{(m+r-1-j)}(x_1-0)| \\ &= |\hat{L}^{(m+r-1-j)}(f,x_1) - l_2^{(m+r-1-j)}(x_1)| \\ &\leq Ch_1^{-m-r+1+j} \|\hat{L}(f,\cdot) - l_2\|_{C(I_1)} \\ &\leq Ch_1^{-m-r+1+j}(\|\hat{L}(f,\cdot) - f\|_{C(\tilde{I}_1)} + \|f - l_2\|_{C(\tilde{I}_2)}) \\ &\leq Ch_1^{-m-r+1+j}h_1^r \omega^m(f^{(r)}, \Delta_n(x_1), \tilde{I}_1 \cup \tilde{I}_2) \\ &\leq Ch_1^{-m+1+j} \omega_{\omega^{\lambda}}^m(f^{(r)}, n^{-\lambda}\Delta_n(x_1)^{1-\lambda}, \tilde{I}_1 \cup \tilde{I}_2). \end{split}$$

Therefore, for any $x \in [-1, 1]$ and $0 \le k \le k_0$, (47) with $\tilde{r} = r$ holds for the above-defined $P_n(x)$ and S(x). Now, considerations similar to those from the previous subsection imply (14) and (16). It remains to prove (15) and (17) for $x \in [-1, -1 + n^{-2}] \cup [1 - n^{-2}, 1] =: \mathcal{E}_n$. The inequality

(51)
$$t_1^{-m}\omega^m(g,t_1) \le 2^m t_2^{-m}\omega^m(g,t_2), \quad t_1 \ge t_2,$$

yields, for any $x \in \mathcal{E}_n$ and $1 \le i \le n - 1$,

(52)
$$\omega^{m}(f^{(r)},h_{i}) \leq \frac{h_{i}^{m}n^{2m-2}}{1-x^{2}}\omega^{m}\left(f^{(r)},(1-x^{2})^{1/m}\left(\frac{1}{n^{2}}\right)^{(m-1)/m}\right).$$

Therefore, for any $0 \le k \le k_0$, $0 \le r_k \le k_0$, and $x \in \mathcal{E}_n$ (choosing $\xi = 4k_0$ and $\mu = 50k_0$, for example, and using Lemma 7, (50) with $\lambda = 0$, (52), (26), and (27)) we have

$$(53) |P_n^{(k)}(x) - S^{(k)}(x)|$$

$$\leq \sum_{i=1}^{n-1} \sum_{j=0}^{m+r-1} |A_{ij}| \left| R_{i,m+r-1-j}^{(k)}(x) - \frac{\partial^k}{\partial x^k} (x - x_i)_+^{m+r-1-j} \right|$$

$$\leq C \sum_{i=1}^{n-1} \sum_{j=0}^{m+r-1} h_i^{-m+j+1} \omega^m (f^{(r)}, h_i)$$

$$\times \left(\frac{1 - x^2}{(1 + x_{i-1})(1 - x_i)} \right)^{\frac{k}{2}} \psi_i^{\mu} h_i^{m+r-j-1-k}$$

$$\leq C \omega^m \left(f^{(r)}, (1 - x^2)^{1/m} \left(\frac{1}{n^2} \right)^{(m-1)/m} \right)$$

$$\times \sum_{i=1}^{n-1} \frac{h_i^m n^{2m-2}}{1 - x^2} \left(\frac{1 - x^2}{h_i} \right)^{\frac{k}{2}} \psi_i^{\mu} h_i^{r-k}$$

$$= C (1 - x^2)^{r_k} \omega^m \left(f^{(r)}, (1 - x^2)^{1/m} \left(\frac{1}{n^2} \right)^{(m-1)/m} \right)$$

$$\times \sum_{i=1}^{n-1} \left(\frac{1 - x^2}{h_i} \right)^{\frac{k}{2} - r_k - 1} (n^2 h_i)^{m-1} h_i^{r-k-r_k} \psi_i^{\mu}$$

$$\leq C (1 - x^2)^{r_k} \Delta_n(x)^{r-k-r_k} \omega^m \left(f^{(r)}, (1 - x^2)^{1/m} \left(\frac{1}{n^2} \right)^{(m-1)/m} \right)$$

$$\times \sum_{i=1}^{n-1} \left(\frac{1}{n^2 h_i} \right)^{\frac{k}{2} - r_k - m} \psi_i^{\mu-2r-2k-2r_k}$$

$$\leq C (1 - x^2)^{r_k} \Delta_n(x)^{r-k-r_k} \omega^m \left(f^{(r)}, (1 - x^2)^{1/m} \left(\frac{1}{n^2} \right)^{(m-1)/m} \right).$$

Now, choosing r_k in (53) to be r - k (in the case $0 \le k \le r$) together with (49), we have, for any $x \in \mathcal{E}_n$ and $0 \le k \le r$,

(54)
$$|f^{(k)}(x) - P_n^{(k)}(x)| \le C(1-x^2)^{r-k}\omega^m \left(f^{(r)}, (1-x^2)^{1/m}\left(\frac{1}{n^2}\right)^{(m-1)/m}\right),$$

which is (15) for $\lambda = 0$ and $\alpha_k = 1/m$. Also, since $S^{(k)}(x) \equiv 0$ a.e. for $k \ge m + r$, then (53) implies, for $m + r \le k \le k_0$ and any $0 \le r_k \le k_0$,

(55)
$$|P_n^{(k)}(x)| \le C(1-x^2)^{r_k} \Delta_n(x)^{r-k-r_k} \omega^m \left(f^{(r)}, (1-x^2)^{1/m} \left(\frac{1}{n^2}\right)^{(m-1)/m}\right).$$

Now (51) implies, for $x \in \mathcal{E}_n$ and all $\alpha \in [1/m, 1]$,

(56)
$$\omega^{m} \left(f^{(r)}, (1-x^{2})^{1/m} \left(\frac{1}{n^{2}}\right)^{(m-1)/m} \right) \\ \leq C(n^{2}(1-x^{2}))^{1-\alpha m} \omega^{m} (f^{(r)}, (1-x^{2})^{\alpha} n^{2\alpha-2}).$$

Finally, (54) and (56), together with Lemma 10, imply

$$|f^{(k)}(x) - P_n^{(k)}(f, x)| \le |Cn^{2-2\alpha_k m}(1-x^2)^{r-k+1-\alpha_k m}\omega_{\varphi^{\lambda}}^m(f^{(r)}, n^{-\lambda}((1-x^2)^{\alpha_k}n^{2\alpha_k-2})^{1-\lambda}).$$

for $x \in \mathcal{E}_n$, $0 \le k \le r$, and any $\alpha_k \in [1/m, 1]$.

Similarly, using Lemma 10 and (55) and (56), we obtain (17). The proof of Theorem 2 is now complete for sufficiently large n ($n \ge n_0 := 201k_0$).

For $\max\{m + r - 1, 2r + 1\} \le n < n_0$, the assertion of Theorem 2 follows from the case $\tilde{n} = \max\{m + r - 1, 2r + 1\}$, for which it is sufficient to choose $P_{\tilde{n}}(f, x) := P_{\tilde{n}}(x)$, where $P_{\tilde{n}}(x)$ is the polynomial such that $P_{\tilde{n}}^{(k)}(\pm 1) = f^{(k)}(\pm 1)$ for all k = 0, 1, ..., r; and, if m > r + 2, $P_{\tilde{n}}(-1 + 2i/(m - r - 1)) = f(-1 + 2i/(m - r - 1))$ for all i = 1, 2, ..., m - r - 2. Using considerations similar to those employed for the proof of Lemma 8, one can show that $P_{\tilde{n}}(f, x)$ satisfies (14) and (15).

7. Proof of Theorem 3

As we have already mentioned, the method of the construction of a counterexample and the proof is a minor modification of the method introduced by X. M. Yu [30]. For completeness of exposition and, since the proof is not long, we adduce it here.

Suppose that the assertion of the theorem is not correct. Then there is a constant $K \in \mathbf{R}$ such that for every $f \in C^{m+r-1}[-1, 1]$, a polynomial $P_n \in \Pi_n$ exists satisfying

(57)
$$|f(x) - P_n(x)| \le K \Delta_n(x)^r \omega^m(f^{(r)}, \Delta_n(x)),$$

for $x \in [-1 + n^{-2}, 1 - n^{-2}]$, and

(58)
$$|f(x) - P_n(x)| \le K(1 - x^2)^{\alpha} n^{2\alpha - 2r} \omega^m (f^{(r)}, (1 - x^2)^{\beta} n^{\gamma}),$$

for $x \in [-1, -1 + n^{-2}] \cup [1 - n^{-2}, 1]$.

K. Kopotun

Let

$$f(x) := \begin{cases} (x - 1 + An^{-2})^{m+r}, & x \in [1 - An^{-2}, 1], \\ 0, & x \in [-1, 1 - An^{-2}], \end{cases}$$

where $A \leq 1$ is a constant which will be chosen later. Then $f \in C^{m+r-1}[-1, 1]$, and the following inequalities are satisfied:

(59)
$$|f(x)| \le (An^{-2})^{m+r}, \quad -1 \le x \le 1,$$

and

(60)
$$\omega^m(f^{(r)},t) \le (m+r)! \min\{t^m, (An^{-2})^m\}, \quad t > 0.$$

The last inequality implies

$$|f(x) - P_n(x)| \leq K(m+r)!(1-x^2)^{\alpha+m\beta}n^{2\alpha-2r+m\gamma},$$

for $x \in [1 - n^{-2}, 1]$, and, since $\alpha + m\beta > r + 1$, we have $f^{(k)}(1) = P_n^{(k)}(1)$ for all k = 0, 1, ..., r + 1. Also, (57), (58), and (60) yield

$$|f(x) - P_n(x)| \le K(m+r)!\Delta_n(x)^r (An^{-2})^m$$
,

for $x \in [-1 + n^{-2}, 1 - n^{-2}]$, and

$$|f(x) - P_n(x)| \le K(m+r)! 2^{\alpha} n^{-2r} (An^{-2})^m,$$

for $x \in [-1, -1 + n^{-2}] \cup [1 - n^{-2}, 1]$. Therefore,

$$|f(x) - P_n(x)| \le K(m+r)! 2^{\alpha} \Delta_n(x)^r (An^{-2})^m,$$

for all $x \in [-1, 1]$. Hence, for every $x \in [-1, 1]$ (applying (59)) we have

$$|P_n(x)| \le |f(x)| + |f(x) - P_n(x)| \le (1 + K(m+r)!) 2^{\alpha} \Delta_n(x)^r (An^{-2})^m.$$

Now applying the Dzyadyk inequality (see (31)), we conclude that

$$\|\Delta_n(x)P_n^{(r+1)}(x)\| \le C_r \|\Delta_n(x)^{-r}P_n(x)\| \le C_r (1+K(m+r)!) 2^{\alpha} (An^{-2})^m,$$

and thus,

(61)
$$|P_n^{(r+1)}(1)| \le C_r \left(1 + K(m+r)!\right) 2^{\alpha} A^m n^{-2m+2}.$$

On the other hand,

(62)
$$|P_n^{(r+1)}(1)| = |f^{(r+1)}(1)| = \frac{(m+r)!}{(m-1)!} A^{m-1} n^{-2m+2}.$$

Now, choosing

$$A = \min\left\{1, \frac{(m+r)!}{2C_r(m-1)! (1+K(m+r)!) 2^{\alpha}}\right\},\$$

we conclude that (61) and (62) cannot hold simultaneously, thus obtaining a contradiction. The proof is complete.

92

References

- 1. YU. A. BRUDNYI (1963): Generalization of a theorem of A. F. Timan. Soviet Math. Dokl., 4:244-247.
- YU. A. BRUDNYI (1968): Approximation of functions by algebraic polynomials. Izv. Akad. Nauk SSSR, Ser. Mat., 32:780–787 (in Russian).
- R. DAHLHAUS (1989): Pointwise approximation by algebraic polynomials. J. Approx. Theory, 57:274– 277.
- R. A. DEVORE (1977): Pointwise approximation by polynomials and splines. In: Theory of Approximation of Functions (S. B. Stechkin and S. A. Telyakovskii, eds.). Proc. Intern. Conf., Kaluga, 1975, Nauka, Moskva, pp. 132–141.
- 5. Z. DITZIAN, V. TOTIK (1987): Moduli of Smoothness. Berlin: Springer-Verlag.
- Z. DITZIAN, D. JIANG (1992): Approximation of functions by polynomials in C[-1, 1]. Canad. J. Math., 44(5):924–940.
- Z. DITZIAN, D. JIANG, D. LEVIATAN (1993): Simultaneous polynomial approximation. SIAM J. Math. Anal., 24(6):1652–1661.
- 8. V. K. DZYADYK (1956): Constructive characterization of functions satisfying the condition $Lip\alpha(0 < \alpha < 1)$ on a finite segment of the real axis. Izv. Akad. Nauk SSSR, Ser. Mat., 20:623–642 (in Russian).
- 9. V. K. DZYADYK (1977): Introduction to the Theory of Uniform Approximation of Functions by Polynomials. Moscow: Nauka (in Russian).
- A. O. GELFOND (1955): On uniform approximation by polynomials with integer coefficients. Uspekhi Mat. Nauk, 1(63):41-65 (in Russian).
- 11. H. GONSKA, E. HINNEMANN (1985): Pointwise estimations of approximations by algebraic polynomials. Acta Math. Hungar., **46**(3–4):243–254 (in German).
- I. E. GOPENGAUZ (1967): A theorem of A. F. Timan on the approximation of functions by polynomials on a finite segment. Mat. Zametki, 1(2):163–172 (in Russian) (English translation (1967)) Math. Notes, 1:110–116.
- 13. I. E. GOPENGAUZ (1967): A question concerning the approximation of functions on a segment and a region with corners. Theor. Funkcii Funkcional. Anal. Pril., 4:204–210 (in Russian).
- M. HASSON (1980): Derivatives of the algebraic polynomials of best approximation. J. Approx. Theory, 29:91–102.
- 15. M. HEILMANN (1989): On simultaneous approximation by optimal algebraic polynomials. Results in Mathematics, 16:77–81.
- E. HINNEMANN, H. H. GONSKA (1983): Generalization of a theorem of DeVore. In: Approximation Theory IV (C. K. Chui, L. L. Schumaker, J. W. Ward, eds.). New York: Academic Press, pp. 527–532.
- T. KILGORE (1993): An elementary simultaneous approximation theorem. Proc. Amer. Math. Soc., 118(2):529–536.
- 18. K. A. KOPOTUN (1994): Pointwise and uniform estimates for convex approximation of functions by algebraic polynomials. Constr. Approx., 10:153–178.
- K. A. KOPOTUN (1995): Unconstrained and convex polynomial approximation in C[-1, 1]. Approx. Theory Appl., 11(2):41–58.
- N. P. KORNEJCHUK (1987): Exact Constants in Approximation Theory. Moscow: Nauka (English translation (1991) Cambridge: University Press.).
- D. LEVIATAN (1982): The behavior of the derivatives of the algebraic polynomials of best approximation. J. Approx. Theory, 35:169–176.
- 22. W. LI (1986): On Timan type theorems in algebraic polynomial approximation. Acta Math. Sinica, **29**(4):544–549 (in Chinese).
- 23. V. N. MALOSEMOV (1966): Joint approximation of a function and its derivatives by algebraic polynomials. Soviet Math. Dokl., 7(5):1274–1276.
- I. A. SHEVCHUK (1992): Approximation of monotone functions by monotone polynomials. Mat. Sb., 183(5):63-78 (in Russian) (English translation (1993): Russian Acad. Sci. Sb. Math., 76(1):51-64).
- I. A. SHEVCHUK (1989): On coapproximation of monotone functions. Dokl. Akad. Nauk USSR, 308(3):537-541.
- 26. I. A. SHEVCHUK (1992): Approximation by Polynomials and Traces of the Functions Continuous on an Interval. Kiev: Naukova dumka (in Russian).
- 27. S. A. TELYAKOVSKII (1966): Two theorems on the approximation of functions by algebraic poly-

nomials. Mat. Sb., **70**:252–265 (in Russian) (English translation (1966): American Mathematical Society Translations, Series 2, **77**:163–178).

- 28. A. F. TIMAN (1951): A strengthening of Jackson's theorem on the best approximation of continuous functions on a finite segment of the real axis. Dokl. Akad. Nauk USSR, 78:17–20 (in Russian).
- R. M. TRIGUB (1962): Approximation of functions by polynomials with integral coefficients. Izv. Akad. Nauk SSSR, Ser. Mat., 26:261–280 (in Russian).
- X. M. YU (1985): Pointwise estimate for algebraic polynomial approximation. Approx. Theory Appl., 1(3):109–114.
- 31. S. P. ZHOU (1988): On simultaneous approximation of a function and its derivatives. Dokl. Akad. Nauk BSSR, **32**(6):493–495 (in Russian).

K. Kopotun

Department of Mathematical Sciences University of Alberta Edmonton Alberta Canada T6G 2G1