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Whitney Theorem of Interpolatory Type
for k-Monotone Functions

K. A. Kopotun

Abstract. One of the main results of this paper is the following Whitney theorem
of interpolatory type fork-monotone functions (i.e., functionsf such that divided
differences f [x0, . . . , xk] are nonnegative for all choices of(k + 1) distinct points
x0, . . . , xk).

Theorem. Let 0 < p ≤ ∞, k ≥ 1, m ≤ k, and let f ∈ L p[a,b] be a k-monotone
function on[a,b]. Then, if a polynomial pm−1 of degree≤ m− 1 interpolates f at
m arbitrary points in JA = [a+ A(b− a),b− A(b− a)], where A< 1

2 is a strictly
positive constant, then

‖ f − pm−1‖L p[a,b] ≤ C inf
q:degq≤m−1

‖ f − q‖L p[a,b] ,

where the constant C is independent of the location of interpolation points. Except for
the case m= 1 and p= ∞, the above statement is no longer true if A= 0.

We also show that the above theorem is not valid ifm ≥ k + 1. It is well known that
results of this (interpolatory) type are not true in general for non-k-monotone functions.

1. Introduction

The following theorem is well known, and is now called theWhitney(or Whitney-type)
theorem. It was proved by Burkill [3] (k = 2, p = ∞), Whitney [9], [10] (p = ∞),
Brudnyi [1] (1 ≤ p ≤ ∞), and Storozhenko [8] (0< p < 1). It has applications in
many areas, and has been further generalized to various classes of functions and other
approximating spaces. However, this paper deals with its “classical version,” which we
now state.

Theorem A. Let f ∈ L p[a,b], 0 < p ≤ ∞. Then there exists qk−1 ∈ 5k−1, a
polynomial of degree≤ k− 1, such that

‖ f − qk−1‖L p[a,b] ≤ Cωk( f,b− a, [a,b])p.(1)
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Moreover, in the case p= ∞, we can choose qk−1(x) := Lk−1( f, x;a,a+(b−a)/(k−
1), . . . ,b), the Lagrange polynomial interpolating f at k equidistant points in[a,b].
Here, ωk is the kth modulus of smoothness defined by

ωk( f, t, [a, b])p := sup
0<h≤t

‖1k
h( f, ·, [a,b])‖L p[a,b], 0< p ≤ ∞,

where1k
h( f, x, [a,b]) is the kth finite difference.

Of course, in the casep < ∞, the polynomialLk−1( f ) does not have to satisfy (1)
even if we assume thatf ∈ C∞[a,b]. To see that, one can, for example, consider a
function f ∈ C∞ such that 0≤ f (x) ≤ 1, x ∈ [a,b], f (a + i (b− a)/(k − 1)) = 1
for 0 ≤ i ≤ k − 1, and f (x) = 0 if |x − (a + i (b − a)/(k − 1)| > ε for all i =
0, . . . , k − 1. ThenLk−1( f, x) ≡ 1, ‖ f − Lk−1( f )‖L p[a,b] ∼ const., and, at the same
time,ωk( f,b−a, [a,b])p ≤ C‖ f ‖p ≤ C(k

∫ ε
−ε 1dx)1/p = Cε1/p, and, hence, (1) does

not hold in general forqk−1 = Lk−1( f ). In the casep = ∞, the interpolation points do
not really have to be equidistant in order for (1) to be true, but, at the same time, it is
well known that they cannot be too close to each other (see [5], for example).

One of the often-used consequences of Theorem 1 is the fact that thekth modulus of
smoothness off is equivalent to the error of best approximation off by polynomials of
degree≤ k− 1:

ωk( f,b− a, [a,b])p ∼ Ek−1( f )p := inf
q∈5k−1

‖ f − q‖L p[a,b] .(2)

Thus, any polynomialq ∈ 5k−1 that satisfied (1) is a “near-best” approximant tof in
theL p, 0< p ≤ ∞, metric in the sense that

‖ f − q‖L p[a,b] ≤ C Ek−1( f )p.

In particular, the Lagrange polynomial interpolatingf at k equidistant points in [a,b]
is a near-best approximant tof in the uniform metric. It is not generally a near-best
approximant in otherL p, p <∞, metrics.

In many applications, it is desirable that the mathematical model preserves certain
geometric properties of the data such as monotonicity, 2-monotonicity (convexity), and,
in general,k-monotonicity. This is the subject that the so-called “shape-preserving ap-
proximation” deals with.

In this paper, we show, in particular, that when a functionf is k-monotone, the in-
equality (1) is true for all 0< p ≤ ∞, and any polynomialqk−1 ∈ 5k−1 interpolating f
atk arbitrarypoints which are “not too close” to the endpoints of the interval [a,b]. This
result will have applications in the area of shape-preserving approximation, since it im-
plies that anyk-monotone function (polynomial, spline, etc.) interpolating ak-monotone
function at certain rather arbitrary points has good local approximation properties (inL p

for all 0< p ≤ ∞). We remark that some partial results in this direction were obtained
in [5].

We now recall the definition ofk-monotone functions, and discuss some of their
properties.

A function f : [a,b] 7→ R is said to bek-monotone,k ≥ 1, on [a,b] iff for all
choices of(k + 1) distinct pointsx0, . . . , xk in [a,b] the inequality f [x0, . . . , xk] ≥ 0
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holds, wheref [x0, . . . , xk] = ∑k
j=0 f (xj )/w

′(xj ) denotes thekth divided difference

of f at x0, . . . , xk, andw(x) = ∏k
j=0(x − xj ). Note that 0-monotone, 1-monotone,

and 2-monotone functions are just nonnegative, nondecreasing, and convex functions,
respectively. We denote the class of allk-monotone functions on [a,b] by 1k[a,b]. If
f ∈ Ck[a,b], then f ∈ 1k[a,b] iff f (k)(x) ≥ 0, x ∈ [a,b].

Also, we denote by1k(a,b) the class of allk-monotone functions that are not required
to be defined at the endpoints of [a,b] (and, thus, do not have to be bounded on [a,b]).
For example,(−1)kx−1 ∈ 1k(0,1) for all k ∈ N. Clearly,1k[a,b] ⊂ 1k(a,b).

The following theorem about the properties ofk-monotone functions will be used
throughout this paper. In particular, we often use the fact that for allk ≥ 2, if f ∈
1k(a,b), then f is (k−2)-times continuously differentiable on(a,b). Also, in the case
k = 1, if f ∈ 11(a,b), then f ∈ L p[ξ, ζ ] for any 0< p ≤ ∞, and any closed interval
[ξ, ζ ] contained in(a,b).

Theorem B ([7], [6]). Suppose for some k≥ 2 that f : [a,b] 7→ R is k-monotone.
Then f( j )(x), the derivative of order j, exists on(a,b) for j ≤ k − 2 and is(k − j )-
monotone. In particular, f (k−2)(x) exists, is convex, and therefore satisfies a Lipschitz
condition on any closed interval[ξ, ζ ] contained in(a,b), is absolutely continuous
on [ξ, ζ ], is continuous on(a,b), and has left and right(nondecreasing) derivatives,
f (k−1)
− (x) and f(k−1)

+ (x) on (a,b). Moreover, the set E where f(k−1)(x) fails to exist is
countable, and f(k−1) is continuous on(a,b)\E.

2. Main Results

One of our main results is the following interpolatory version of the Whitney theorem
for k-monotone functions (see also Theorem 6 below).

Theorem 1. Let f ∈ 1k(a,b)∩L p[a,b], k ≥ 1, 0< p ≤ ∞, and let pk−1( f ) ∈ 5k−1

interpolate f at k points in JA = [a + A(b − a),b − A(b − a)], where A< 1
2 is a

strictly positiveconstant. Then,

‖ f − pk−1( f )‖L p[a,b] ≤ Cωk( f,b− a, [a,b])p,(3)

where the constant C depends only on A, k, p (if p < 1), and does not depend on the
(location of) interpolation points. Except for the case k= 1, p = ∞, the statement of
the theorem is no longer true if A= 0.

The proof of Theorem 1 turns out to be rather technical and is postponed until Section 3.
We remark that (2) implies thatpk−1( f ) is a near-best approximant tof ∈ 1k in theL p

metric for all 0< p ≤ ∞, and that the same remark is also valid for Theorems 3 and 6.
The following natural question now arises: since conditionf ∈ 1k is strong enough

to yield the Whitney estimate for Lagrange interpolation polynomials of degree≤ k−1,
what can be said about Lagrange polynomials of degree≤ m− 1 if m 6= k? Do we
still have the Whitney inequality? Also, do interpolation points have to be “far” from the
endpoints of [a,b] in the casem 6= k as well?
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The main purpose of this paper is to provide answers to the above questions. First of
all, it turns out that the case whenp = ∞ andm = 1 (or k = 1) is very much different
from the others. The following lemma is trivial, and is only stated here for completeness.

Lemma 2. Let f : [a,b] 7→ R be bounded on[a,b]. Then, for anyξ ∈ [a,b]:

‖ f (x)− f (ξ)‖L∞[a,b] ≤ ω( f,b− a, [a,b])∞.

It turns out that we cannot have the Whitney estimate for Lagrange interpolation
polynomials of degree≥ 1 (if p = ∞) or degree≥ 0 (if p <∞) without an additional
assumption that the interpolation points are “not too close” to the endpoints of [a,b].
Also, as we show below, we need to assume thatm≤ k for the Whitney estimate to hold.
It is not surprising that, ifm≥ k+ 1, then the conditionf ∈ 1k is “not strong enough.”

Theorem 3(m≤ k). Let f ∈ 1k(a,b) ∩ L p[a,b], 0 < p ≤ ∞, k ≥ 1, m ≤ k, and
let pm−1( f ) ∈ 5m−1 interpolate f at m points in JA = [a+ A(b− a),b− A(b− a)],
where A< 1

2 is a strictly positiveconstant. Then

‖ f − pm−1( f )‖L p[a,b] ≤ Cωm( f,b− a, [a,b])p,(4)

where the constant C depends only on A, k, p (if p < 1), and does not depend on
the (location of) interpolation points. Except for the case m= 1, p = ∞, the above
statement is no longer true if A= 0.

Proof of Theorem 3. We will show how the casem < k can be reduced tom = k,
which is considered in Theorem 1.

First of all, we note that it is enough to show that, for anyf ∈ 1k(a,b) ∩ L p[a,b]:

‖pm−1( f )‖L p[a,b] ≤ C‖ f ‖L p[a,b] .(5)

Indeed, suppose that (5) is true, and letqm−1 be any polynomial in5m−1 such that
‖ f −qm−1‖L p[a,b] ≤ Cωm( f,b−a, [a,b])p. Then, taking into account thatf −qm−1 ∈
1k(a,b) ∩ L p[a,b] we have

‖ f − pm−1( f )‖L p[a,b] = ‖ f − qm−1− pm−1( f − qm−1)‖L p[a,b]

≤ C‖ f − qm−1‖L p[a,b] + C‖pm−1( f − qm−1)‖L p[a,b]

≤ C‖ f − qm−1‖L p[a,b] ≤ Cωm( f,b− a, [a,b])p.

To prove (5) we use the following rather trivial statement:

Let Q be an arbitrary polynomial, and letpm−1(Q)be a polynomial of degree
≤ m−1 interpolatingQ atmpoints inside [a,b]. Then, for any 0< p ≤ ∞:

‖pm−1(Q)‖L p[a,b] ≤ C‖Q‖L p[a,b],

where the constantC depends only onm, degQ, p (if p < 1), and is
independent of the interpolation points.
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The above statement can be easily proved using Markov’s inequality and the fact that
norms in finitely dimensional spaces are equivalent (which allows us to only prove this
statement in the casep = ∞). We omit the details.

To prove (5) we suppose thatQ is a polynomial of degree≤ k− 1 which interpolates
f at a set ofk points in JA which is a superset of the interpolation set forpm−1( f )
(consisting ofm< k points). This immediately implies thatpm−1( f ) = pm−1(Q). Now,
using the fact that‖ f − Q‖L p[a,b] ≤ Cωk( f,b− a, [a,b])p (Theorem 1), we have

‖pm−1( f )‖L p[a,b] = ‖pm−1(Q)‖L p[a,b] ≤ C‖Q‖L p[a,b]

≤ C‖ f − Q‖L p[a,b] + C‖ f ‖L p[a,b]

≤ Cωk( f,b− a, [a,b])p + C‖ f ‖L p[a,b]

≤ C‖ f ‖L p[a,b] .

This proves (5). The proof of Theorem 3 is now complete.

We would like to emphasize that the condition thatJA is “in the center” of [a,b] is
essential, and cannot be removed. We have the following proposition to illustrate that.

Proposition 4 (m ∈ N, J near endpoints of [a,b]). Let 0 < p ≤ ∞, k ∈ N, m ∈ N
be such that

m≥
{

2 if p = ∞,
1 if p <∞,

and let the interval J= [ã, b̃] ⊂ [a,b] be such thatdist(J, {a,b}) = 0 (i.e., either
ã = a or b̃ = b). Then for any constant B, there exists a function f∈ 1k[a,b] and a
set of m points in J such that, if pm−1 is a polynomial of degree≤ m− 1 interpolating
f at these points, then

‖pm−1‖L p[a,b] ≥ B‖ f ‖L p[a,b] .(6)

Hence, the inequality

‖ f − pm−1‖L p[a,b] ≤ Cωm( f,b− a, [a,b])p

is not true in general for Lagrange polynomial pm−1 interpolating f ∈ 1k[a,b] at m
points which are close to the endpoints of[a,b].

Lemma 2 shows thatm in Proposition 4 cannot be 1 ifp = ∞.

Proof of Proposition 4. Let J = [ã, b̃] ⊂ [a,b] be any interval such that dist(J,b) =
0 (i.e.,b̃ = b), and definefε(x) = ε1−k(x − b+ ε)k−1

+ . Note that fε ∈ 1k[a,b].
First of all, we prove the proposition in the casep < ∞ and m ≥ 1. Let pm−1

interpolate fε at {̃a+ i [(b− ã)/(m− 1)]}m−1
i=0 ({b} if m = 1). Then, for all sufficiently

smallε (ε < (b− ã)/(m−1)), ‖pm−1‖L p[a,b] = const. (sincef (b) = 1, and f is 0 at all
other interpolation points), and, at the same time,‖ fε‖L p[a,b] ≤ Cε1/p→ 0 if ε→ 0.
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Now, suppose thatp = ∞ andm ≥ 2. Let pm−1 interpolate fε at the points{tj }m−1
j=0 ,

wheretj = b−2ε+ [ε/(m−1)] j , j = 0, . . . ,m−2, andtm−1 = b. Using the Lagrange
interpolation formula, we conclude that

‖pm−1‖C[a,b] ≥ |pm−1(a)| =
m−2∏
j=0

∣∣∣∣a− tj

b− tj

∣∣∣∣
≥

m−2∏
j=0

∣∣∣∣a− b+ 2ε

2ε

∣∣∣∣ ≥ Cε1−m→∞ as ε→ 0,

and, at the same time,‖ fε‖C[a,b] = fε(b) = 1. This completes the proof of the
proposition.

We now show that, ifm≥ k+1, then the Whitney estimate does not necessarily hold
for a Lagrange polynomial of degree≤ m− 1 interpolatingf ∈ 1k atm points even if
we require that these points are “inside” [a,b] (i.e., far from the endpoints of [a,b]).

Proposition 5 (m≥ k+ 1, arbitraryJ ⊂ [a,b]). Let0< p ≤ ∞, k ∈ N, m≥ k+ 1,
and J= [ã, b̃] ⊂ [a,b]. Then, for any constant B, there exists a function f∈ 1k[a,b]
and a set of m points in J such that, if pm−1 is a polynomial of degree≤ m − 1
interpolating f at these points, then

‖pm−1‖L p[a,b] ≥ B‖ f ‖L p[a,b] .(7)

Hence, the inequality

‖ f − pm−1‖L p[a,b] ≤ Cωm( f,b− a, [a,b])p

is not true in general for Lagrange polynomial pm−1 interpolating f ∈ 1k[a,b] at
m≥ k+ 1 arbitrary points in J.

Proof of Proposition 5. Let ξ = (̃a+ b̃)/2. Without loss of generality we may assume
thatξ ≥ (a+ b)/2. Now, let f (x) := (x − ξ)k−1

+ , and note thatf ∈ 1k[a,b] and that
‖ f ‖L p[a,b] = C, where the constantC depends only onξ and the interval [a,b]. Now let
tj = ξ − (m− 2− j )ε, j = 0, . . . ,m− 1, where(m− 2)ε < min{|J|/2, (b− a)/8},
and suppose thatpm−1 interpolatesf at {tj }m−1

j=0 . Taking into account thatf (tj ) = 0 for

j = 0, . . . ,m−2, andf (tm−1) = εk−1 we havepm−1(x) = εk−1∏m−2
j=0 (x−tj )/(tm−1−tj )

and, hence, for everyx ∈ [a,a+ (b− a)/4]:

|pm−1(x)| ≥ εk−1
m−2∏
j=0

(b− a)/8

(m− 1)ε
= Cεk−m.

Therefore,

‖pm−1‖L p[a,b] ≥ ‖pm−1‖L p[a,a+(b−a)/4] ≥ Cεk−m→∞ as ε→ 0,

and (7) follows if we chooseε sufficiently small.
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Finally, as an immediate consequence of Theorems 1 and 3, we obtain the following
theorem on simultaneous approximation off ∈ 1k and its derivativesf (i ) by pm−1

and p(i )m−1.

Theorem 6. Let f ∈ 1k(a,b), k ≥ 1, m ≤ k, and let pm−1 ∈ 5m−1 interpolate f
at m points in JA = [a+ A(b− a),b− A(b− a)], where A< 1

2 is a strictly positive
constant. Then, for i = 0, . . . ,m− 1:

‖ f (i ) − p(i )m−1‖L p[a,b] ≤ Cωm−i ( f (i ),b− a, [a,b])p,(8)

whenever f(i ) ∈ L p[a,b], 0 < p ≤ ∞, where the constants C depend only on A, k, p
(if p < 1), and do not depend on the(location of) interpolation points. The statement of
the theorem is no longer true in general if A= 0 (unless m= 1 and p= ∞).

Proof of Theorem 6. If i = 0, then (8) immediately follows from Theorem 3. In the
case 1≤ i ≤ min{m− 1, k − 2}, Theorem 6 also follows from Theorem 3 taking into
account thatf (i ) ∈ 1k−i (a,b)∩C(a,b) and, by Rolle’s theorem,p(i )m−1 interpolatesf (i )

atm− i points insideJA. Finally, in the casem= k, i = k− 1≥ 1, even thoughf (k−1)

may fail to exist at countably many points, it is in11, and hence, (8) follows.

3. Proof of Theorem 1

In order to prove Theorem 1 we first need to consider a couple of auxiliary results. First,
recall the following lemma which can be found in Bullen [2].

Lemma C ([2]). Let f ∈ 1k, k ≥ 1, and let lk−1(x) interpolate f at z1, . . . , zk,
then f − lk−1 changes sign at z1, . . . , zk and, in particular, f (x) − lk−1(x) ≥ 0 for
x ≥ max{z1, . . . , zk}, and(−1)k( f (x)− lk−1(x)) ≥ 0 for x ≤ min{z1, . . . , zk}.

We also remark that Lemma C immediately follows from the definition of1k and the
identity

f (x)− lk−1(x) = f [x, z1, . . . , zk](x − z1) . . . (x − zk), x 6= zi .

Lemma 7. Let f ∈ 1k(a,b), k ≥ 1, be such that f(t1) = · · · = f (tk) = 0, where
a < t1 < · · · < tk < b. Then f ∈ 1 j (tk,b) and (−1)k− j f ∈ 1 j (a, t1) for all
j = 0, . . . , k− 1.

Proof of Lemma 7. If j =0, then the lemma is an immediate consequence of Lemma C.
If 1 ≤ j ≤ k − 2 then, by Theorem B, the functionf ( j ) ∈ 1k− j (a,b) ∩ C(a,b) and,
by Rolle’s theorem,f ( j ) hask − j zeros in [t1, tk]. Therefore, Lemma C implies that
f ( j )(x) ≥ 0 for x ≥ tk, and(−1)k− j f ( j )(x) ≥ 0 for x ≤ t1. Hence, f ∈ 1 j (tk,b)
and(−1)k− j f ∈ 1 j (a, t1). This completes the proof in the casej ≤ k− 2. In the case
j = k − 1, we note that the functionf (k−2) is convex on(a,b) and has two zeros in
[t1, tk]. Therefore, f (k−2) is nondecreasing forx ≥ tk, nonincreasing forx ≤ t1, and,
hence,f ∈ 1k−1(tk,b) and− f ∈ 1k−1(a, t1). The lemma is now proved.
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Lemma 8. Let k ≥ 1, 0 < p ≤ ∞, J := [c,d] ⊂ D, and f ∈ L p(D). Define
J̃ = [c,d + δ] (or J̃ = [c− δ,d]), where0 < δ ≤ (d − c)/k. Then, if J̃ ⊂ D, the
following estimate is valid:

‖ f ‖L p( J̃)
≤ C‖ f ‖L p(J) + Cωk( f, δ, J̃)p.(9)

Proof of Lemma 8. The lemma is well known. However, since its proof is simple and
short, we include it here for completeness. We only consider the caseJ̃ = [c,d+δ], since
the casẽJ = [c−δ,d] is completely analogous. Letx ∈ [d−kδ,d− (k−1)δ] ⊂ [c,d].
Then, since

1k
δ ( f, x) =

k∑
i=0

(
k
i

)
(−1)k−i f (x + i δ),

we have

| f (x + kδ)| ≤ |1k
δ ( f, x)| +

k−1∑
i=0

(
k
i

)
| f (x + i δ)|.(10)

Taking supremum of both sides of this inequality immediately yields (9) forp = ∞. If
0< p <∞, raising (10) to powerp, taking into account that(µ+ ν)p ≤ C(µp + ν p)

for 0< p <∞, and integrating with respect tox over [d− kδ,d− (k− 1)δ], we have∫ d−(k−1)δ

d−kδ
| f (x + kδ)|p dx ≤ C‖1k

δ ( f, x, J̃)‖p

L p( J̃)

+ C2pk
k−1∑
i=0

∫ d−(k−1)δ

d−kδ
| f (x + i δ)|p dx

≤ C‖1k
δ ( f, x, J̃)‖p

L p( J̃)
+ C

k−1∑
i=0

∫ d−(k−1−i )δ

d−(k−i )δ
| f (x)|p dx,

and, hence,

‖ f ‖p
L p[d,d+δ] ≤ C‖ f ‖p

L p(J)
+ Cωk( f, δ, J̃)p

p,

whereC depends only onk and p (if p < 1). This immediately implies (9).

Corollary 9. Let k≥ 1, 0< p ≤ ∞, J = [c,d] ⊂ D, and f ∈ L p(D). Let J̃ ⊂ D
be such that J⊂ J̃. Then

‖ f ‖L p( J̃)
≤ C‖ f ‖L p(J) + Cωk( f, | J̃|, J̃)p,(11)

where C depends on the ratio| J̃|/|J|.

Corollary 9 is used to prove the following Lemma 10 which is a simpler (but not as
general) version of Theorem 1. In turn, the proof of Theorem 1 is based on this lemma.
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Lemma 10. Let f ∈ 1k(a,b),k ≥ 1,and let J be an interval of length≤ (b−a)/(4k+
1) in the center of[a,b] (i.e., dist(J,a) = dist(J,b)). Let pk−1 ∈ 5k−1 interpolate f at
k points in J. If f ∈ L p[a,b], 0 < p ≤ ∞, then

‖ f − pk−1‖L p[a,b] ≤ Cωk( f,b− a, [a,b])p,(12)

where the constant C depends only on k, p (if p < 1), and does not depend on the
(location of) interpolation points.

Proof of Lemma 10. For an intervalJ = [ã, b̃] we denote|J| = b̃− ã, and

[(2ν + 1)J] := [ã− ν|J|, b̃+ ν|J|].

First of all, we note that it is sufficient to prove Lemma 10 for the intervalJ such that
|J| = (b− a)/(4k+ 1). This can be easily seen if we recall that the only condition that
we have on interpolation points is that they are insideJ. Thus, enlargingJ if necessary,
we can assume that [(4k+ 1)J] = [a,b].

Now, let f ∈ 1k(a,b), k ≥ 1, and letpk−1 interpolatef atk points inJ:

‖ f − pk−1‖L p[3J] ≤ Cωk( f,b− a, [a,b])p.

Now, taking into account that|J| ∼ b− a, and using Corollary 9 we have

‖ f − pk−1‖L p[a,b] ≤ C‖ f − pk−1‖L p[3J] + Cωk( f,b− a, [a,b])p
≤ Cωk( f,b− a, [a,b])p.

This completes the proof of Lemma 10.

We are going to use extensively the fact that, for 0< p ≤ ∞, and for anỹJ such that
J ⊂ J̃ and| J̃| ∼ |J|, if p is a polynomial of degree≤ k− 1, then (see, e.g., [4]):

‖p‖L p(J) ∼ ‖p‖L p( J̃)
.

The following lemma and its corollary are used to derive Theorem 1 from Lemma 10.

Lemma 11. Let J = [ã, b̃] ⊂ [a,b], and let f ∈ L p[a,b], 0 < p ≤ ∞, be such that
f ∈ 1k(a,b), k ≥ 1, and f has k zeros to the left of the interval J. Let p ∈ 5k−1

interpolate f at k points inside J. Then, for any constantµ > 0,such that̃b+µ|J| ≤ b:

‖p‖L p [̃a,̃b+µ|J|] ≤ C‖ f ‖L p [̃a,̃b+µ|J|],(13)

where C= C(k, µ, p). In the caseµ = 0 this statement is no longer true.

Proof. Suppose thatp interpolatesf at the pointsy0 < · · · < yk−1 inside J. Then
p(x) =∑k−1

i=0{ f [y0, . . . , yi ]
∏i−1

j=0(x − yj )} and since, by Lemma 7,f [y0, . . . , yi ] ≥ 0
for all i = 0, . . . , k − 1 (becausef ∈ 1i (̃a,b)), we know thatp is nondecreasing for
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x ≥ yk−1, and, hence,p(x) ≥ 0 for x ≥ yk−1 (since f (yk−1) ≥ 0 by Lemma 7). Thus,
it follows from Lemma C that 0≤ p(x) ≤ f (x) for b̃ ≤ x ≤ b. Therefore,

‖p‖L p [̃b,̃b+µ|J|] ≤ ‖ f ‖L p [̃b,̃b+µ|J|] .

Now, since|[b̃, b̃+ µ|J|]| ∼ |J| = |̃b− ã| we conclude that

‖p‖L p [̃a,̃b+µ|J|] ≤ C‖p‖L p [̃b,̃b+µ|J|] ≤ C‖ f ‖L p [̃b,̃b+µ|J|],

which completes the proof of the lemma.

Again, we would like to emphasize that “the endpoints cause difficulties” (except for
the casek = 1 andp = ∞). Namely, it is essential that the constantµ in Lemma 11
is assumed to bestrictly positive. The inequality (13) is no longer valid ifµ = 0. We
can apply ideas similar to those used in the proof of Proposition 4 to show that. (In fact,
we would not have Proposition 4 if Lemma 11 were true withµ = 0.) Suppose that the
interval J = [ã, b̃] ⊂ [a,b] is fixed, and letf (x) = (x − b̃+ ε)k−1

+ , ε < |J|/2. Let p
interpolatef atk points in [̃b− ε, b̃] ⊂ J. Thenp(x) = (x − b̃+ ε)k−1 and, hence,

‖p‖L p(J) ≥ ‖p‖L p [̃a,̃b−ε] = C(|J| − ε)k−1+1/p ≥ C|J|k−1+1/p.

At the same time,

‖ f ‖L p(J) = ‖ f ‖L p [̃b−ε,̃b] ≤ Cεk−1+1/p.

Choosingε sufficiently small shows that for no constantC is the inequality‖p‖L p(J) ≤
C‖ f ‖L p(J) true in general.

The following corollary immediately follows from Lemma 11 using the fact that
f (x) ∈ 1k(a,b) iff (−1)k f (a+ b− x) ∈ 1k(a,b).

Corollary 12. Let J = [ã, b̃] ⊂ [a,b], and let f ∈ L p[a,b], 0 < p ≤ ∞, be such
that f ∈ 1k(a,b), k ≥ 1, and f has k zeros to the right of the interval J. Let p∈ 5k−1

interpolate f at k points inside J. Then, for any constantµ > 0,such that̃a−µ|J| ≥ a:

‖p‖L p [̃a−µ|J|,̃b] ≤ C‖ f ‖L p [̃a−µ|J|,̃b],(14)

where C= C(k, µ, p). In the caseµ = 0 this statement is no longer true.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let A > 0 be fixed, and let̃J be the interval of length(b− a)/
(4k+1) in the center of [a,b] (i.e., dist( J̃,a) = dist( J̃,b)). Letqk−1 ∈ 5k−1 interpolate
f atk points insidẽJ ∩ JA. Then, Lemma 10 implies that

‖ f − qk−1‖L p[a,b] ≤ Cωk( f,b− a, [a,b])p.

Now, letrk−1 = rk−1( f ) ∈ 5k−1 interpolatef atk points in [b−A(b−a),b− 1
2 A(b−a)].

Then,

‖ f − rk−1( f )‖L p[a,b] = ‖ f − qk−1− rk−1( f − qk−1)‖L p[a,b]

≤ C‖ f − qk−1‖L p[a,b] + C‖rk−1( f − qk−1)‖L p[a,b]

≤ C‖ f − qk−1‖L p[a,b] + C‖rk−1( f − qk−1)‖L p[b−A(b−a),b]

≤ C‖ f − qk−1‖L p[a,b] + C‖ f − qk−1‖L p[b−A(b−a),b],
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where, in the last inequality, we used Lemma 11 withã = b−A(b−a), b̃ = b− 1
2 A(b−a),

andµ = 1. Hence,

‖ f − rk−1( f )‖L p[a,b] ≤ C‖ f − qk−1‖L p[a,b] ≤ Cωk( f,b− a, [a,b])p.

Now, we are ready to estimate‖ f − pk−1( f )‖L p[a,b] :

‖ f − pk−1( f )‖L p[a,b] ≤ ‖ f − rk−1− pk−1( f − rk−1)‖L p[a,b]

≤ C‖ f − rk−1‖L p[a,b] + C‖pk−1( f − rk−1)‖L p[a,b]

≤ C‖ f − rk−1‖L p[a,b] + C‖pk−1( f − rk−1)‖L p[a,b−A(b−a)]

≤ C‖ f − rk−1‖L p[a,b] + C‖ f − rk−1‖L p[a,b−A(b−a)],

where Corollary 12 was applied with̃a = a + A(b − a), b̃ = b − A(b − a), µ =
A/(1− 2A). Thus,

‖ f − pk−1( f )‖L p[a,b] ≤ C‖ f − rk−1‖L p[a,b] ≤ Cωk( f,b− a, [a,b])p,

which completes the proof of the theorem.
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