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Abstract

: n
It is shown that, if n,r € N, k € Np, I<v<r, t,;, = (cos (";7’)") 0 is the Chebyshev partition of

1=
[—1,1], and s is a piecewise polynomial of degree <r on t, such that s € C"~1[—1, 1], then for any
O<p<land? >0,

op sy <ct'ol sV,
where w;f Ty and wz , denote the Ditzian—Totik (k + v)th modulus of smoothness and kth modulus with the

weight ¢", respectively. In particular, in the case k = 0, ¥ (s, 1) »< c(r, p)t’ w"s(")

. It is known that
p

these inequalities are no longer valid for a general f in place of s if 0 < p <1 even if it is assumed that
f e C®[—1,1].

This implies, in particular, that if a piecewise polynomial s of degree <r onty, is such thats € C"[—1, 1],
0<m<r —1,thenforany 1 <k<r+1,1<v<minfk,m + 1}and 0 < p < 1,

n_"w;f_v v(s("), n_1> ~ a);?(s, n_l>
’ 14 14

Similar results for quasi-uniform partitions and classical moduli of smoothness are also obtained.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let S, (z,,) be the space of all piecewise polynomial functions of degree » (order r 4 1) with
the knots z, := (z;)/_y, =1 =120 < 21 < --- < Zp—1 < Zu := 1. In other words, s € S,(z,)
if, on each interval (z;, zj+1), 0<i<n — 1, s is in I1,, where II, denotes the space of algebraic
polynomials of degree <r.

As usual, L,(J), 0 < p<oo, denotes the space of all measurable functions f on J such

that || flly,s) < oo, where | £l = (f; 1£@)IPdx)""" if p < oo, and || fllL.) =
ess sup,¢; | f(x)]. We also denote || /1|, := ||f||[L,,[—1,1]- It is well known that || - o, ) is a norm
(and L, (J) is a Banach space) if 1 < p < oo, and that it is a quasi-norm if 0 < p < 1.

For k € N, let

k .

> YD fe —kh/2+ih) ifx£kh/2 € J,
i=0

0 otherwise

AS(fox, 1) =

be the kth symmetric difference, and Al,‘l (f,x):= A’;l (f, x,[—1, 1]). The kth modulus of smooth-
ness of a function f € L,,(J) is defined by

or(fit, Dy = sup [AL(f. - DL, )

O<h<t

and we also denote
o (f, Dp =or(fLIT]L D)y and  wr(f, 1)p = wr(f, t, [=1, 1]).

Note that Ag(f, x,J) := f(x) and, hence, wo(f, 1, J)p := ||f||[Lp(J).
The weighted Ditzian—Totik kth modulus of smoothness of a function f € L,[-1,1],0 <
p <00, is defined by

ol (S0 = sup [00) A (10|
O<h<t

p’
where @(x) := +/1 — x2. If v = 0, then

ol (f0)p = 0lo(fD)p = sup (A}, (f ),
0<h <t

is the usual Ditzian—Totik modulus. Also, note that w((; (D p = || Q' f || »

For a partition z, := {z0,...,za| — 1 =1 20 < z1 < -+ < z := 1} of the interval [—1, 1],
denote the scale of the partition z,, by ¥ = ¥(z,) := maxo< j<n—1 |Jj+11/1J}], where J; :=
[zj,zjt1]lwithz; ;== —1,j <0,and z; := 1, j > n,and |J| := meas J.

We say that A is equivalent to B and write A ~ B if there exists a positive constant ¢ such that
c A < B < cA. We refer to this constant ¢ as an equivalence constant.

Theorems 1.1-1.3 are the main results of this paper. Note that all of them were proved in [2] in
the case 1< p <00, and the purpose of this note is to provide proofs (which turn out to be rather
different) in the case 0 < p < 1.

Theorem 1.1 (Local estimates). Let s € S,(z,) NC"[—1,1],r € N,0<m<r — 1, and J =
[zp,» Zu, ] With py — py <co for some constant co. Then, for any 1<k<r + 1 and 0 < p<oo,
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we have
[ o5, 1)y ~ wi(s, J)p,  1<v< minfk, m + 1}.

Equivalence constants above depend only on r, 9, co and p as p — 0.

Theorem 1.1 is a consequence of Corollary 2.3 and [2, Theorem 1.1].

Suppose that dmax = Omax (Zn) := maxo< j<n—1 |Jj| and dmin 1= Omin(2,) = Mingg j <n—1
|J;]. We say that z,, is A-quasi-uniform if A := Omax/Jmin is bounded by a constant independent
of n, and denote such partition by uﬁ. Note that the 1-quasi-uniform partition u, := u) is
just the uniform partition of [—1, 1] into n subintervals of equal lengths. If z, = uﬁ, then
clearly 2/(nA) < Omin <2/n <Omax <2A/n, and 9(z,) <A. Therefore, dmin ~ Omax ~ 1~ ! with
equivalence constants depending only on A.

Theorem 1.2 (Quasi-uniform partition). Let uﬁ, n € N, be a A-quasi-uniform partition of

[—1,1], and let s € Sr(uf) NC"[—1,1],r € N, 0<m<r — 1. Then, for any 1 <k<r + 1
and 0 < p < oo, we have

n oy (sW,n Y, ~ or(s,n 7Y, 1<y < minfk, m 4 1}, (1.1

Equivalence constants above depend only onr, A and p as p — 0.

Theorem 1.2 follows from Theorem 2.4 and [2, Theorem 1.4].
We say that z,, is a Chebyshev partition (and z;’s are Chebyshev knots) if z, = t, := (1),

(n—i)m

where t; := cos , 0<i <n. The following result immediately follows from Theorem 2.5

and [2, Theorem 1.8].

Theorem 1.3 (Chebyshev partition). Let s € S,(t,) N C"[—1,1],r € N,0<m<r — 1. Then,
forany 1 <k<r+ 1,1 <v< min{k, m + 1} and 0 < p <oo, we have

rf"u);f_w(s("),n*l)l!7 ~ w,(f(s,nfl)p. (1.2)

Equivalence constants above depend only onr and p as p — 0.

Throughout this paper, c(y;, 75, ...) denote positive constants which depend only on the pa-
rameters )1, 7, . . . (note that c(p, .. .) depends on p only as p — 0) and which may be different
on different occurrences.

2. Auxiliary results and proofs

The following lemma is a well-known fact about relationships among various (quasi)norms of
algebraic polynomials, and will be frequently used in our proofs.

Lemma 2.1. For any polynomial q, € Il,, 0 < p<oo, and intervals I and J such that I C J,
we have

1P ey ~ el oy <e @ 111 ) el s

where equivalence constants depend only on r and p as p — 0.
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2.1. Relationships between w4y (s, J), and wy (sM, D)p fors € Sy (zy)

Theorem 2.2. Letr € N, k € No, s € §:(z,) and J = [zy,, 2,1 with py — wy <co for some
constant cg. If s is continuous on J, then for any 0 < p <00,

418, J)p <cer, k, 9, co, P)|J (s, J)p. 2.1

Note that this theorem is no longer true without the assumption that s is continuous (a step
function is a trivial counterexample). Also, it is well known that the inequality

k1 (fs ) p <c®tor(f', 1)

is true with an arbitrary f from the Sobolev space w! (Lp) if 1< p< oo, and that it is not true in
general if 0 < p < 1 even if f is assumed to be in C* (see Remark 2.6).

Corollary 2.3. Letr € N,k € Ng, 1<v<r,s € S5,(z,) N C'"1(J), where J = [y, > 2, ] with
Uy — Uy <co for some constant cy. Then, for any 0 < p < oo,

(s, D) p <c(r k., co, P or(s™, T),p. 2.2)
In particular, in the case k = 0,

o)

wy(s, N p<cr,d, co, p)IJ|" (2.3)

Lp()

Proof of Theorem 2.2. Letk € Ng, x € J and 0 < h<|J| be such that x + (k + 1)h/2 € J,

and suppose that g € Il is such that g(¢) = s(&) for some ¢ € J (for example, ¢ = z;,) and

”s’ —q H L, () SCOk (s", J)p (such g exists by Whitney’s theorem, and this inequality is trivial if
P

k = 0). Wealso assume that J,, C J issuchthat |s" — ¢’ Lo (U= MKy < j < pp—1 |s"—q'| Loo(J))

= |s' - q/”[LOC(J)'
Then, for any x € J, using Lemma 2.1 we have

‘Aﬁ“(s,x, J)’ = ‘Aﬁ“(s —q, X, J)‘ <26 s — 4l
_ okt <2k+1|J|HS/—‘1/H[LOO(J)

X
/ (5'() — ') di
< Loo ()
=21J1|s" = ¢'| Loy Scrk, PP — q/“[Lp(Ja)
c(r k.9, co, pII|YP||s" — ¢ L)
c(r k9, co, PN YPax(s’, 1),

<
<

which implies (2.1). O
2.2. Relationships between wjy,(s, n_l)p and wi(sV, n_l),,for s € S(u,%)
The following theorem is a global analog of Corollary 2.3. Its proof uses Corollary 2.3 and is

exactly the same (with obvious modifications) as the proof of Theorem 1.4 in [2]. Hence, we omit
this proof.
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Theorem 2.4. Let u,?, n € N, be a A-quasi-uniform partition of [—1, 1], and let s € S(u,?) N
C'"'[=1,1],r € N, 1<v<r. Then, for any k € Ng and 0 < p < oo,

(s, p ek A pn ™ an(s™, n 71,

2.3. Relationships between w,(fw(s, n_l),, and w,(fv(s("), n_l)pfor s €S, (t,)

n

Recall that t,, := (¢; ;7:0 = (cos @) denotes a Chebyshev partition, J; := [¢;, tj4+1],

=

0<j<n — 1, and denote

Dy =1{xl 1 =00@) /2= x|} \ {1} = {x

x< 4—¢°
x| < .
440
Observe that Aﬁq,(x)(f, x) is defined to be identically O if x ¢ Dyy. For x € J; N D, and
0 < h<n~!, we have (seee.g. [2])

. m m -
{X + (l - E) h(P(X)} 0 C3jm = [tj—3mv tj+4+3m]
1=
(recall that t; := —1fori < 0,and t; := 1 fori > n).

Theorem 2.5. Letn,r € N, k € No, 1 <v<r, and let t, be the Chebyshev partition of [—1, 1].
Ifs € Sq(t,) N C"_l[—l, 1], then for any 0 < p<oo andt > 0, we have

Wy (5.0 p<clr k, p)t'of (V. 1), (2.4)
In particular, in the case k = 0,

@'sV (2.5)

oy (s, 1), <c(r, p)t" )
14

Remark 2.6. It was shown in [2] that (2.4) is valid for all f € W"(L,) in place of s if I < p < oo
and k € N. Note that this inequality is no longer valid for a general f if 0 < p < 1 even if we
assume that f € C*[—1, 1]. For example, suppose that f; : [—1, 1] — R is such that

1
£ ng(x—t)"_ze_‘"’/’dt if0 <x<1,
3 = vV — .
0 if —1<x<0
in the case v>2, and
e % if0 < x <1,
Jelx) = {0 if —1<x<0
in the case v = 1. Then,
—"/X .
-1, _ |e? if0 < x<1,
fo T = {0 it —1<x<0,

and so f, € C*[—1, 1], and w,(zv(ﬁfv), t)pgcwk(fg(v), t),,gc‘ — 0ase — 0F. At the

Y
P

same time, straightforward (but tedious) computations show that wy4y(fz, 1) p = cw,(f (fes D)p=

ct"~1+1/P for sufficiently small # > 0 and & > 0.
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Proof of Theorem 2.5. Suppose that n>(k + v)/2. For each 0<j<n — 1, let g; € Iy
be such that ||s —qj “ L3 <copqv(s, 3;)p (g exists by Whitney’s inequality), where J; :=
P\YJ

Sj,k+v~ Then,

¢ —1\P k4v p
wr,,(s,n" )= su AT (s, -, [—1, 1)
k+v 0<h<prrl he() Lyl—1.1]
n—1 »
= sup Z/ ‘A%zx)(s —qj,x,[—1, 1])‘ dx
O<h<n! =0 Jj

p
|]~]7(Sj) ’

n—1
<e) fs—ajl
j=0

where the last inequality follows by the same argument as was used in the proof of Theorem 6.1 of
[2]. Therefore, using the inequality wyty(f, At, J)p <c(l + H¥HV-IHmax{Ll/plgy o (f 1, 0),,
we have

n—1 n—1
—1 ~ ~
of 5. n ) <Y (s, INH<e Y wrg(s kL 3
Jj=0 Jj=0
n—1 h; »
-1 k ~
<M h; / /~ ‘Ah”(s, x, \sj)( dx dh, (2.6)

— 0o Jg;
Jj=0 J

where hj = m miny; 3, |Ji| (note that h; ~ |J;| with an equivalence constant depending

only on k and v). Now, using the identity

A (fox) = /

—h/2

h/2 h2
Aﬁ(f("),x+u1+--~+u\,v)du1...du;,,
—h)2

and assuming for a moment that 0< j <n — 1 and 0 < 2 <h; are fixed, we have

/ p
3

Loo({x : x%kh/2€3;})
for some xq such that xo = kh/2 € J;.
We now consider the cases k > 1 and k = 0 separately.
Case k > 1: We have the following two possibilities:

p ,
Afl”(s,x,iij)‘ dx < |3; (k"

A, 0|

< 2|3j|hpv

MY x| @7

(i) for any #; such that t; € 3, #; & (xo — (k + 1)h/2,x0 + (k + 1)h/2). Then, we define
Lygn i=I[x0—h/2,x0 + h/2];

(ii) forsome t, € I, t, € (xo — (k+ 1)h/2, x0 + (k + 1)h/2) (note that there can only be at
most one such 7, since (k + DA< (k + 1)h; < % minjicgj [Ji]). Let 0<iy, <2k + 1 be such
thatt, € [xo — (k — i, + Dh/2, xo — (k — iy)h/2], and define Zy, 5 := [xo — h/2, x0] if iy,
is odd, and 7, := [x0, x0 + h/2] if i, is even.

Then the restriction of A’;l (s™, x) to Zyy,n 1s a polynomial of degree <r — v in x, and hence by
Lemma 2.1 we have

A5, x0)| <[ Af 6, )| <elTapa 7 [Af G )

”~00(I)r0,h) ILp(l-):o,h)'
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Together with the inequalities (2.6) and (2.7) and taking into account that Z,, , C J; this implies

noleh;
w](f_,’_v(s,nil)zl; < CZ/ th7] HAIZ(S(V)’ .)
i=0 0

CZ/ hpvlﬁ

hiloC) vy pv—1 | Ak ) P
CZ// p)'hP ‘Ah(p(x)(s ,x)) dhdx. (2.8)

j=0"i

[Lp (Ixo,h)

ks, x)‘ dxdh

Now, note that i;/p(x) ~ n “forallx € 3 3\ (JoU Jy—1). It x € (JoU Jy—1) N Dy, then
4kh/(4 + KhhH < < px) < sm(nn’l) which can only happen if 7 < (S/k)nfl Therefore,

ol (finh Z f / h’” l‘go(x) Ay (s, x)’ dh dx

cn” .
< C/ hP‘ ‘
0

Case k = 0: In this case, (2.6), (2.7) and Lemma 2.1 imply

n—1 n—1
— +1 P
o¥(s,n 1)£ <c E hf”r ‘S(V)(X())‘ <c E h‘;v s
j=0 j=0

VAL (S(V) )H dh<en o) (s(‘) en .

m|?
H—p (31)

n—1
) 4
<oy ([ + 50| dx,
j=0 3j\(-]()u«]nfl) j_jm(JOUJnfl)

and taking into account that i1 /¢(x) ~ n “lforallx € 3 i \ (Jo U Jy_1), the fact that there are
only <c(v) indices j such that JI;N(JoUJuoy) #9, and that for these j, hj ~ |Jo| = |Jn-1l,
we get

ol (s, n 1)p <cen PVZ/ (p(x)vs(v)(x)‘p dx

J] \(JoUJn-1)

Ok ™)

+c|Jol?”

+ c|Jn-1 |pv
Ly (Jo)

LpUn-1)

We now use Lemma 2.1, the fact that s) is a polynomial of degree <r — v on J,_; =
[cos(m/n), 1], and the estimate ¢(x) > sin(n/(2n)) > 1/n for cos(n/n) <x < cos(rn/(2n)) to con-

clude
= 2"sin? (l> Hs(")
H~p(«ln—1) 2n

cn—2v S(v)

[Jn

Lplcos(n/n),1]

N

Lplcos(m/n),cos(m/(2n))]

v.(v)

cn”||l@'s

N

Lplcos(m/n),cos(n/(2n))]

v,(v)

cn”V| s

N

Lp(ut)
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Similarly,
[Jol" s <en”||@"sY ,
L,(Jo) L (Jo)
and therefore
@ -1 —y v (\J)
wy (s, n <cn K .
v ( )p < ® Lyl-1.1]

Hence the inequality
® -1 v @ () x —1
Oy (s,n" ) p<cen ‘a)kﬂv(s(‘),cn )p

is proved for all k € No and all n > (k 4 v)/2 (and without loss of generality we can assume that
c=1).

Now, given 0 < t<2/(k +v) (for t > 2/(k + v) we use the fact that a)Z)Jrv(s, Dp =
wfﬂ (s,2/(k+v))p) weletn > (k+v)/2 be such that én~'<t < 2én~! (there may be more than
one n), and using the inequality w,(er‘,(f, i)p<c(l+ 1)k+vw,(f+‘,(f, 1)p (seee.g. [1]), we obtain

® 4 ~ —1 4 -1
O (8, 0)p S o (s,2¢n™ ) p<cay (s,n” 7))
_ ~ —1 )
<cn Va),ﬁv(s("), cn” )y gct‘w,?v(s("), Dp,

and the proof is now complete. [
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