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Pointwise and Uniform Estimates for Convex
Approximation of Functions by Algebraic
Polynomials

Kirill A. Kopotun

Abstract. Let A? be the set of functions f for which the gth difference is non-
negative on the interval [—1, 17, P, is the set of algebraic polynomials of degree
not exceeding n, T{f, 9), is the averaged Sendov-Popov modulus of smoothness

in the L[—1, 1] metric for 1 < p < oo, w,(f, 8) and wi(f, 8), dp(x):= /1 — x2,
are the usual modulus and the Ditzian-Totik modulus of smoothness in the
uniform metric, respectively. For a function fe€ C[—1, 1] n A? we construct a
polynomial p, € P, n A? such that

f(x) — PN < Coos(fin™ L /1 —x2+ 173, xe[—1,1%
IS = Pallew < Cold(f,n™1);
1S = pall, < Cra(fin™h),.

As a consequence, for a function fe C*[—1, 1] n A* a polynomial p* e P, n A3
exists such that

If = pille < Cn7lwa(f", 7Y,

where n > 2 and C is an absolute constant.

1. Introduction and Main Results

Let us recall that coapproximation is the approximation of functions f for which
the gth forward difference, given by

; {4 . .
— 1)t h f h -
B Lo b m (:-)f(”’) if [ x + gh] < [0, 5],

0, otherwise,

is nonnegative for given ge N, for all 0 < h < (b — a)/q and x € [a, b], by poly-
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154 K. A. Kopotun

nomials with nonnegative gth derivatives. Let A% q, b] be the set of such functions
J (note that if f € C¥[a, b], then f € A¥[q, b] if and only if f9(x) > 0, x € [a, b]).
Denote I:=[—1, 1], A%:= AYI), A}, x):= AL/, x, I). For ke N we denote H?
as the class of functions f € C(I) whose kth modulus of smoothness does not exceed
the k-majorant ¢ = ¢(t) (i, ¢ = ¢(t), t > 0, is a continuous and nondecreasing
function satisfying the conditions ¢(0) = 0 and ¢~ *¢(t) nonincreasing), that is,

([, )= (f, t; D), < 0(D).

Here we denote

wk(fs t; [as b])= wk(f’ t; [a’ b])oo
= sup ”Blhc(fa X, [a> b])”C[a,b]'

O<hgt

WHp = {f: f" e Hy),

A(x)y=n" /1 —x*+n"?

P, is the set of algebraic polynomials of degree at most »n, and C is an absolute
constant.

In the monotone case the following analog of the direct theorems for un-
constrained polynomial approximation is known.

Theorem A. Let ke N ifreN,and k=1 0r2ifr =0. Then, for f e WHf n A?
and an arbitrary ne N, n > k +r — 1, a polynomial p,e P, n A* satisfying

) (X) = p0) < C4,(x)0(4,(x)),  C=Clk), xel,

exists.

An immediate consequence of A. S. Shvedov [12] is the fact that Theorem A is
not correct for r =0, k > 3. For r =0, k = 1 or 2 Theorem A is a consequence
of the work of R. A. DeVore and X. M. Yu [1] who constructed the sequence of
polynomials p, € P, n A' which approximate a function f e C(I) 0 A! so that

(2) |f() = )] < Coy(f,n7'/1 = %%),  xel

For re N, ke N Theorem A was proved by 1. A. Shevchuk [9], [10].
For convex approximation the following result is known.

Theorem B. Iet keNifr>=2,k=1ifr=1,and k=1o0r 2 ifr=0. Then, for
feW'Hf ~ A% and an arbitrary neN, n >k + r — 1, a polynomial p,e P, ~ A*
satisfying (1) exists.

A. S. Shvedov showed in [12] (see also [11]) that Theorem B is not correct for
r=0,k>4andr=1,%k>3.Forr=0,k=1o0r2, and r =k =1 Theorem B is
a consequence of D. Leviatan [6], where the estimate (2) was obtained for convex
approximation. For r > 2, ke N Theorem B was proved by S. P. Manya and
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I. A. Shevchuk (see [11], for example). There is a gap in Theorem B as nothing is
knownforr=0,k=3,andr=1,k=2.

Let us write the number « > 0 as « =r +  where r is a nonnegative integer
and 0 < B < 1. Denote by Lip* o the class of all functions f(x) on I such that

w,(f7, 1) = O(t”).

A consequence of Theorem B and also classical converse theorems (see, for
example, p. 263 of [3]) is

Theorem C. For o> 0, o # 2, a function f = f(x) is convex on I and belongs to
Lip* o if and only if, for each n > r + 1, a convex polynomial on I, p, = p,(x) of at
most degree n, exists such that

) |f(x) = pu¥)| < C(4,(x),  xel.

For o = 2 the result of Theorem C is not complete as this case corresponds to
r =1, k = 2 in Theorem B.

In this paper it is shown that Theorem B is correct for r = 0, k = 3 (and therefore
for r = 1, k = 2), and hence Theorem C is correct for o = 2. Namely, they are
consequences of the following theorem.

Theorem 1. For a convex function f € C(I) and every n > 2 a convex polynomial
P, = Px) of degree not exceeding n exists such that

) ) = p¥)| < Coy(f, 4,(x),  xel.
If f € CY(I), then the following estimate also holds:

) |/ (x) = pu0)l < Coa(f', 4,(x)),  x€el
Moreover, for f € C*(I) there is also the following estimate:
(6) |f"() — pa(¥)] < Caxf", 4,(x)),  x€l.

Corollary 1.  Iff € C'(I) n A?, then, for everyn > 2, p, € P, 0 A exists such that
(M [ f(x) = pyx)| < CA(X)oy(f, 4,x),  x€l.

Remark 1. Estimate (4) can be improved to some degree (see the method in [11],
for example). Namely,

@) /() — px)
(=)
<C "

- 1—x%1
w3(f,3 nx ;), xe[—1, =1+n"Hul —n"%4 1]

s , xe[—-14+n"21—-n"7],
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All the estimates above are pointwise. The uniform estimates in terms of the usual
moduli of continuity are rather imperfect because as can be seen from inequalities
(1)}-(8) the degree of approximation improves as the endpoints of the interval I
are approached. The modulus of smoothness w}, introduced and used extensively
by Z. Ditzian and V. Totik [2] is given by

wg(f, ), = sup [ Ay S (%)l

O<h<t
where
k [k kh kh
Z(—l)"_‘(.)f<x+?—ih> if x_-t?el,
i

0

A f(x)i= < 5
0, elsewhere

(Ak f(x) is the kth symmetric difference). It is obvious that under the proper

conditions on the function ¢ = ¢(x) (for example, for ¢(x) = /1 — x?) the step of
the difference is decreasing near the endpoints of [—1, 1]. So uniform estimates
in terms of the Ditzian-Totik modulus of smoothness are more exact than the
usual ones (see [21).

For feC(I), ¢(x) = /1 — x%, xeI in uniform metric the following definition
of a2 “nonuniform” modulus of smoothness @}(f, t) will be used (see [11], for
example):

(Dsﬁ(fa t):= sup ||Z’:z(fa Mer-1, 110 t >0,

O0<h<t

where p:= p(x, h):= /1 — x*h + h*. It is easy to see that @k(f, 1) ~ w(f, 1), with

d(x) = /1 — x? (see also [2]).

Theorem 2. For a function f € C(I) n A? and each n > 2, p, € P, n A? exists such
that

© I1f = Pall o < COY(S,n71).

If f € CY(I), then the following estimate also holds:

(10) If = Phlle < Co3(f', ™Y
Moreover, for f € CX(I) there is also the following estimate:

(n If" = pulle < Cag(f", 0™ ").

Theorem 2 improves the estimate of convex approximation

(12) If — Palleo < CoR(f,n™")
which was obtained by D. Leviatan [6].
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Corollary 2. Iff € C'(I) n A2, then, for every n > 2, p, € P, n A® exists such that
(13) If = Pullw < Cn™r@3(f", n 7).

Let us recall that the integral modulus of the kth order of function fe L [—1, 1],
1 < p < oo, is the function

t-kh 1/p
ol f, 6),:= sup {%J |AKS, %) dX} . 0e[0,2k1].
0<h<é -1

For a function f bounded on [ —1, 1] the local modulus of smoothness of order
k at the point x € [—1, 1] is the function (see Definition 1.4 of [8])

- ko ké
wlf, x; 8):= sup{lA’,ﬁ(f, ni:tt+ khe[x 5 x + 7}}

The kth-order averaged Sendov-Popov modulus of smoothness of a function f
bounded and measurable on [ —1, 1] is (see Definition 1.5 of [8])

1

1/p
TS, O)pi= llen(f, ", O)l, = {% JA (@ f, %, 0)Y dX} ;. 6e[0,2k71].

The following properties of 7, are used (see Theorems 1.4 and 1.5 of [8]):

(14) wy(f, 9), < T/, 9), < wi(f, 9).

(15) A constant C(k) depending only on k > 2 exists such that, for each
function f absolutely continuous on [a, b], the following inequality
holds:

W, ), < Ck)owy—4(f, ),

In this paper the following theorem is proved.

Theorem 3. Let 1 <p<oo. For a function feC(I)nA* and each n> 2,
p. € P, N A? exists such that

(16) If —pall, < Cra(f,n7 1),

If f € C(1), then the following estimate also holds:

17) Lf = pall, < Crao(f's n ™),
Moreover, for f € CX(I) there is also the following estimate:

(18) Lf" = pall, < Celf", n™ 1),

Corollary 3. By (15) and (16), for f € C'(I) n A? and every n>2, p,e P, n A*
exists such that

(19) “f - pn“p < Cn_le(fla n_l)pa 1< p < .
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By the methods of [12], using (15) and also estimate (16), it is easy to prove:

Theorem 4. For a function f € C*(I) ~ A® and each n > 2, p,e P, n A3 exists such
that

(20) If = Pall o < Cn7l0o(f', 17 ).

2. Definitions and Notation

Throughout this paper we use the following notation (see [4] and [9]-[11]):

Ji—-x* 1
An(x):=-—~i+—2, XEI,
n n
jm —_ jT ®m -
x;:=cos—, j=0,n = cos| — — — =1, n;
J n % (n 2n) /
. B R jr 3m n
x5 i= cos{ — — — if j<-=, x5 1= cos| — — — if j=—;
n n n 2
Iji=[x; x5 ], hys=x;_1 —x; j=Ln

tf(x):= (x — x3)~2 cos® 2n arccos x + (x — X;)~* sin® 2n arccos x

is the algebraic polynomial of degree not exceeding 4n — 2 (see [3] and [9]);

1

II{E, (W= J (y — x)%(x;-1 — YFti(y) dy,
1

where &, {, and p are integers. It is shown in Proposition 2 that if £ >0, { > 0,
and u is big enough in comparison with ¢ and {, then IT{E, {, p) ~ by 2#Fé+H L
This permits us to define

j (x;-1 — Yy dy

—1

f (y — xt;°(y) dy
0x)="3 . 0= ,
j (y — x)t;°%(y) dy : f (xj-1 — Mt °(y) dy
1 -1

J £3(y) dy
Tfx)i= o
j £(y) dy
-1
are algebraic polynomials of degree not exceeding 40n. (The polynomials Q;, 0;,
and 7; are well defined because the denominators in the expressions of their
definitions are never zeros.)
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For brevity, denote
h

Vi= Ix — x;| + by’

To emphasize the dependence on n we use a double index. For example, x; ,, h; ,,
I; ,, etc.

L(x, f; aq, 4y, - - ., o) denotes the Lagrangean polynomial, of degree not exceed-
ing k, which interpolates a function f(x) at the points ag, a4, ..., a,. We also denote

Lix, f;x):=L{x, f; %3, X;— 1, X;i—3)

and

Lx, f;[a, b]):= L(x, f;a, %Zz, b).

0, otherwise.

xla, bl(x):= {1’ x € [a, b],

C are positive absolute constants which are not necessarily the same even when
they occur on the same line. Co(p) denote constants which depend on g only and
remain fixed (for certain values of ) throughout the paper. (Thus Cy(9), for
example, denotes the absolute constant which corresponds to u = 9.) Without
further mentioning the inequalities k;, < 3h; 4,(x) < h; < 54,(x) for xel; are
used.

3. Auxiliary Results

Proposition 1 (see [9] and [10], for example). The following inequalities hold:

21)

min{(x — x3)72, (x — X)7%} < 1{x) < max{(x —x))% (x —%)"?},  xel,
(22) t{x) < 103hj_2, xel,
(23)

o -j_ x.i lh = 1h = o 3h . . n

Xj—X;> > > ghj, Xj—1 — X; > 3hy, Xj— X; < gh; ’f-’si’

(24)
Xj_1 — X;

X=X > P s gy, gyt G -x<dy O j>g,

(25) max{(x — x})7%, (x — %)%} < 64(lx — x;| + h)73,  x¢l
and

(26) (Ix — x| + h) 2 < tx) £ 4-10%(|x — x;| + h) 73, xel
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Proposition 1 can be verified by simple calculations using the definitions of the
points x;, x7, X; and properties of the trigonometric functions sin and cos.

The following proposition permits us to define the polynomials Q(x), 3 (x), and
Ti(x) (note that in these definitions we need only 0 < &, { < 1).
Propeosition 2. The following inequalities hold:

Colp)™hy 278 < II(E, L, )

1 .
= J‘ (y — x)%(x;-1 — YFtH(y) dy < Colhy 217441

-1
where &, {, and p are integers satisfying £ > 0, { > 0, and
¢ > max{3 max{¢, (} + 4,9}
Proof (see [10]). These estimates are proved for j < n/2. For j > n/2 the proof is

analogous with the only difference that instead of (23) inequalities (24) should be
used. We write

U,-(é,l,u)=Uj+Jj J}(y—X,)( ~1 = W) dy =8, + 8, + 85

Now using the estimates (22) and (21) we get

32 < (xj—l _ xj).{+{+1103uhj—2/t — 103uhj—2u+§+5+1

and
9, > j (y — x)*0e;—1 — yF min{(y — x§) 72, (y — %)” >} dy
% +x7)/2
> 2(x; — xj)‘f(xj_l — D'Cj)c f (y— fj)‘f’-u dy
=57 @7 = D — ) — B )
respectively.

Similarly, using (21) we have

191 < f (x; — WAxi—y — YPei(y) dy
-1

< J (x5 —~ Y405 — )5 — y) " dy

45
T u—¢—-(—1

o —2uté+L+1
0 — x;
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and

19, < j (y— xj)é(y - xj—l)ct";'l(y) dy

Xj_1

sjw4ﬁﬁﬁfu—iﬂy—%ymw

4§
Cu—¢—(—1

Now using (23) we have

S y—2utE+L+1
(xj»l_xj) ptEFi+1

Hj(éaC>ﬂ)=91 +92 +83
4214—{—1 +42u—{—1
X
2p—¢—(-1

< 103;z+ Ihj—z,u+§+§+1.

+ 103u>hj—2u+§+§+1

Finally the estimates in the other direction are the following:

Hj(és Ca ﬂ) = 81 + S2 + 83
42u~§—1 +42u—§—1
- +
( p—-8&—-{—1 2u—1
> #—124;4—2{—2{—3((%)2;;—1 . 22§+1 _ 22§+1)hj—2u+§+{+1

(22;1—1 _ 1)4“5—4(%)2#—1);3}_—2a+§+§+1

—2ptEtrHl
> h] .

Thus the proposition is proved. ||

Lemma 1. The following inequalities hold:

(27) 0 < Ti(x) < Cyj*h; 1,

(28) %) — T{x)) < €Y},

(29) l—xj_1<J‘1 T{y)dy <1-—x;,
(30) 10591 < Cioh; Y,

(31) 0 < xfx) — Q4x) < Cy;}°,

(32) —x_, < fl Qydy <1—x,
(33) |03 < Cy}°h;

(34) 0 =< Q—j(x) - xj—l(x) < C¢}8>
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and
1 —a—

(35) l—x;_; < J Q;(y) dy <1 —x;,
-1

where x eI and y{x):= x[x;, 1]1(x).

Proof. Letusnotethat Q(x) <0,x < x; 04x)>0,x > x;;0{—1)=0;Q(1) =1
and 0fx) >0, x < x;_q; @{x) <0, x >x;_; §({—1)=0; Q1) = 1. This yields
04x) < x{x) and y;_,(x) < §(x), which are the left-hand side inequalities in (31)
and (34), respectively. Now taking integrals of both parts of these inequalitics we
get the left-hand side inequality in (35) and the right-hand side one in (32). The
other inequalities could be verified by simple calculation with the use of Proposi-
tion 1. These proofs are either given in [10] and [11] (see also [4] and [9]), or
the method of proofis the same. However, because of the importance of this lemma
in our considerations the complete proof is given.
First, using integration by parts we get the following identities:

1

Jl T(ydy<l-—x; < jl Jx t?(y)dydx<(1—xj)-f
-1 J-1

-1

() dy
1

1

< J 1 —y5(ndy <1 —x) ‘[

-1

15(y) dy
1

1

< II(1,0,9) = J (y — x)t}(y) dy > 0,

-1
and analogously

1

1
f TG dy>1-%_; < H,<0,1,9)=J (Xj-1 = DEG) dy > 0.

-1 -1

Together with Proposition 2 this yields (29).
Similarly,

1
j 0(ydy>1—-x;_,

1

< Jl JX (v — ,-)t}"(y)dydx>(1—xj—1)f
-1 J-1

(y — x)t}%y) dy

= j (1 — )y — xpt;°%p) dy > (1 — x;-) J_ (y — x)t;%y) dy

1

< II{1,1,10)= j (y — x)x;-1 — }’)t}o(}’) dy >0

-1
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and
1 —_
f Oy dy<1l—x;
-1
1 x 1
< J_ f (xj-1 — M) dydx < (1 —x) f_ (xj—1 — Yt °(y) dy
< j — M-y — YY) dy dx < (1 — x)) f (x;—1 — Wt;°(y) dy

< I{1,1,10)= J (y — x)x;- 1 — Y %y) dy > 0.

Together with Proposition 2 this implies the left-hand side inequality in (32) and
the right-hand side one in (35).
Estimates (27), (30), and (33) are the consequence of (26) and Proposition 2 as,
for any x € I, we have
0 < T(x) < Ch}"t](x)
< C-4°-10*"h}7(|x — x;| + hy) '8
< Cl//lsh 1
Q)] < Ch}®|x — x;1£1%(x)
< C-4'°-10°°R}8(Ix — x;| + h)~1'°
< Cyi®h; 1,
and, similarly,
|01 < Chj®lx;_ 1 — x|t} %(x)
< C-41°. 103°h18(|x —x;| + h)™°
< Cy;°hi .

Now let us prove the remaining inequalities which are (28) and the right-hand
side inequalities in (31) and (34). First, let x < x;. Then with (27), (30), and (33) we

have
J T(y) dyl
-1

SCh,U J‘ (ly —x;l +hj)_18 dySCl/l}7,

-0

lxx) — T(x)| = | T{x)| =

1) — @fx) = —Q{x) = — f_ 0{y) dy

< Ch!® f (ly = x| + h)~ 12 dy < Cy1®

— ¢
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and
00— 1= 0 = | Gpay
< Chj® J" (Iy = x;l + )™ dy < Cyj",
respectively.

For x > x;, similatly, we have

%) = Tl =11 — Tx)] =

X

j T(y) dy ]

< Ch}7 J (ly —x;| + h) B dy < Cyj7,

1
1) — Q) =1-0fx) = J ay) dy

< Chj® J (|ly — x;| + h)~" 1 dy < Cy}®,
and
Qj(x) — Fj—1lx) = Qj(x) =1+ xlx; X;-1]

1
< ~J Qi) dy + Cy;®

< Chj® J (ly = x;1 + h)™*° dy + Cy}® < Cyj®.

This completes the proof of inequalities (28), (31), and (34). Thus the lemma is

proved.

It follows from inequalities (29), (32), and (35) that a, §, y€[0, 1] can be chosen

so that for polynomials

O4x):= f @@y + (1 — 0)Q;.4(y) dy,

84x):= f ’ BO) + (1 — PO, 1(y) dy,
-1
and

o {x)r= J 0T + (1 = DT () dy,
-1
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the following equations occur:
S{y=5{D)=0fl)=1~-x;

Let R{x):= (x — x))(x) and Ry(x):= (x — x;)8 £x). Polynomials R{x), R(x), and
ojx) and their derivatives give sufficient approximation of the truncated power
functions xfx), (x — x)),, and (x —x)3 (definitions of the truncated power
functions are given' in Lemma 2). Taking into account the fact that analytic
representation of any spline of degree 2 contains only these functions, this enables
us to obtain a good approximation of any spline of second degree by polynomials
with controlled derivatives (see Section 4),

Lemma 2. The following inequalities hold:

(36) |35001 < Cyrj°h; Y,
(37) 185001 < Cyj°h; Y,
(38) 0 < aj(x) < CYj®hi Y,
(39) 184%) — 2] < CY
(40) 85 — 1,0 < Y},
(41) lox) — 1,01 < Cy}7,
(42) ) < 2j410%),

%) = ;- 1),
43) lx = x), — 89| < CY}"hy,
(44) (= X} — 60| < C}hy,
(45) l(x = x), — o (x)| < Cy}ohy,
(46) 0~ x)% — R{()| < Cy}°H,
@7 |(x ~ x)% — Rx)| < Cyjons,
(48) 120 ~ x;), ~ Ryx)| < CY}"h,
(49) 12(x — x), — Rix)| < Cy}7h,,
(50) |R;(0) — 2x{x)| < CY ¥,
and
(51) |Rj(x) — 27,091 < CY®,

where x € I and (x — x)% = (x — x)*¢[x;, 11(x).
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Proof. First, (42) is a consequence of the left-hand side inequalities in (31) and
(34) as

%) = @ fx) + (1 — 1)@ 1 1(x)
S oy fx) + (1 — o)+ 1(x)
< Zj+a(x)

and
8%) = BO{x) + (1 — )0+ 1(x)

2 Brj-1(x) + (1 = Bhxfx)
= Xj—1(x)-

Inequalities (36)-(38) are immediate consequences of (30), (33), and (27) and the
observation that ¥;,; < 18y;. Also, since y; ~ C if xel;, then inequalities
(39)(41) are consequences of (31), (34), and (28) as

[670x) — 2,0 <1Q1x) — %00 + @+ 1(%) — x2)]
< Q%) — 1) + 1Q54+1(%) = 25+ 1) + xlxj4 15 x;1(x)
< Cyj.

The proofs of (43){45) are similar so we only prove (43). For x < x; we have

O = x4 — 0401 < rl @1 Q4y) — x| + (1 = D@1 (¥) — W) dy
<C fx (—h’;—>18 dy < Ch}3(Ix — x;| + h) "7,
Sy Ny —xi +hy
For x > x; we have the estimate

[(x = x)e = 8, =161 — ;) — (1 — x) — (x — x))|
=10{1) — ,(x) = (1 — x)|

1
f @/ + 1 =00+ (y»—1) dy[

1
< f @Qi(» — 1M+ A = Q;41(¥) — %+ (WD dy

o ]’l 18
<C S SE— dy < Ch.yt".
L <1y—xj|+hj> y = Chid

Thus inequality (43) is proved.

Inequalities (46) and (47) follow immediately from (43) and (44), respectively,
and inequalities (48) and (49) are consequences of (43), (39), (44), and (40). Finally
(50) and (51) follow from (36), {39), (37), and (40). The proof of the lemma is now
complete. |
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4. Proof of Theorem 1

Following the ideas of [1] we construct a convex spline S(x) of degree <2 which
sufficiently approximates the convex function f = f(x), f e C(I), that is,

| f(x) = S(X)| < Cos(f, 4,(x)),  xel.
Then we approximate S(x) by a convex algebraic polynomial so that
18(x) — pu(¥)] < Coos(f, 4,(x)),  x€l

This proves the estimate (4).

Construction of the Convex Spline

Let

S(x):=max{L(x, f; x;), L(x, f;%;5 1)}, xel;, j=2,n—1, |
S(x):= L{x, f; x,), xely,

and
S = L(x, f;x,), xel,.

It is easy to see that S(x) is a convex spline of degree <2 with knots x;, j =0, n.
Now we consider the index j to be fixed and denote

a=Lx;, fi%),  v=jj+1,j+2
Let us call a knot x;, j =2,n — 2, “a knot of type I” if
(52) g PP aj+q < a;.
That is,
SO) = Lx, f3%),  x€De X, i) v=j+ L]
Note that inequalities (52) are equivalent to the following ones:
D X510 X525 ST < DX 15 %50 X515 ST < D20 X5 X35 S,

where square brackets denote the divided difference of f.
A knot x; is “a knot of type 11" if
(53) Gz < Gjiys 4; S djqg,

which is equivalent to
[0 20 X1 X35 [ <DXja 15 X5 X515 1< DX X515 X225 f]-
In this case

S(x) = L(xa fa xu+1)> xe[xu: xv—l]: v =J + 1:.]
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Let x; be “a knot of type IIY” if
(54 Ajrr < djyq1 <@
or equivalently

[xj+2! jt+1s xp f] < [x]+ 1> x], A 15 f]
and
[x;, %1, %;-2; fI1<xe0%,%-10 1
In this case S(x) = L(x, f: x;, ,), x € [X;4+1, X;], and S(x) = L(x, f; x;), x € [x;, x;_1].

Let the knots, which are not knots of type L II, or III, be “knots of type IV.”
It is not difficult to see that if x; is a knot of type IV, then

(55) S(x) = L(x, f5x;44), x€[x;41, X5- 1]

Let x, be aknot of type I1if a3 < a,, x,_, isaknot of type I if a, < a,_,, otherwise
they are knots of type IV,

From {52)(55} it follows that the spline S(x) has defect 2 in knots I, H, and HI
{i.¢,, the first derivative of the continuous spline S(x) does not exist in these knots}
and does not have it in knots of type IV (5, §’, and §” exist and are continuous
in these knots). Taking this into consideration, we get the following analytic
representation of the spline S(x) with truncated power functions (x — x;}, and
{(x — xj)i (for an analytic representation of splines see, for example, Section 2.3 of
[5D:

S(x) = f(=1) + Ao(x + 1) + X, X, - 1, %55 SIx + 1)?

+ Y A{xioy — x)x — %)y — (x — x5}

i=2,n—1
x;e TUITE
+ Y Bl — X)X — x) 4 4+ (x — x)i}
l):ell’l':)i%
where
AO = [xm xn~l;f] - [xn—la xn—-2; f] + [xn—-l’ xn; f],
A= X0, %0 %45 [ =[x, %1, %i- 25 f] for i=2,n-1,
and

B;:= —A,,, for i=1,n-—-2

Note that 4; > 0 for x;€1 v 1 (i, if knot x; is a knot of type I or 111) and B; > 0
if x,e HU L

Now let us estitnate the value |f(x} — S(x)|, xel. For this we need the
well-known Whitney inequality (see, for example, Section 2.1 of [8]):

a,— 4a
(56) lg(x) - L(X1 g:Qgs Qg5 5415 ak)l < 3a)k+ 1<ga H, [aO, ak])a

where ge C([a, b)), a;y, —a;=a;,—a;,_,,i=1,k — 1, and xe[a,, a;].
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For xe[x;, x;_,] we have
(57 1f(x) = Lix, f;x)| = | f(x) — Lix, f5 % Xi-21) — Lix, f — L; x))|

_ (x — x;)(x — x;5)
<If- L]1C[xi’xi_2]<1 - I(Xi—1 = X)(Xim1 — X;_3) )

b+ h;_ h + h;_ 1)
< 3(,03<f, t‘-l—é_l—la [xia xi—2]>(1 + %)
ifti—1

< 4004(f, 74,(x)) < 10°w5(f, 4,(x)).
This yields
(58) |f(x) = S| < Cos(f, 4,(x)),  xel.

Construction of the Convex Polynomial

Let us fix n, denote n,:= Mn, where an absolute constant M is an integer and
will be chosen later, and choose i; so that x; , = x; ,.

Using the analytic representation of S(x) and also the approximation of the
truncated power functions (x — x;), and (x — x,)5 given in Lemma 2, we write
the following algebraic polynomial of degree <50Mn:

pn(X)== f(_l) + AO(X + 1) + [xn: Xn—15 Xn—2; f](x + 1)2
+ Y Afa, - X)0 4, n, (%) — Ry (%)}

i=2,n—1
xre IV

+ Z Bi{(xi — Xy 1)°'i1,n,(x) + Ril,nl(x)}'

i=1,n—2
x;e HUITT

(The distance between S(x) and this polynomial is estimated in inequality (64)
below.)

Now we show that it is possible to choose M so that this polynomial will be
convex on I. For this it is enough to choose M so that the following inequalities
hold:

(59 (o1 — X)o7, o (x) — RY (%) > =2x(x),  xel;
(i = X; 4 )07, (%) + R}, () = 25(x), xel

Indeed, using (59) and taking into account inequalities 4; > 0 for x;e 1w III and
B; > 0 for x;e Il u I, we have, for xe I\{x,, ..., x,_(},

pnlx) = 2[x,, X, (5 Xpo23 f1+ ‘ Z A =20} + Z 2B;x{(x)
1;521,31—“1 l;ell,l'l/;l%

= §"(x).

As S(x) is convex on each interval I;, j=1,n, then 5"(x) = 0 for xe(x;, x;_,),
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i =1, n and hence pj(x) > 0 for xe I\{x,, ..., X,_}. As p,(x) is a polynomial, ie.,
it has a continuous second derivative, then p; (x) > Ofor x € I, and therefore p, e A>.

Thus it is sufficient to prove (59). Inequalities (59) are consequences of the
following estimates:

(60) min{T; ,(x), Ti +1,,(x)} min{h, b1} >4 for xel,, 0k,
and

(61) mln{T” m(X)s T;',+1,n,(x)} min{h;, ;. }
= 2|x — x;| max{|Q}, (X, 15,4 1. 10,05 1D 41,0 }

for every xel.

Indeed, suppose that (60) and (61) are true. Then for any x €I together with (42)
we have, for x¢1; . ,, VI np»

(xi 1 1)611 m(X) R:’l nl(x)
- h (yTll nl(x) + (l )T11+ 1, nl(x))
— (¢ = x)@Qi, 0 (X) + (1 — 0)Qi 41,0, (X)) — 20,5, (%)
> h mln{T” nl(x) Tl|+1 nl(x)}
— |x = x;l max{| Qi (), Q%+ 1,0} — 2A[Xs, + 1.np 11(%)
> = 2¢[%, 4+ 1,np 11(x)
= —2x(x).

For xel 4y, vl , taking into account (60) and (61) we have the following

estimate:

i, m

hi : ’ r
(xi—l - ) :; m(‘) Rlz[‘ m( ) = 5 mln{Ti;,m(x)7 Til+ l,m(x)} - 2X{xi1+ 1,02 lj(x)

=2 = 2x[x%; 4 1.0 1(%)
—2y(x).

This proves the first estimate in (59). Considerations for the proof of the second
estimate in (59) are analogous.

Thus our problem is reduced to the following one: find such an integer constant
M that, for n, := Mn, inequalities (60) and (61) are valid.

It follows from (21) that, for xeI; ; , U I}, 4

11 nl(x) > mm{(x 1; m) ? (x 11 nl)—z}

-2
Hhm

> (h h; 2> .
(1|+1 n1+ is nl) 16

From Proposition 2 (£ =0, { = 0, and p = 9) we have

1
J 11 nl(y) dy < C0(9)h11 o

-1
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Thus we have, for example, the following estimate:

ti91,n1(x) — — hi
- By > Co(9)" 11672 G
f th m(¥) dy o

-1

T m(h; =

Now it is sufficient to choose the number n; € N so that h; > 4-16°Cy(9)h; . This
verifies inequality (60).

Using the same idea, Proposition 2, and also inequalities (26) to prove (61) we
write, for example,

h T (X)) — 21x — x4} |Q;,,n,(x)|
> Co(9) " Rt £, (%) — 2Co(10)]x — x;| |X;, _ 1., — X|BEE, 120 (x)

.M,y s My, m
= C0(9)‘1hihi11,7n|(|x = Xim| + hil,m)—ls

—2-41%-10%°C,(100h %, (1x — x;, | + By ) '8
> W18 Bl (Co(9) ™ thy — 2- 410 103°C(10)h; , .

i iy i, m

Thus (61) is verified if the number n, € N is chosen so that
h; > 2-41°-103°Cy(9)Co(10)h;, .-

Taking into account that h;/h; , > n/5n we can conclude that inequalities (60)

and (61) are true for n, = [1053(‘10?9)C0(10)]n =: Mn.
It remains only to estimate |p,(x) — S(x)|. Similarly to (57) using
SO ) = L(x; 1, 5 %)

(-1 = X)0x3— 1 — X~ p)(x;— 1 — X;_3)

Dxis Xim 15 X 20 X33 f1 =

we have

[xis X 15 Xi—2, X;- 35 1 < Chy *w5(f, 4,(x))
and hence

|Add = 1010 X Xim 10 Xim23 SIXi-2 = Xia )] < Chi 2w05(f, 4,06).

It also follows from the last inequality that

|A;] < Chi *o,(f7, 4,(x) for feC'(I)
and

|A;] < Co(f", A(x))  for feC*I).

< h; < (M?*/5)h; , implies that

a1y

Now let us note that the estimate h; ,
(62) Vim < SMAY,.
Using the inequalities (see [9] and [10])

A3(y) < 44,()1x — y| + 4,(x))
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and .
2x — yl + 4,0) > |x — yl + 4,(0) > H(|x — y| + 4,x)), xel, yel,

and also the properties of the modulus of smoothness we have

(63) 03(f, 44%)) < 03(f, 23/ A,6M1x = xi| + 4,(x)
. |x_xi| +An(x)

Ix — x| + 4,()\**
< 64<T> w5(f, 4,(x))

< 106('-";;‘:—@-’5)3@3(/’, A,(%)).

From (45)(47), (62), and (63) we have

(64)
[Pulx) — SC) < 2 ARG = x) s = 05 b ()] + Ry, X) = (x — x)3 1}
‘Zii(ifn‘
+ Z | Byl {Ri s 11(x — X)) — 03, (X)] + !Ri,,nl(x) —(x — x)3(}
i=1,n—2
x;eIull

n—1
<C Y oy(fs 4,3
i=1
< Cos(f, 4,x)).
Inequalities (58) and (64) complete the proof of the estimate (4) as

|/ (X) = pL)| < [f(X) = SC) + 15(x) — paf)]
< Cows(f, 4,x), xel

To prove (5) the following equations are used:

S'(X) = AO + 2[)(", Xn—1> Xn—2; f](x + 1)
+ Z_ Ath;gx) — 2(x — x;)+}

i=2,n—1
xieIUIlE

+ A Z Bi{hiw 12X} + 2(x — x)).}.
'XTElli?J;I%

It follows from (41), (48), and (49) that
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(65) [pn(x) — S'(x)|
< ) IA!{MGH,,,) 20N + R (x) — 20 = x) 1 1}

i=2,n—
Xi elulII

+ z [B;l{h;+ 1167, 0, (%) — x| + |R;|,n1(x) —20x — x)+ |}
i=1,n—2
x;e IIUITL

n—1
S C Z wz(f/, An(x))wtl‘t
i=1
S sz(f’; An(x))'
Now (5) follows from the following estimate for x I}:: [xj, xj_51:

(66) |fGe) = L(x, f5 %) < Carg(f', by, T)).

In order to prove inequality (66) (see Lemma 1.4.2 of [11]) let us denote
L(x):= flx) + J L(u, ', x;, X;-5) du

(L(x) is an algebraic polynomial of degree 2) and note that
f) = Lix, f5x) = f'(x) = L'(x) = L'(x, f — L; x).
The following estimate is a consequence of Whitney’s inequality (56):

L) = Lx, f75 x5, %;-0)l < Coy(f' by, T), xel.

This implies, for any x e i i

| /() — L(x)| =

Jf(u) L(u, ', X, x;-5) du

< Chjw,(f", hy, T).
Now together with the estimate for xe T’ i
IL'(x, f — L; x)| < Chy ' f — Llig, < Coy(f', by, T)),
the following inequalities complete the proof of (66):
|f'() = L'x, f5x)] < | f60) — L(x)] + Caon(f', by, T))

= ,f’(x) - L(xs f’; xja xj—2)| + CCUz(f,, hja T])
< sz(f/, hj7 ZI)’ xerj~

To prove (6) we use the following equations:

Sx) = 2%y, Xp— 1, Xu—25 f1+ Z_ A{ —2x4x)} + L__ 2B, 1(x)

i=2,n—1 i=1,n-2
x;e VI xielTUIH
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and

8"(x) = 2[x;, xj_1, Xj—2; f1 o 8"(x) = 2[x;4 1, X}, Xj- 15 ] if xel,.
It follows from (38), (50), (51), and (63) that
67 ) —=S"Ml< Y 1Akl 50l + 120x) — Rf, L, (01}

i=2,n—1
xieIUIll

+ ) IBil{ialof a0 + 120x) — R}, (0]}
i=1,n—2
xieIIUIIX

<C'Y olf", AW
i=1

< Ca(f", 4,(x)).

Now (6) follows from the following estimate for x € I; (see also Lemma 1.4.2 of

[11]):
68) |f"(x)— z[xj5 Xj—1> Xj—2; S
1 rn
= ‘ 2J‘ J {F700) = 705 + Oejq — Xty + (x50 — X))} dip diy

<o(f", b+ hy_1, I
< Ca(f", A,X)).

Thus Theorem 1 is proved for all n > 2.

5. Proof of Theorem 2

To prove inequalities (9)«(11) it is sufficient to estimate | f®(x) — S¥(x)! and
[PP(x) — S®(x)] in terms of the @}~ ” modulus with v = 0, 1, and 2, respectively.
First, let us note the following:
For the interval [x;, x;_,] we denote &;:=x; if |x;_,} <|x;| and
&= x;_, otherwise. Then for any ye[x;, x;_,] and 0 <h<n~' the
inequality p(;, h) < p(y, h) is valid.

It h=./1—x2h+ k= p(x, ), then 0 < h < A,(x)<>0 < h < n~ L. Using (57)
and the above we get, for a fixed x € [x;, X;_,],
| f(x) = Lx, f5x)| < 10°05(f, 4,(x); [x;, X;-5])
< 10°ws(f, 154,805 [xi, x;—»1)
< Cas(f; 4,8); [xi, x:-2])
= C Sup ”Z}?(.ﬁ y’ [xis xifZ])HC[x,-,x,;_z]

0<h<A4u(&)

<C sup ”Zi?(fa y)”C[m,x.--z]

O <h<Au(&)

=C sup ||53(5i,1§)(fa y)“cu,-,::_;]

O<h<n~!

< Clﬁﬁ(g,., iolfs E



Pointwise and Uniform Estimates for Convex Approximation of Functions 175

for some 0 < hy < n~ ! and ;€ [x;, x;_,]. (Actually, using the compactness argu-
ment the last inequality can be replaced by an equality.)

Now using inequality p(&;, k) < p(L;, ho), continuity of p( i» h), and the fact that
p(¢;, b) = 0 as h — 0 we can conclude that a number h;, 0 < h; < hy < n™!, exists
such that p(&,, ko) = p({;, h,). Thus

[f(x) = Lix, f5;x)] < Clﬁﬁ(gi,ig(f, @]

<C S}lp ||Zs(y,}-{)(f, Y)“c[x,»,x.»_z]

0<h<n-t
< Cay(f,n™h).
This implies
[f(x) — S(x)| < Coj(fin™Y), xel.

Now we can apply the same considerations as in (64) to estimate |p,(x) — S(x)].
For this we need the estimates of the coefficients 4; which appeared in the
constructions of S(x) and p,(x) in terms of the “nonuniform” moduli &.
Using the same method as above we have the following estimate of | 4,]:
[ Az} = 1Dxi4 15 X5 Xim15 X525 FUX -2 — X;44)]
_ JOD) = LXgs 5 %115 X5 15, X3 2)
(6 = x4 106 — X5 )0 — X;-5)
< Chi 2o5(f, 445 [%i4 15 Xi— D)
< Chi*@)(f,n™?).

(xi—2 — Xi+1)

Moreover, if f e C(I), then

|4;| < Chi_2w3(fa A(x5); [Xiv1> Xi—1])
< Chi_Z(An(xi))wZ(f,a A,(x); [Xi4 15 Xi-1])
< Chi'@3(f', n™?).
Similarly, if f € C?(I), then
|4;] < Chy *(A,(x;)) (", A% [xi4 15 %11
< Cay(f", nY)

Now analogously to (64) we have
n—1
|PAx) — S(x)| < Cay(f, n™Y) 3 ¥i® < Cayf, n™ ).
i=1

This completes the proof of the estimate (9).
Analogously to (65) and (67) in the cases f e CY(I) and f e C*I), we have the
estimates

P4 = S)) < CaYs ™) T, Ui < CaRs's )

i=1
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and
n—1
1pn(x) — 8"()| < Caoy(f", n™Y) Y i < Cayf", n71),
i=1

respectively.
Now inequalities (66) and (68) imply, for xe I,
|f'(x) = S')| < Coog(f', Ailx); T) < Ca(f", n™ ")
and
Lf"(0) — 8"(x)] < Caxf”, A,(x; 1) < CoHf", n™ 1)

in the cases f e CY(I) and f e C*(I), respectively. Thus inequalities (10) and (11)
are also proved. [}

6. Proof of Theorem 3

We need the well-known Jensen inequality, that is,

laiby + - + a,b, P < ay|byP + - + a,|b,)",

where g, > 0,i=1,n, and Z;;l a; =1, p> 1, and also the following lemma.
Lemma 3 (see Lemma 2.5 of [8]). Let {z;; —1=z,<z; <" <z,.,=1}bea

partition of the interval [—1, 1] into n + 1 subintervals and let r > 1 be an integer.
Using the notation 6; = z;,y — z;_1,i = 1,n, d, = max{6;: 1 < i < n}, then

n 1/p d
{% S (oL, z; 2h))P6i} < 2”"“"“’1,(f; h+—">.
' p

i=1 ¥

Now let us estimate || f — S|,

1ip

If—Sl, ={lf | flx) — S(x)]”dx}
={ > J 170 — S(x>|"dx}”"

;

i/p
C{ Z (03(f, xj; hj—1 + hj + by )h; dx}

IA

II.Ms

ifp
J Clws(f, xj; hj—y + h; + hjy ) dx}

< Cry(fsn7 Y,

where hy:=h,, :=0.



Pointwise and Uniform Estimates for Convex Approximation of Functions 177

Using the estimate 6 < C (see the proof of Lemma 2 in [4], for example)
and the Jensen mequahty we get

1 1/p
IS = pull, = {% f | p{x) — S(x)P dx}

’ 14 i/p
f ( Y osf, x5 hj_l + h; + hjﬂ)tﬁ}s) dx}

i/p
C{ J C()3(f xp h] 1 + h + h]+1))pl/J16 d'x}
-1 j=1

n 0 h 16 1/p
C ; (ws(f x]a h] 1 +h + ’+1))p \[0 (t +th) dt}

i/p
< C{ Z (w3(f, Xjs hj—l + hj + hj+1))phj}

j=1

l/\

IA

< Crs(fyn ),
Thus, using Minkowski’s inequality we have

1/ = pall, < 1S = Sl + IS — pall, < Cra(f5 077,
The proof of (16) is complete. The proofs of (17) and (18) are analogous. [ ]

Note that it is possible to relax some of the conditions put on function f in
Theorems 1-4. This is connected with the fact that a convex function on the
interval [ —1, 1] (at least in terms of divided differences) is continuous on the open
interval (—1, 1) and has left and right derivatives at every point of this interval
(see, for example, Sections 11 and 72 of [7]).

Final Remark

After this paper was submitted, the author became aware that Y. Hu, D. Leviatan,
and X. M. Yu had obtained the uniform estimate for convex polynomial approx-
imation in terms of w,(f,n~"). Their paper “Convex Polynomial and Spline
Approximation in C[—1,1]" appeared in Constructive Approximation,
10(1):31-64.
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