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Abstract

It is shown that, if n, r ∈ N, k ∈ N0, 1���r , tn :=
(

cos (n−i)�
n

)n

i=0
is the Chebyshev partition of

[−1, 1], and s is a piecewise polynomial of degree �r on tn such that s ∈ C�−1[−1, 1], then for any
0 < p < 1 and t > 0,

��
k+�(s, t)p �ct���

k,�(s
(�), t)p ,

where ��
k+� and ��

k,� denote the Ditzian–Totik (k + �)th modulus of smoothness and kth modulus with the

weight ��, respectively. In particular, in the case k = 0, ��
� (s, t)p �c(r, p)t�

∥∥∥��s(�)
∥∥∥
p

. It is known that

these inequalities are no longer valid for a general f in place of s if 0 < p < 1 even if it is assumed that
f ∈ C∞[−1, 1].

This implies, in particular, that if a piecewise polynomial s of degree �r on tn is such that s ∈ Cm[−1, 1],
0�m�r − 1, then for any 1�k�r + 1, 1��� min{k, m + 1} and 0 < p < 1,

n−���
k−�,�

(
s(�), n−1

)
p

∼ ��
k

(
s, n−1

)
p

.

Similar results for quasi-uniform partitions and classical moduli of smoothness are also obtained.
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1. Introduction and main results

Let Sr (zn) be the space of all piecewise polynomial functions of degree r (order r + 1) with
the knots zn := (zi)

n
i=0, −1 =: z0 < z1 < · · · < zn−1 < zn := 1. In other words, s ∈ Sr (zn)

if, on each interval (zi, zi+1), 0� i�n − 1, s is in �r , where �r denotes the space of algebraic
polynomials of degree �r .

As usual, Lp(J ), 0 < p�∞, denotes the space of all measurable functions f on J such

that ‖f ‖Lp(J ) < ∞, where ‖f ‖Lp(J ) := (∫
J

|f (x)|p dx
)1/p if p < ∞, and ‖f ‖L∞(J ) :=

ess supx∈J |f (x)|. We also denote ‖f ‖p := ‖f ‖Lp[−1,1]. It is well known that ‖ · ‖Lp(J ) is a norm
(and Lp(J ) is a Banach space) if 1�p�∞, and that it is a quasi-norm if 0 < p < 1.

For k ∈ N0, let

�k
h(f, x, J ) :=

⎧⎨
⎩

k∑
i=0

(
k
i

)
(−1)k−if (x − kh/2 + ih) if x ± kh/2 ∈ J,

0 otherwise

be the kth symmetric difference, and �k
h(f, x) := �k

h(f, x, [−1, 1]). The kth modulus of smooth-
ness of a function f ∈ Lp(J ) is defined by

�k(f, t, J )p := sup
0<h� t

‖�k
h(f, ·, J )‖Lp(J ),

and we also denote

�k(f, J )p := �k(f, |J |, J )p and �k(f, t)p := �k(f, t, [−1, 1])p.

Note that �0
h(f, x, J ) := f (x) and, hence, �0(f, t, J )p := ‖f ‖Lp(J ).

The weighted Ditzian–Totik kth modulus of smoothness of a function f ∈ Lp[−1, 1], 0 <

p�∞, is defined by

��
k,�(f, t)p := sup

0<h� t

∥∥∥�(·)��k
h�(·)(f, ·)

∥∥∥
p
,

where �(x) := √
1 − x2. If � = 0, then

��
k (f, t)p := ��

k,0(f, t)p = sup
0<h� t

‖�k
h�(·)(f, ·)‖p

is the usual Ditzian–Totik modulus. Also, note that ��
0,�(f, t)p := ∥∥��f

∥∥
p

.
For a partition zn := {z0, . . . , zn| − 1 =: z0 < z1 < · · · < zn := 1} of the interval [−1, 1],

denote the scale of the partition zn by ϑ := ϑ(zn) := max0� j �n−1 |Jj±1|/|Jj |, where Jj :=
[zj , zj+1] with zj := −1, j < 0, and zj := 1, j > n, and |J | := meas J .

We say that A is equivalent to B and write A ∼ B if there exists a positive constant c such that
c−1A�B �cA. We refer to this constant c as an equivalence constant.

Theorems 1.1–1.3 are the main results of this paper. Note that all of them were proved in [2] in
the case 1�p�∞, and the purpose of this note is to provide proofs (which turn out to be rather
different) in the case 0 < p < 1.

Theorem 1.1 (Local estimates). Let s ∈ Sr (zn) ∩ Cm[−1, 1], r ∈ N, 0�m�r − 1, and J =
[z�1

, z�2
] with �2 − �1 �c0 for some constant c0. Then, for any 1�k�r + 1 and 0 < p�∞,
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we have

|J |��k−�(s
(�), J )p ∼ �k(s, J )p, 1��� min{k, m + 1}.

Equivalence constants above depend only on r , ϑ, c0 and p as p → 0.

Theorem 1.1 is a consequence of Corollary 2.3 and [2, Theorem 1.1].
Suppose that �max := �max(zn) := max0� j �n−1 |Jj | and �min := �min(zn) := min0� j �n−1

|Jj |. We say that zn is �-quasi-uniform if � := �max/�min is bounded by a constant independent
of n, and denote such partition by u�

n . Note that the 1-quasi-uniform partition un := u1
n is

just the uniform partition of [−1, 1] into n subintervals of equal lengths. If zn = u�
n , then

clearly 2/(n�)��min �2/n��max �2�/n, and ϑ(zn)��. Therefore, �min ∼ �max ∼ n−1 with
equivalence constants depending only on �.

Theorem 1.2 (Quasi-uniform partition). Let u�
n , n ∈ N, be a �-quasi-uniform partition of

[−1, 1], and let s ∈ Sr (u�
n ) ∩ Cm[−1, 1], r ∈ N, 0�m�r − 1. Then, for any 1�k�r + 1

and 0 < p�∞, we have

n−��k−�(s
(�), n−1)p ∼ �k(s, n

−1)p, 1��� min{k, m + 1}. (1.1)

Equivalence constants above depend only on r , � and p as p → 0.

Theorem 1.2 follows from Theorem 2.4 and [2, Theorem 1.4].
We say that zn is a Chebyshev partition (and zi’s are Chebyshev knots) if zn = tn := (ti)

n
i=0,

where ti := cos (n−i)�
n

, 0� i�n. The following result immediately follows from Theorem 2.5
and [2, Theorem 1.8].

Theorem 1.3 (Chebyshev partition). Let s ∈ Sr (tn) ∩ Cm[−1, 1], r ∈ N, 0�m�r − 1. Then,
for any 1�k�r + 1, 1��� min{k, m + 1} and 0 < p�∞, we have

n−���
k−�,�(s

(�), n−1)p ∼ ��
k (s, n−1)p. (1.2)

Equivalence constants above depend only on r and p as p → 0.

Throughout this paper, c(�1, �2, . . .) denote positive constants which depend only on the pa-
rameters �1, �2, . . . (note that c(p, . . .) depends on p only as p → 0) and which may be different
on different occurrences.

2. Auxiliary results and proofs

The following lemma is a well-known fact about relationships among various (quasi)norms of
algebraic polynomials, and will be frequently used in our proofs.

Lemma 2.1. For any polynomial qr ∈ �r , 0 < p�∞, and intervals I and J such that I ⊆ J ,
we have

|J |1/p‖qr‖L∞(J ) ∼ ‖qr‖Lp(J ) �c (r, |J |/|I |, p) ‖qr‖Lp(I ),

where equivalence constants depend only on r and p as p → 0.
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2.1. Relationships between �k+�(s, J )p and �k(s
(�), J )p for s ∈ Sr (zn)

Theorem 2.2. Let r ∈ N, k ∈ N0, s ∈ Sr (zn) and J = [z�1
, z�2

] with �2 − �1 �c0 for some
constant c0. If s is continuous on J, then for any 0 < p�∞,

�k+1(s, J )p �c(r, k, ϑ, c0, p)|J |�k(s
′, J )p. (2.1)

Note that this theorem is no longer true without the assumption that s is continuous (a step
function is a trivial counterexample). Also, it is well known that the inequality

�k+1(f, t)p �c(k)t�k(f
′, t)p

is true with an arbitrary f from the Sobolev space W1(Lp) if 1�p�∞, and that it is not true in
general if 0 < p < 1 even if f is assumed to be in C∞ (see Remark 2.6).

Corollary 2.3. Let r ∈ N, k ∈ N0, 1���r , s ∈ Sr (zn) ∩ C�−1(J ), where J = [z�1
, z�2

] with
�2 − �1 �c0 for some constant c0. Then, for any 0 < p�∞,

�k+�(s, J )p �c(r, k, ϑ, c0, p)|J |��k(s
(�), J )p. (2.2)

In particular, in the case k = 0,

��(s, J )p �c(r, ϑ, c0, p)|J |�
∥∥∥s(�)

∥∥∥
Lp(J )

. (2.3)

Proof of Theorem 2.2. Let k ∈ N0, x ∈ J and 0 < h� |J | be such that x ± (k + 1)h/2 ∈ J ,
and suppose that q ∈ �k is such that q(�) = s(�) for some � ∈ J (for example, � = z�1

) and∥∥s′ − q ′∥∥
Lp(J )

�c�k(s
′, J )p (such q exists by Whitney’s theorem, and this inequality is trivial if

k = 0).We also assume thatJ	 ⊂ J is such that
∥∥s′ − q ′∥∥

L∞(J	)
= max�1 � j ��2−1

∥∥s′ − q ′∥∥
L∞(Jj )

= ∥∥s′ − q ′∥∥
L∞(J )

.
Then, for any x ∈ J , using Lemma 2.1 we have∣∣∣�k+1

h (s, x, J )

∣∣∣ =
∣∣∣�k+1

h (s − q, x, J )

∣∣∣ �2k+1‖s − q‖L∞(J )

= 2k+1
∥∥∥∥
∫ x

�

(
s′(t) − q ′(t)

)
dt

∥∥∥∥
L∞(J )

�2k+1|J |∥∥s′ − q ′∥∥
L∞(J )

= 2k+1|J |∥∥s′ − q ′∥∥
L∞(J	)

�c(r, k, p)|J ||J	|−1/p
∥∥s′ − q ′∥∥

Lp(J	)

� c(r, k, ϑ, c0, p)|J |1−1/p
∥∥s′ − q ′∥∥

Lp(J )

� c(r, k, ϑ, c0, p)|J |1−1/p�k(s
′, J )p,

which implies (2.1). �

2.2. Relationships between �k+�(s, n
−1)p and �k(s

(�), n−1)p for s ∈ S(u�
n )

The following theorem is a global analog of Corollary 2.3. Its proof uses Corollary 2.3 and is
exactly the same (with obvious modifications) as the proof of Theorem 1.4 in [2]. Hence, we omit
this proof.
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Theorem 2.4. Let u�
n , n ∈ N, be a �-quasi-uniform partition of [−1, 1], and let s ∈ S(u�

n ) ∩
C�−1[−1, 1], r ∈ N, 1���r . Then, for any k ∈ N0 and 0 < p�∞,

�k+�(s, n
−1)p �c(r, k, �, p)n−� �k(s

(�), n−1)p.

2.3. Relationships between ��
k+�(s, n

−1)p and ��
k,�(s

(�), n−1)p for s ∈ Sr (tn)

Recall that tn := (ti)
n
i=0 :=

(
cos (n−i)�

n

)n

i=0
denotes a Chebyshev partition, Jj := [tj , tj+1],

0�j �n − 1, and denote

D� := {x| 1 − ��(x)/2� |x|} \ {±1} =
{

x

∣∣∣∣∣ |x|� 4 − �2

4 + �2

}
.

Observe that �k
h�(x)(f, x) is defined to be identically 0 if x �∈ Dkh. For x ∈ Jj ∩ Dmh and

0 < h�n−1, we have (see e.g. [2]){
x +

(
i − m

2

)
h�(x)

}m

i=0
⊂ Ij,m := [

tj−3m, tj+4+3m

]
(recall that ti := −1 for i < 0, and ti := 1 for i > n).

Theorem 2.5. Let n, r ∈ N, k ∈ N0, 1���r , and let tn be the Chebyshev partition of [−1, 1].
If s ∈ Sr (tn) ∩ C�−1[−1, 1], then for any 0 < p�∞ and t > 0, we have

��
k+�(s, t)p �c(r, k, p)t���

k,�(s
(�), t)p. (2.4)

In particular, in the case k = 0,

��
� (s, t)p �c(r, p)t�

∥∥∥��s(�)
∥∥∥

p
. (2.5)

Remark 2.6. It was shown in [2] that (2.4) is valid for all f ∈ W�(Lp) in place of s if 1�p�∞
and k ∈ N. Note that this inequality is no longer valid for a general f if 0 < p < 1 even if we
assume that f ∈ C∞[−1, 1]. For example, suppose that f
 : [−1, 1] → R is such that

f
(x) :=
⎧⎨
⎩

1

(� − 2)!
∫ x

0 (x − t)�−2e−
/t dt if 0 < x�1,

0 if − 1�x�0

in the case ��2, and

f
(x) :=
{

e−
/x if 0 < x�1,

0 if − 1�x�0

in the case � = 1. Then,

f
(�−1)

 (x) =

{
e−
/x if 0 < x�1,

0 if − 1�x�0,

and so f
 ∈ C∞[−1, 1], and ��
k,�(f

(�)

 , t)p �c�k(f

(�)

 , t)p �c

∥∥∥f (�)



∥∥∥
p

→ 0 as 
 → 0+. At the

same time, straightforward (but tedious) computations show that �k+�(f
, t)p �c��
k+�(f
, t)p �

ct�−1+1/p for sufficiently small t > 0 and 
 > 0.
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Proof of Theorem 2.5. Suppose that n�(k + �)/2. For each 0�j �n − 1, let qj ∈ �k+�−1
be such that

∥∥s − qj

∥∥
Lp(Ij )

�c�k+�(s,Ij )p (qj exists by Whitney’s inequality), where Ij :=
Ij,k+�. Then,

��
k+�(s, n

−1)
p
p = sup

0<h�n−1

∥∥∥�k+�
h�(·)(s, ·, [−1, 1])

∥∥∥p

Lp[−1,1]

= sup
0<h�n−1

n−1∑
j=0

∫
Jj

∣∣∣�k+�
h�(x)(s − qj , x, [−1, 1])

∣∣∣p dx

� c

n−1∑
j=0

∥∥s − qj

∥∥p

Lp(Ij )
,

where the last inequality follows by the same argument as was used in the proof of Theorem 6.1 of
[2]. Therefore, using the inequality �k+�(f, �t, J )p �c(1 + �)k+�−1+max{1,1/p}�k+�(f, t, J )p,
we have

��
k+�(s, n

−1)
p
p � c

n−1∑
j=0

�k+�(s,Ij )
p
p �c

n−1∑
j=0

�k+�(s, hj ,Ij )
p
p

� c

n−1∑
j=0

h−1
j

∫ hj

0

∫
Ij

∣∣∣�k+�
h (s, x,Ij )

∣∣∣p dx dh, (2.6)

where hj := 1
2(k+�) minJi⊂Ij

|Ji | (note that hj ∼ |Ij | with an equivalence constant depending
only on k and �). Now, using the identity

�k+�
h (f, x) =

∫ h/2

−h/2
. . .

∫ h/2

−h/2
�k

h(f
(�), x + u1 + · · · + u�) du1 . . . du�,

and assuming for a moment that 0�j �n − 1 and 0 < h�hj are fixed, we have∫
Ij

∣∣∣�k+�
h (s, x,Ij )

∣∣∣p dx � |Ij |hp�
∥∥∥�k

h(s
(�), ·)

∥∥∥p

L∞({x : x±kh/2∈Ij })
� 2|Ij |hp�

∣∣∣�k
h(s

(�), x0)

∣∣∣p , (2.7)

for some x0 such that x0 ± kh/2 ∈ Ij .
We now consider the cases k�1 and k = 0 separately.
Case k�1: We have the following two possibilities:

(i) for any ti such that ti ∈ Ij , ti �∈ (x0 − (k + 1)h/2, x0 + (k + 1)h/2). Then, we define
Ix0,h := [x0 − h/2, x0 + h/2];

(ii) for some t� ∈ Ij , t� ∈ (x0 − (k + 1)h/2, x0 + (k + 1)h/2) (note that there can only be at
most one such t� since (k + 1)h�(k + 1)hj � 1

2 minJi⊂Ij
|Ji |). Let 0� i� �2k + 1 be such

that t� ∈ [x0 − (k − i� + 1)h/2, x0 − (k − i�)h/2], and define Ix0,h := [x0 − h/2, x0] if i�
is odd, and Ix0,h := [x0, x0 + h/2] if i� is even.

Then the restriction of �k
h(s

(�), x) to Ix0,h is a polynomial of degree �r − � in x, and hence by
Lemma 2.1 we have∣∣∣�k

h(s
(�), x0)

∣∣∣ �
∥∥∥�k

h(s
(�), ·)

∥∥∥
L∞(Ix0,h)

�c|Ix0,h|−1/p
∥∥∥�k

h(s
(�), ·)

∥∥∥
Lp(Ix0,h)

.
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Together with the inequalities (2.6) and (2.7) and taking into account that Ix0,h ⊂ Ij this implies

��
k+�(s, n

−1)
p
p � c

n−1∑
j=0

∫ hj

0
hp�−1

∥∥∥�k
h(s

(�), ·)
∥∥∥p

Lp(Ix0,h)
dh

� c

n−1∑
j=0

∫ hj

0
hp�−1

∫
Ij

∣∣∣�k
h(s

(�), x)

∣∣∣p dx dh

� c

n−1∑
j=0

∫
Ij

∫ hj /�(x)

0
�(x)p�hp�−1

∣∣∣�k
h�(x)(s

(�), x)

∣∣∣p dh dx. (2.8)

Now, note that hj/�(x) ∼ n−1 for all x ∈ Ij \ (J0 ∪ Jn−1). If x ∈ (J0 ∪ Jn−1) ∩ Dkh, then
4kh/(4 + k2h2)��(x)� sin(�n−1) which can only happen if h�(8/k)n−1. Therefore,

��
k+�(f, n−1)

p
p � c

n−1∑
j=0

∫
Ij

∫ cn−1

0
hp�−1

∣∣∣�(x)��k
h�(x)(s

(�), x)

∣∣∣p dh dx

� c

∫ cn−1

0
hp�−1

∥∥∥���k
h�(s(�), ·)

∥∥∥p

p
dh�cn−p���

k,�(s
(�), cn−1)

p
p.

Case k = 0: In this case, (2.6), (2.7) and Lemma 2.1 imply

��
� (s, n−1)

p
p � c

n−1∑
j=0

h
p�+1
j

∣∣∣s(�)(x0)

∣∣∣p �c

n−1∑
j=0

h
p�
j

∥∥∥s(�)
∥∥∥p

Lp(Ij )

� c

n−1∑
j=0

h
p�
j

(∫
Ij \(J0∪Jn−1)

+
∫
Ij ∩(J0∪Jn−1)

) ∣∣∣s(�)(x)

∣∣∣p dx,

and taking into account that hj/�(x) ∼ n−1 for all x ∈ Ij \ (J0 ∪ Jn−1), the fact that there are
only �c(�) indices j such that Ij ∩ (J0 ∪ Jn−1) �= ∅, and that for these j , hj ∼ |J0| = |Jn−1|,
we get

��
� (s, n−1)

p
p � cn−p�

n−1∑
j=0

∫
Ij \(J0∪Jn−1)

∣∣∣�(x)�s(�)(x)

∣∣∣p dx

+c|J0|p�
∥∥∥s(�)

∥∥∥p

Lp(J0)
+ c|Jn−1|p�

∥∥∥s(�)
∥∥∥p

Lp(Jn−1)
.

We now use Lemma 2.1, the fact that s(�) is a polynomial of degree �r − � on Jn−1 =
[cos(�/n), 1], and the estimate �(x)� sin(�/(2n))�1/n for cos(�/n)�x� cos(�/(2n)) to con-
clude

|Jn−1|�
∥∥∥s(�)

∥∥∥
Lp(Jn−1)

= 2� sin2�
( �

2n

) ∥∥∥s(�)
∥∥∥

Lp[cos(�/n),1]
� cn−2�

∥∥∥s(�)
∥∥∥

Lp[cos(�/n),cos(�/(2n))]
� cn−�

∥∥∥��s(�)
∥∥∥

Lp[cos(�/n),cos(�/(2n))]
� cn−�

∥∥∥��s(�)
∥∥∥

Lp(Jn−1)
.
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Similarly,

|J0|�
∥∥∥s(�)

∥∥∥
Lp(J0)

�cn−�
∥∥∥��s(�)

∥∥∥
Lp(J0)

,

and therefore

��
� (s, n−1)p �cn−�

∥∥∥��s(�)
∥∥∥

Lp[−1,1].

Hence the inequality

��
k+�(s, n

−1)p �cn−���
k,�(s

(�), c̃n−1)p

is proved for all k ∈ N0 and all n�(k + �)/2 (and without loss of generality we can assume that
c̃�1).

Now, given 0 < t �2/(k + �) (for t > 2/(k + �) we use the fact that ��
k+�(s, t)p =

��
k+�(s, 2/(k+�))p) we let n�(k+�)/2 be such that c̃n−1 � t < 2c̃n−1 (there may be more than

one n), and using the inequality ��
k+�(f, �t)p �c(� + 1)k+���

k+�(f, t)p (see e.g. [1]), we obtain

��
k+�(s, t)p � ��

k+�(s, 2c̃n−1)p �c��
k+�(s, n

−1)p

� cn−���
k,�(s

(�), c̃n−1)p �ct���
k,�(s

(�), t)p,

and the proof is now complete. �
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