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Whitney Theorem of Interpolatory Type
for k-Monotone Functions

K. A. Kopotun

Abstract. One of the main results of this paper is the following Whitney theorem
of interpolatory type fork-monotone functions (i.e., functioné such that divided
differencesf[xo, ..., x] are nonnegative for all choices ¢k + 1) distinct points

X0, -+ 5 Xk)-

Theorem. LetO < p <oo,k>1,m <k, andlet fe Lp[a, b] be a k-monotone
function on[a, b]. Then if a polynomial p,-1 of degree< m — 1 interpolates f at

m arbitrary points in J = [a+ A(b —a),b — A(b — a)], where A< 3—2L is a strictly
positive constanthen

f — pm- <C inf f— ,
l Pm-1llLplab) < q:degqsm_lll qllLpla,b]

where the constant C is independent of the location of interpolation p&rtept for
the case m= 1 and p= oo, the above statement is no longer true i=20.

We also show that the above theorem is not valiehif= k + 1. It is well known that
results of this (interpolatory) type are not true in general for kanenotone functions.

1. Introduction

The following theorem is well known, and is now called ¥whitney(or Whitney-typg
theorem It was proved by Burkill [3] k = 2, p = o0), Whitney [9], [10] (p = o0),

Brudnyi [1] (1 < p < o0), and Storozhenko [8] (& p < 1). It has applications in

many areas, and has been further generalized to various classes of functions and other
approximating spaces. However, this paper deals with its “classical version,” which we
now state.

Theorem A. Let f € Lp[a,b], 0 < p < oo. Then there existsyg: € Tx_1, a
polynomial of degreec k — 1, such that

(1) [ f —dk-1llL,[ab < Cax(f,b—a,l[a, b])p.
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Moreoverin the case p= oo, we can choosegi(X) ;= Lx_1(f,x;a,a+(b—a)/(k—
1), ..., b), the Lagrange polynomial interpolating f at k equidistant point§anb].
Here wy is the kth modulus of smoothness defined by

o(f,t, [a, b])p := sup IAKCE, - [, Bl O0< P < oo,
<h<t
whereAﬁ( f, x, [a, b)) is the kth finite difference

Of course, in the casp < oo, the polynomialLx_;(f) does not have to satisfy (1)
even if we assume that € C*[a, b]. To see that, one can, for example, consider a
function f € C* suchthatO< f(x) < 1,xe[a,b], f@+i(b—a)/(k-1)=1
forO<i <k-1,andf(x) =0if [x—(@+i(b—a)/(k—1)| > eforalli =
0,....,k—=1.ThenLx 1(f,x) = 1, | f — Lx_1(F)|lL[a) ~ cOnst.,, and, at the same
time,wy(f,b—a,[a, b])p < C|l fll, < C(k [°, 1dx)Y/P = Ce¥P, and, hence, (1) does
not hold in general fogx_; = Lx_1(f). In the casg = oo, the interpolation points do
not really have to be equidistant in order for (1) to be true, but, at the same time, it is
well known that they cannot be too close to each other (see [5], for example).

One of the often-used consequences of Theorem 1 is the fact tHahthedulus of
smoothness of is equivalent to the error of best approximationfaby polynomials of
degree< k — 1:

(2) wx(f,b—a,[a b))y ~ Ex-1(f)p:= inf [[f —qllL,ab-
gqellyk-1

Thus, any polynomiadj € TTx_; that satisfied (1) is a “near-best” approximantftan
theLp, 0 < p < oo, metric in the sense that

If—allabn < CE—1(f)p.

In particular, the Lagrange polynomial interpolatificat k equidistant points ind, b]
is a near-best approximant o in the uniform metric. It is not generally a near-best
approximant in otheL ,, p < oo, metrics.

In many applications, it is desirable that the mathematical model preserves certain
geometric properties of the data such as monotonicity, 2-monotonicity (convexity), and,
in generalk-monotonicity. This is the subject that the so-called “shape-preserving ap-
proximation” deals with.

In this paper, we show, in particular, that when a functfors k-monotone, the in-
equality (1) is true for all 0< p < oo, and any polynomialy_; € Ix_; interpolatingf
atk arbitrary points which are “not too close” to the endpoints of the interaab]. This
result will have applications in the area of shape-preserving approximation, since it im-
plies that ank-monotone function (polynomial, spline, etc.) interpolatingmonotone
function at certain rather arbitrary points has good local approximation propertieg (in
forall 0 < p < 00). We remark that some partial results in this direction were obtained
in [5].

We now recall the definition ok-monotone functions, and discuss some of their
properties.

A function f : [a,b] — R is said to bek-monotonek > 1, on [a, b] iff for all
choices ofi(k 4+ 1) distinct pointsxg, . .., Xk in [a, b] the inequality f [xg, ..., X] > 0
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holds, wheref[xo, ..., X] = Z}‘:O f(x;)/w'(x;) denotes théth divided difference

of f atxg,..., Xk, andw(x) = ]_[}‘:O(x — X;). Note that 0-monotone, 1-monotone,

and 2-monotone functions are just nonnegative, nondecreasing, and convex functions,
respectively. We denote the class oflainonotone functions ora[ b] by AK[a, b]. If

f € CK[a, b], then f € AK[a, b]iff f®(x)>0,x € [a,b].

Also, we denote byzK(a, b) the class of akk-monotone functions that are not required
to be defined at the endpoints @t b] (and, thus, do not have to be bounded ant]]).
For example(—1)*x~1 € AK(0, 1) for all k € N. Clearly, AX[a, b] c AK(a, b).

The following theorem about the propertieskefmonotone functions will be used
throughout this paper. In particular, we often use the fact that fok all 2, if f €
AK(a, b), thenf is (k — 2)-times continuously differentiable aa, b). Also, in the case
k=1,if f € A¥a, b),thenf e Ly[&, ¢]forany 0< p < oo, and any closed interval
[£, ¢] contained in(a, b).

Theorem B([7], [6]). Suppose for some k 2that f : [a, b] — R is k-monotone
Then 1) (x), the derivative of order ,jexists on(a, b) for j < k —2andis(k — j)-
monotoneln particular, %2 (x) exists is convexand therefore satisfies a Lipschitz
condition on any closed intervdk, ¢] contained in(a, b), is absolutely continuous
on[&, ], is continuous or(a, b), and has left and righ{nondecreasingderivatives

f %P (x) and f*7(x) on (a, b). Moreoverthe set E where -1 (x) fails to exist is
countableand f&Y is continuous orfa, b)\ E.

2. Main Results

One of our main results is the following interpolatory version of the Whitney theorem
for k-monotone functions (see also Theorem 6 below).

Theorem 1. Let f € A¥(a,b)NLy[a,bl,k > 1,0< p < co,andlet g_1(f) € M1
interpolate f at k points in J = [a+ A(b — a),b — A(b — a)], where A< % is a
strictly positiveconstant Then

) T — pr—1(F)llL [at < Cox(f,b—a,[a,b])yp,

where the constant C depends only ojkAp (if p < 1), and does not depend on the
(location of) interpolation pointsExcept for the case k 1, p = oo, the statement of
the theorem is no longer true if A 0.

The proof of Theorem 1 turns out to be rather technical and is postponed until Section 3.
We remark that (2) implies that_; (f) is a near-best approximant foe A in the Lp
metric for all 0< p < oo, and that the same remark is also valid for Theorems 3 and 6.
The following natural question now arises: since conditfom AX is strong enough
to yield the Whitney estimate for Lagrange interpolation polynomials of degree 1,
what can be said about Lagrange polynomials of degrea — 1 if m # k? Do we
still have the Whitney inequality? Also, do interpolation points have to be “far” from the
endpoints of &, b] in the casan # k as well?
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The main purpose of this paper is to provide answers to the above questions. First of
all, it turns out that the case whgn= oo andm = 1 (ork = 1) is very much different
from the others. The following lemma is trivial, and is only stated here for completeness.

Lemma?2. Let f:[a, b] — R be bounded ofe, b]. Then for any¢ < [a, b]:
1) — FE)Lab < o(f,b—a[a b w.

It turns out that we cannot have the Whitney estimate for Lagrange interpolation
polynomials of degree- 1 (if p = co) or degree> O (if p < co) without an additional
assumption that the interpolation points are “not too close” to the endpoinés lof. [
Also, as we show below, we need to assumerihat k for the Whitney estimate to hold.

It is not surprising that, im > k 4 1, then the conditiorf € AX is “not strong enough.”

Theorem 3(m < k). Let f € AK(@@,bynLy[a,b],0 < p < oo, k>1,m <k, and
let pn_1(f) € My_y interpolate f at m pointsin = [a+ A(b —a), b — A(b — a)],
where A< % is a strictly positiveconstant Then

(4) T — Pm-1(F) L fan < Com(f,b—a,[a b])p,

where the constant C depends only onkAp (if p < 1), and does not depend on
the (location o)) interpolation points Except for the case &= 1, p = oo, the above
statement is no longer true if A 0.

Proof of Theorem 3. We will show how the casen < k can be reduced tm = Kk,
which is considered in Theorem 1.
First of all, we note that it is enough to show that, for ang AK(a, b) N Lo[a, b]:

(5) lPm-1(F)llL b < Cll fllLab)-

Indeed, suppose that (5) is true, anddgt 1 be any polynomial inlly,_; such that
[ —dm-1llL,fab < Com(f,b—a,[a, b])p. Then, taking into account thdt— gm_1 €
AK(a, b) N Lp[a, b] we have

If = Pm-1(OllLab = IIf —0n-1— Pm-1(f — Am-D L [ab]
Cllf —dm-allLfab) + CllPm-1(f — dm-1) L [a0]
Cll f— qm—l”Lp[a,b] < Com(f,b—a, [a» b])p-

IATA

To prove (5) we use the following rather trivial statement:

Let Q be an arbitrary polynomial, and Ip§,_1(Q) be a polynomial of degree
< m-—1linterpolatingQ atmpoints inside §, b]. Then, forany O< p < oo:

[ Pm-1(Q Lty < CHQIL[a k)]s

where the constant depends only omm, degQ, p (if p < 1), and is
independent of the interpolation points.
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The above statement can be easily proved using Markov's inequality and the fact that
norms in finitely dimensional spaces are equivalent (which allows us to only prove this
statement in the cage= co0). We omit the details.

To prove (5) we suppose th@tis a polynomial of degree k — 1 which interpolates
f at a set ofk points in Ja which is a superset of the interpolation set fg§_1(f)
(consisting oim < k points). This immediately implies th@t,_1(f) = pm_1(Q). Now,
using the fact thaf f — Q|| ,ja.n) < Cax(f,b—a,[a, b])p, (Theorem 1), we have

[Pm-1(F)llL e = IPm-1(Q)lIL, [ab] < ClIQIL [ab]
Cllf — Qll,fab + Cll fllL [ab)
Caox(f,b—a,[a b))y + Cll L [ab

CllifllL rab)-

IANIATA

This proves (5). The proof of Theorem 3 is now complete. ]

We would like to emphasize that the condition tlatis “in the center” of g, b] is
essential, and cannot be removed. We have the following proposition to illustrate that.

Proposition 4 (m € N, J near endpoints off, b]). Let0 < p <oo,ke N,me N
be such that

m > 2 ifp=oo,
— 11 ifp<oo,

~

and let the interval J= [&, b] C [a, b] be such thatlist(J, {a, b}) = 0 (i.e, either
4 = a or b = b). Then for any constant Bhere exists a function &€ AX[a, b] and a
set of m points in J such that p,,_; is a polynomial of degree& m — 1 interpolating
f at these pointghen

(6) Il Pm-1llLpfab) = BI fllLfab-

Hence the inequality

| f— pm—l”Lp[a,b] < Com(f,b—a,[a, b])p

is not true in general for Lagrange polynomiaj,p, interpolating f € AK[a, b] at m
points which are close to the endpointqafb].

Lemma 2 shows thah in Proposition 4 cannot be 1 g = cc.

Proof of Proposition 4. LetJ = [3a, 5] C [a, b] be any interval such that dist, b) =
0 (i.e.,b = b), and definef, (x) = £2%(x — b + &)X~ Note thatf, € A¥[a, b].

First of all, we prove the proposition in the cape< oo andm > 1. Let py_1
interpolatef, at{& + i[(b — &)/(m — D]}™ ({b} if m = 1). Then, for all sufficiently
smalle (¢ < (b—3)/(m—1)), || Pm-1llL,fa.b) = const. (sincef (b) = 1, andf isO atall
other interpolation points), and, at the same tithe||L ja.n < Cel/P 5 0ife — 0.
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Now, suppose thap = oo andm > 2. Let py_; interpolatef, at the pointgt; }j“;ol,
wheret; =b—2¢+[¢/(m—-1)]j,j =0,...,m—2, andtm_1 = b. Using the Lagrange
interpolation formula, we conclude that

m—2 a—t
IPn-lician = IPm1@] =[] | —
j=0 !> 77
m—2
a—b+2
> ngsl_maoo as ¢ — 0,
L 2e
j=0
and, at the same time|f,|lclay; = f.(b) = 1. This completes the proof of the
proposition. ]

We now show that, ifn > k + 1, then the Whitney estimate does not necessarily hold
for a Lagrange polynomial of degreem — 1 interpolatingf € A* atm points even if
we require that these points are “inside’ p] (i.e., far from the endpoints of[ b]).

Proposition 5(m > k + 1, arbitraryJ C [a,b]). LetO < p <oo,ke N, m>k+1,
and J= [&, b] c [a, b]. Then for any constant Bthere exists a function & AX[a, b]
and a set of m points in J such that p,_; is a polynomial of degreec m — 1
interpolating f at these pointshen

(7) I Pm-1llL ety = Bl FllLab-

Hence the inequality

I — Pm-1llLfab) < Com(f,b—a,[a, b])p

is not true in general for Lagrange polynomial,p; interpolating f € AX[a, b] at
m > k + 1 arbitrary points in J

Proof of Proposition 5. Leté = (3+b)/2. Without loss of generality we may assume
thats > (a+ b)/2. Now, let f (x) := (x — £)%7%, and note thaf € A¥[a, b] and that

I fllL,fa.) = C, where the constai@ depends only o& and the intervald, b]. Now let
t=£-(M—-2-j)e, j=0,...,m—1, where(m — 2)¢ < min{|J|/2, (b — a)/8},
and suppose thaiy,_, interpolatesf at {t; }?‘:})1. Taking into account that (tj) = O for
j=0,...,m=2,andf (tn_1) = “"we havepy_1(x) = <1 ]‘[}“;f(x—t,-)/(tm_l—t,-)
and, hence, for every € [a, a + (b — a)/4]:

-2
b—a)/8
|Pm_1(X)] > &1 b=a/B _ em
i—o (m—121e
Therefore,
I Pm—llL et = I Pm-tllL faasb-aye = Ce*™™ — oo as ¢—0,

and (7) follows if we choose sufficiently small. ]



Whitney Theorem fok-Monotone Functions 313

Finally, as an immediate consequence of Theorems 1 and 3, we obtain the following
theorem on simultaneous approximation fofe A¥ and its derivativest © by py_1
andpl) .

Theorem 6. Let f € Ak(a,b), k > 1, m < k, and let p,_1 € I1,,_1 interpolate f
atm pointsin 4 = [a+ A(b — a), b — A(b — a)], where A< % is a strictly positive
constantThenfori =0,...,m— 1:

(8) 1FD — p& 1l ek < Com-i(fV,b—a,[a, b])p,

whenever f) ¢ Ly[a, b], 0 < p < oo, where the constants C depend only orkAp
(if p < 1), and do not depend on tifeocation o) interpolation pointsThe statement of
the theorem is no longer true in general ifzA0 (unless m= 1 and p= o0).

Proof of Theorem 6. If i = 0, then (8) immediately follows from Theorem 3. In the
case 1< i < min{m — 1, k — 2}, Theorem 6 also follows from Theorem 3 taking into
accountthaf © e A*~(a, b)NC(a, b) and, by Rolle’s theorenp!, , interpolatesf ©
atm — i points insideJa. Finally, in the casen = k, i = k — 1 > 1, even though &b
may fail to exist at countably many points, it isit, and hence, (8) follows. [ ]

3. Proof of Theorem 1

In order to prove Theorem 1 we first need to consider a couple of auxiliary results. First,
recall the following lemma which can be found in Bullen [2].

Lemma C ([2]). Let f € AX k > 1, and let k_1(x) interpolate f at z, ..., z,
then f — Ix_1 changes sign atiz..., z« and, in particular, f(x) — lx_1(X) > 0O for
X > maxzi, ..., z}, and (—D)K(f (X) — l,_1(x)) > 0for x < min{zy, ..., zJ.

We also remark that Lemma C immediately follows from the definitionbfnd the
identity

FOX) —lke1(X) = f[X, 20, ..., ] (X — 27) ... (X — Z), X#£Z.

Lemma7. Let f e AX@,b), k > 1, be such that ft;) = --- = f(t) = 0, where
a<t <---<t<b Then f e Alt,b) and (=D i f e Ala,ty) for all
j=0,...,k—1.

Proof of Lemma 7. If j =0, thenthelemmaisanimmediate consequence of LemmacC.
If1 < j < k — 2then, by Theorem B, the functiofi? ¢ A*~i(a, b) N C(a, b) and,

by Rolle’s theorem,f ) hask — j zeros in fu, t]. Therefore, Lemma C implies that
f(x) > 0forx > t, and(—=D* 1 f)(x) > 0 for x < t;. Hence,f € Al(t, b)
and(—1)*-1 f € Al(a, t;). This completes the proof in the cape< k — 2. In the case

j = k — 1, we note that the functioh ®~2 is convex on(a, b) and has two zeros in

[t1, ti]. Therefore, f k=2 is nondecreasing fax > t, nonincreasing fox < t;, and,
hence,f € AK-1(t, b) and—f € Ak-1(a, t;). The lemma is now proved. [
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Lemma8. Letk> 1,0< p < o00,J :=[c,d] C D,and f € Lp(D). Define
J= [c,d + 6] (orJ = [c—é6,d)]), WhereO <& <(d—-c)/k. Thenif J c D, the
following estimate is valid

©) 111,55 < Cll flly) + Cen(f,8, 3.

Proof of Lemma 8. The lemma is well known. However, since its proof is simple and
short, we include it here for completeness. We only consider thekcaske, d+6], since

the case) = [c—§, d] is completely analogous. Lete [d —ks, d — (k—1)8] C [c, d].
Then, since

k

INCBSEDS <',‘> (—D* f(x +i8),

i=0

we have
k1
(10) |f(x+ka)|g|A§(f,x)|+2<i)|f(x+i3)|.
i=0
Taking supremum of both sides of this inequality immediately yields (9pfer co. If

0 < p < oo, raising (10) to powep, taking into account thaiu + v)P < C(uP + vP)
for 0 < p < oo, and integrating with respect toover [d — ks, d — (k — 1)§], we have

A

d—(k—1)8
/ [f(x+k&)[Pdx < CllAK(f, x, D)|P ~
d

—ks - Lp(D)
k d—(k—1)8
+C2"k2/ |f (X +18)|Pdx
i—o J/d
d—(k—1-i)é
< Clakcf,x, 3P ~+CZ/ 1001 dx.
d—(k—i)s
and, hence,
I f |||_ pld,d+8] = <CJ f |||_ (D) + Cux(f, 6, ‘J)p,
whereC depends only ok and p (if p < 1). This immediately implies (9). ]

Corollary9. Letk>1,0< p <o0,J =[c,d] C D,and f € Lp(D). LetJ c D
be such that J= J. Then

(11) 11,55 < CllFlly + Cox(F, 131, Dy,

where C depends on the raﬂi5|/| Jl.

Corollary 9 is used to prove the following Lemma 10 which is a simpler (but not as
general) version of Theorem 1. In turn, the proof of Theorem 1 is based on this lemma.
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Lemma 10. Let f € AK(a, b),k > 1,andlet J be aninterval of length (b—a)/(4k+
1) in the center ofa, b] (i.e., dist(J, a) = dist(J, b)). Let p_1 € I1k_y interpolate f at
k pointsin JIf f € Lp[a, b], 0 < p < oo, then

(12) I — Pe-1llL,fab < Cax(f,b—a,[a, b])p,

where the constant C depends only gnpk(if p < 1), and does not depend on the
(location of) interpolation points

Proof of Lemma 10. For an intervald = [3, b] we denoteJ| = b — &, and
[(2v +1)J] ;= [&—v|I|, b+ v]J]].

First of all, we note that it is sufficient to prove Lemma 10 for the intedvalich that
|J| = (b—a)/(4k + 1). This can be easily seen if we recall that the only condition that
we have on interpolation points is that they are insld&hus, enlargingl if necessary,
we can assume thaidk + 1)J] = [a, b].

Now, let f € AK(a, b), k > 1, and letp,_; interpolatef atk points inJ:

If — pk-1llL,pa) < Cax(f,b—a,[a, b]),.
Now, taking into account thatl| ~ b — a, and using Corollary 9 we have

CII'f — pk-1llL,33) + Cax(f,b—a,[a, b)),
Ca)k(fv b - a7 [a» b])p

If— Pe-allipfab <
=<

This completes the proof of Lemma 10. ]

We are going to use extensively the fact that, for @ < oo, and for anyJ~such that
J c Jand|J| ~ |J|, if pis a polynomial of degreg k — 1, then (see, e.g., [4]):

IpllLy) ~ 1Pl G-
The following lemma and its corollary are used to derive Theorem 1 from Lemma 10.

Lemmall. LetJ=|[3, 5] C[a,b],and let f e Ly[a, b], 0 < p < oo, be such that
f € A%@,b), k > 1,and f has k zeros to the left of the interval Let p € Tk
interpolate f atk points inside.Xhen for any constantc > 0,suchthab+u|J| < b:

(13) 1PN, @ 5o = CH I @50
where C= C(k, u, p). In the caseu = 0 this statement is no longer true
Proof. Suppose thap interpolatesf at the pointsyy < --- < Yk_1 inside J. Then

POO = YHat f[Yo. -, Y TTZ5(x — y)} and since, by Lemma 7[yo, ..., yi] = 0
foralli =0,...,k—1 (becausef € A'(3, b)), we know thatp is nondecreasing for
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X > Yk-1, and, hencep(x) > 0 for x > yk_1 (since f (yk-1) > 0 by Lemma 7). Thus,
it follows from Lemma C that G< p(x) < f(x) for b < x < b. Therefore,

l p”LP[BTB;mJ‘] <|f Ile[Eg+M|J\]'

Now, sincel[b, b + |J|]| ~ || = |b — 3| we conclude that

PGS oy = CIPILEEwan = CITIL B
which completes the proof of the lemma. ]

Again, we would like to emphasize that “the endpoints cause difficulties” (except for
the case&k = 1 andp = oo). Namely, it is essential that the constantn Lemma 11
is assumed to bstrictly positive The inequality (13) is no longer valid ji = 0. We
can apply ideas similar to those used in the proof of Proposition 4 to show that. (In fact,
we would not have Proposition 4 if Lemma 11 were true witk- 0.) Suppose that the
interval J = [&, b] C [a, b] is fixed, and letf (x) = (x — b +~e)‘f[1, e < |J|/2. Letp
interpolatef atk pointsinb — ¢, b] ¢ J. Thenp(x) = (x — b+ ¢)** and, hence,

1Pl = 1Pl G35 = CUI =) P = ClaffH/P,
At the same time,
Il =1l 5 5 < Ce* e,

Choosinge sufficiently small shows that for no constabis the inequalityl| p|l L) <
Cll fllL ) true in general.

The following corollary immediately follows from Lemma 11 using the fact that
f(x) € AK(a, by iff (=D f(@+b—x) € AK(@a, b).

Corollary 12. Let J = [3, 5] C [a,b],and let f € Ly[a,b], 0 < p < oo, be such
that f € A(a, b), k > 1,and f has k zeros to the right of the intervallkt p € IT,_,
interpolate f atk points inside.Then for any constant. > 0,such tha— u|J| > a:

(14) 1Pl o < CI LG a5
where C= C(k, u, p). In the caseu = 0 this statement is no longer true

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let A > 0 be fixed, and Iet]:be the interval of lengtiib — a)/
(4k+1) inthe center ofd, b] (i.e., dist(J, a) = dist(J, b)). Letgk_1 € Ik_y interpolate
f atk points insideJ N Ja. Then, Lemma 10 implies that
[ f —ak-1llL,fab < Cax(f,b—a,l[a, b])p.

Now, letry_1 = rx_1(f) € Ix_; interpolatef atk pointsinb— A(b—a), b—%A(b—a)].
Then,

If—re-1(DllLan = I1f =01 —re1(f = G-l an
Cll'f — Gk-1llL,ab) + Clirk-1(f — Gk-1) I [a0]
Cll'f — dk-1llLfaby + Clirk—2(f — k- I ib—Ab-a).b]
Cll'f — dk-1llLfaby + ClIl f — Gk-1llL b Ab-a).b]»

INIATA
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where, inthe lastinequality, we used Lemma 11 \&ith b— A(b—a), b= b—%A(b—a),
andu = 1. Hence,

I —r1()llab < ClIf — dk-1llL,[an < Cax(f,b—a,[a, b])p.
Now, we are ready to estimafe — px—1(f)IlLab:

If = Pe-1(D)llfab < I —rker — Peea(F =)L an

< ClIf —re-allyfan + Cllpk-1(f = re-n) L an
< ClIf —reeallyfan + Cllpk-1(f = re—n) L [a.b-Ab-a)
< ClIf —rieall fan + ClIl f = re-alle jab-ab-a)y.

where Corollary 12 was applied with = a + A(b — a), b=b- Ab—a), u =
A/(1—2A). Thus,

If — P1(F)llLan < CIIf — k1l an < Cax(f,b—a,[a, b))y,
which completes the proof of the theorem. ]
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