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1. Introduction

Recall that a nonnegative integrable function w is a doubling weight (on [—1, 1]) if there exists a positive
constant L (a so-called doubling constant of w) such that

w(2I) < Lw(I), (1.1)

for any interval I C [—1,1]. Here, 2I denotes the interval of length 2|I| (|I] is the length of I') with the same
center as I, and w(I) := | ; w(u)du. Note that it is convenient to assume that w is identically zero outside
[—1, 1] which allows us to write w(I) for any interval I that is not necessarily contained in [—1, 1]. Let DW,
denote the set of all doubling weights on [—1, 1] with the doubling constant L, and DW := Up~¢DWp, i.e.,
DW is the set of all doubling weights.

It is easy to see that w € DW if and only if there exists a constant x > 1 such that, for any two adjacent
intervals I, Iz C [—1, 1] of equal length,

w(lh) < kw(lz). (1.2)
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Clearly, x and L depend on each other. In fact, if w € DW, then (1.2) holds with x = L2. Conversely, if
(1.2) holds, then w € DW 4.

Following [6,7], we say that w is an A* weight (on [—1,1]) if there is a constant L* (a so-called A*
constant of w) such that, for all intervals I C [—1,1] and = € I, we have

*

w(z) < mw([) (1.3)

Throughout this paper, A%. denotes the set of all A* weights on [—1,1] with the A* constant L*. We
also let A* := Ups9Aj., i.e., A* is the set of all A* weights. Note that any A* weight is doubling, i.e.,
Aj. C DWp, where L depends only on L*. This was proved in [7] and is an immediate consequence of the
fact (see [7, Theorem 6.1]) that if w € A7 . then, for some ! depending only on L* (for example, [ = 2L* will
do), w(I1) > (|11]/|I2])'w(I2), for all intervals Iy, Iy C [—1,1] such that I; C I». Indeed, for any I C [—1,1],
this implies w(I) > (|I|/|21 N [=1,1]])' w(2I) > 2w (2I), which shows that w € DW .

Moreover, it is known and is not difficult to check (see [7, pp. 58 and 68]) that all A* weights are A
weights. Here, A is the union of all Muckenhoupt A, weights and can be defined as the set of all weights
w such that, for any 0 < a < 1, there is 0 < § < 1 so that w(E) > Sw([), for all intervals I C [—1,1] and
all measurable subsets E C I with |E| > «|I| (see e.g. [10, Chapter V).

Clearly, any A* weight on [—1,1] is bounded since if w € A% ., then w(z) < L*w[-1,1}/2, x € [-1,1].
(We slightly abuse the notation and write w[a,b] instead of w ([a, b]) throughout this paper.) At the same
time, not every bounded doubling weight is an A* weight (for example, the doubling weight constructed in
[2] is bounded and is not in A, and so it is not an A* weight either).

Throughout this paper, we use the standard notation || f||; == [[fll.__ ;) := esssup,e; [ f(u)| and || f]| ==

”fH[—l,l]' 1&1507
E. (f,I), := inf — ,
(f ) qlenn Hw(f Q)HI

where II,, is the space of algebraic polynomials of degree < n — 1.
The following theorem is due to G. Mastroianni and V. Totik [8, Theorem 1.4] and is the main motivation
for the present paper (see also [5-7]).

Theorem A. (See [8, Theorem 1.}].) Letr e N, M >3, =1 =2, < --- < zpy = 1, and let w be a bounded
generalized Jacobi weight

M
wy(z) == H |z — z;|%  withy; >0, 1 <35 <M. (1.4)
j=1

Then there is a constant ¢ depending only on v and the weight w such that, for any f,

En(f7 [717 1])103 S CW;(fa 1/77’)*11)37

and

n

wi(f, 1), <en™ Y R E(f (-1, 1)y,

k=1

where

M-—1 M
g = > s [[wg (VA (oo i) |+ 0 BrlF L)
j=1

iZ1 0<h<t
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with Iy, = [=1, =1+ h2], Iy = [1 = k21, Jip = [-1+h% 20 — h], Jy—1n = [2m-1 + h, 1 — R?], and
Lin =1z —h,zj+h] and J;, = [2j + h,zj41 — h| for 1 < j < M — 1, and the rth symmetric difference is
defined in (3.3).

The purpose of the present paper is to prove an analog of Theorem A for more general weights (namely,
for A* weights having finitely many zeros inside [—1, 1] and not too “rapidly changing” away from these
zeros), and give a more natural and transparent (in our opinion) definition of the modulus of smoothness wy,.
Our recent paper [4] deals with approximation in the weighted L, p < oo, (quasi)norm and a certain class
of doubling weights having finitely many zeros and singularities. Approximation in the weighted L., norm
considered in the current paper is similar in some sense, but it also presents some challenges that have to
be dealt with, and our present proofs are different from those in both [8] and [4]. The main results of the
present paper are Theorem 6.1 (direct result), Theorem 7.1 (inverse result) and Theorem 8.1 (equivalence of
the modulus and an appropriate realization functional). Finally, we mention that Theorem A is a corollary

of our results taking into account that wy € W*(Z), Z € Zps (see Remark 3.3), and
wp (fomax {(1=2)7172, (1= 23, ) 72} 1/20)
wgy

<@ty < Mol (£1/2max {1 =) 72 (=4 )2 ) L o<,

wyg
wy
where W*(Z) and w[,(f, A, B,t),, are defined in Definition 3.1 and (3.5), respectively.
2. Some properties of A* weights

Note that, for any interval I C [—1,1] and x € I, if (1.3) holds for I := I N [—1,z] and Iy := I N[z, 1],
then it also holds for I since |I1| + |I2] = |I| and w(I1) + w(l2) = w(I). Therefore, w € Aj. if and only if,
for all intervals [a,b] C [—1,1],

*

max{w(a),w(b)} < g

wla, b]. (2.1)

Lemma 2.1. Let w € A} ., € € [-1,1], and let wi(z) := f(|z —&|), where f :]0,2] — Ry is nondecreasing
and such that f(2x) < K f(x), for some K >0 and all 0 < x < 1. Then, W = wwy € A} with the constant
L depending only on K and L*.

Proof. Suppose that I C [—1,1] and d is one of the endpoints of I. We need to show that w(d) < Lw(I)/|I|.
Case 1: £ ¢ int([]).
Then, w; is monotone on I, and so either wq(d) < wi(u) or wy(d) > w1 (u), for u € I. In the former case,
we immediately have

w(d) = w(d)wi(d) < % /wl(d)w(u)du < |LT|1TJ(I).
T

Suppose now that wi(d) > wy(u), for u € I. This means that d is the endpoint of I furthest from &. Let ¢
be the midpoint of I, and let J := [d, (] (as usual, if x < y, then [y, 2] := [z,y]). Then, w1 (¢) < w;(u), for
all u € J. Also, since |d —£|/2 < |¢ —&] and |d — £] < 2, we conclude that

wi(d) = f(ld =¢]) < Kf(|d —¢£]/2) < Kf(I¢ = &]) = Kwi(C)
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Therefore, w1y (d) < Kwy(u), for all u € J, and so

- L* L*K *K _
() = w(dun(d) < T J/ wn(d)u(u)du < = J/ wn (i < (1)
2L*K
- S (2.2)

Case 2: £ € int([).
If |d — &| > |I|/4, then using (2.2) for I’ := [d, £], we have
2L*K SL*K
w(d) < ——w(I") < ——w(I).
|17'] 1]

We now assume that |d — &| < |I|/4. Let d’ be the point symmetric to d about &, i.e., £ = (d + d')/2, and
let I" ;=T\ [d,d'). Then |I"| = |I| — 2|d — &| > |I]/2, and w;(d) = wy(d") < wy(u), for all uw € I". Hence,
taking into account that w is doubling with the doubling constant depending only on L*, we have

. L*wy(d) cw1(d) c c
w(d) = w(d)w;(d) < I /w(u)du < K I/w(u)du < II/wl(u)w(u)du < mw([)

This completes the proof. 0O

Corollary 2.2. Suppose that w € A5., M € N and, for each 1 <i < M, z € [-1,1], v, > 0 and T'; € R (if
v >0) orT; <0 (if v, =0). Then
e b
Vi1 2.3
(n |z — Zi|) (23)

is an A* weight with the A* constant depending only on v;’s, I';’s and L*.

M
w(z) == w(x) H |l — 2

We remark that, with w ~ 1, the weights w in (2.3) are sometimes called “generalized Ditzian—Totik
weights”.

Proof of Corollary 2.2. Denote

(1—Inz)", ify=0and I' <0,
27 (U —Inz)", ify>0andT €R,

fyr(x) = {

where ¥ := 14 max{0,I'}/v. It is easy to check that f, r is nonnegative and nondecreasing on [0, 2], and
satisfies sup,c(o,1] | f5,r(22)/fy,r(z)| < co. Hence, Lemma 2.1 implies that the weight

x —z)

M
{U\(LU) = w(x) Hf%‘,ri(
i=1

is an A* weight with the A* constant depending only on ;’s, I';’s, and L*.

Finally, it remains to notice that, if v > 0 and I' € R, then f,p(z) ~ 27 (1 —Inz)" on [0,2] with
equivalence constants depending only on v and T', and so w ~ @ on [—1,1]. Clearly, this implies that
weA. O
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Remark 2.3. It follows from Corollary 2.2 that, for any A* weight w and any p > 0, we" is also an A*
weight, where ¢(x) := /1 — z2.

For n € N, following e.g. [8], we denote

z+pn(x)
won@) = pu@)" [ w(uds,

$7Pn(w)

where p,(z) := n"tp(z)+n"? (recall that w is assumed to be 0 outside [—1, 1]). Note that, for any w € A%.
1

L*

w(z) < v
() |[x—pn(m),x+pn(w)]”[*1’1”[ (@) pn (2N 1,1] v
T—pn(z),2+pn(z -4
L* I‘+pn(x)
< Pn () w(u)du = L*wy,(x). .
z*pn(af)

Lemma 2.4. Let w € A}. and n € N. Then w,, € A} with L depending only on L*.

Proof. Suppose that n € N is fixed. Let I be a subinterval of [—1,1], and suppose that z € I is the left
endpoint of I (the case for the right endpoint is analogous). If [z, z + p,(x)] C I, using the fact that w is
doubling, we have

x4 pn () T+ pn ()
wy(x) = ppl(x)~! / w(u)du < cpp(x) ! / w(u)du
z—pn(z) z
z+pn ()

< cpn(x)! / LT*| I w(v)dv du < < I/w(v)dv < < I/wn(v)dv.

€T

Recall now that, if | — u| < Kp,(x), then w,(x) ~ wy(u) (see e.g. [8, (2.3)]). This implies that, if  is the
left endpoint of I and = + p,(x) ¢ I, then I C [z, + pn(x)], and so wy,(u) ~ wy(z), for all u € I. Hence,
in this case,

1
Wy () ~ T I/wn(u)du.

Therefore, (2.1) implies that w,, is an A* weight. O
3. Special A* weights and associated moduli of smoothness
Let
p(h,z) := ho(z) + h?
(note that p(1/n,z) = p,(x)), and

Zas = {500 | 1S5 < <o <o <1 MEN.
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For Z € Z);, it is convenient to denote

2 =2, (2) = {z e [-1,1] | Jo—z| < Aplh,z)}, 1<j<M,

Zan:=2an(2) = Uj]vilz'il,h’

and
Tan:=Ta(2) = (~L,1\ 2an)" = {z € [-1,1] | |z — 2| > Ap(h,z;), forall 1 < j < M}.
Also,
§(2) :==pmin{[z; — zj—1| | 1<j<M+1},
where zg := —1, zps41 := 1 and pmin(S) is the smallest positive number from the finite set S of nonnegative

reals. Note that §(Z) < 2, for any Z € Zy,.
The following definition is an analog of [4, Definition 2.1] for A* weights.

Definition 3.1. Let Z € Z)s. We say that w is an A* weight from the class W*(Z) (and write w € W*(2)) if
(i) we A*,
and

(ii) forany e > 0and x,y € [—1,1] such that [x—y| < p(e, x) and dist ([x, y], z;) > p(e,2;) forall 1 < j < M,
the following inequalities are satisfied

cxw(y) < w(z) < c;lw(y), (3.1)
where the constant ¢, depends only on w, and does not depend on x, y and ¢.

Clearly, there are non- A* weights satisfying condition (ii) in Definition 3.1. For instance, the non-doubling
weight

—x, ifx <0,
w(z) =9 ,
x°, ifz >0,

is one such example for Z := {0}.

Remark 3.2. A weight from the class W*(Z) may have zeros only at the points in Z. At the same time, it
is not required to have zeros at those points.

Remark 3.3. It follows from [4, Example 2.7] and Corollary 2.2 that the following weights belong to W*(2Z)
with Z = (Zj)jjvil, —1< < - <zpy_1<zm <1:
« bounded classical Jacobi weights: w(z) = (1 +2)*(1 —2)?, a, 3 >0, with M =2, 2y = —1 and 2z = 1,
e bounded generalized Jacobi weights (1.4),
e bounded generalized Ditzian—Totik weights (2.3) with w = 1.



K.A. Kopotun / J. Math. Anal. Appl. 435 (2016) 677-700 683

The following lemma immediately follows from [4, Lemma 2.3] taking into account the fact that any A*
weight is doubling.

Lemma 3.4. Let w be an A* weight and Z € Zy;. The following conditions are equivalent.

(i) we W*(Z).

(i) For any n € N and x, y such that [x,y] C Jy1/n and |x —y| < pu(x), inequalities (3.1) are satisfied
with the constant c. depending only on w.

(iii) For some N € N that depends only on w, and any n > N and x, y such that [z,y] C Jy1/n and
|z — y| < pn(x), inequalities (3.1) are satisfied with the constant ¢, depending only on w.

(iv) For anyn € N, A,B >0, and xz, y such that [x,y] C Ja 1/, and |v —y| < Bpyp(x), inequalities (3.1)
are satisfied with the constant ¢, depending only on w, A and B.

(v) For anyn € N and A > 0,

w(l‘) ~ wn(x), HARS jA,l/'ru
where the equivalence constants depend only on w and A, and are independent of x and n.

For r € N, t > 0 and Z € Zj;, the main part weighted modulus of smoothness is defined as

Qs A, = (AR = sup [[w( AT (- 9a0)| (3:2)
0<h<t
where
r r )
. (=D (e = rh/2 +4h), if [x —rh/2,2 +1h/2] C J,
An(f,x,J) =< <Z> (3.3)
, otherwise
is the rth symmetric difference.
Note that if we denote
D(A,h,r) :=={a | [x—rhe(z)/2,z + rhe(x)/2] CIan} (3.4)
then
QU (f, A t), = sup [[w(-)AT .. ,~,RH .
ot ) 0<h2t )k (S ) D(A,h,r)
The weighted Ditzian—Totik modulus of smoothness (see [1]) is
W (f, ) := sup |lw()A] _(f,-]-1,1 H
L= s )8 1)
For A, B,t > 0, we define the complete weighted modulus of smoothness as
M .
w;(fv A, B, t)y = W;(fv A, B, t; Z’)w = Q;(fa At 2)y + Z Er(fv ZJB,t)uw (3.5)

Jj=1
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We will also need the following auxiliary quantity (“restricted main part modulus”):

: (3.6)

Q' (fit)sw:= 8 VAT (S, S
S 05w = s WAL (S 8)

where S is some subset (a union of intervals) of [—1, 1] that does not depend on h.
4. Properties of main part and complete weighted moduli

Proposition 4.1. For any weight function w and a set Z € Zyy, the moduli defined in (3.2), (3.5) and (3.6)
have the following properties:

(1) U (f, A, ) = QL (f, A, \/2/A)y for any t > ¢2/_A;
(ii) wi(f, A B t)w = wi(f, A, B,to)w > ME,(f,[~1 ]) for any t >ty := max{\/2/A, \/2/B};
(iil) QL(f, A, t1)w < QU(f, A t2)w and Wi (f, A, B tl) Swi(f, A, Bita)w if 0 <ty < to;
(iv) QU(f, A1, t)w > Q;(f,Ag, t)w and wi(f, A1, B,t)w > Wi(f, A2, B,t)w if A1 < Ag;
(v) wi(f, A, Bi,t)w < wi(f, A, B2, t)w ZfBl < By;
(vi) QL(f,eat)gq,w < Q(f, A/ max{c,, 2}, c.t), for anyt >0 and ¢, > 0.

Proof. Properties (i) and (ii) immediately follow from the observation that, if h > /2/C, then
Cp(h, z;) > 2. Properties (iii) and (v) follow from the definition and the fact that ZjB17t1 C 2’?327@ if
t1 < to and B; < Bs. Property (iv) is a consequence of the inclusion J4, 5, C J4, 5 if A1 < As. Property (vi)
follows from the observation that, for ¢, > 0 and 0 < h < c.t, since p(h, z;)/ max{c., 2} < p(t, zj), then
Jat CIa/max{e,c2},he O

We need an auxiliary lemma that is used in the proofs of several results below.
Lemma 4.2. Suppose that Z € Zps and w € W*(Z). If A,h >0, r € N and x € [—1,1] are such that
[z —rho(x)/2,2 +rho(x) /2] CIapn  (ie, x € D(A,h,T)),
then, for any y € [x —rho(x)/2,x + rhe(x) /2],
w(y) ~ w(z) ~ wn(z),
where n:= [1/h], and the equivalence constants depend only on r, A and the weight w.
Proof. First we note that, if h > \/2/—A, then Ap(h,z;) > 2, and so J4;, = (. Hence, we can assume that

0<h<+/2/A.Now, ifn=[1/h],thenneN,n"' <h<(n—1)"tand Ja, C J4,1/n- Moreover, if n > 2,
then (n — 1)~ < 2/n and so p(h, ) < 4p,(x) and, if n = 1, then

p(h,x) < p(v/2/A, x) < max{/2/A,2/A}p,(z)
Hence, if y € [x — rho(x)/2, 2 + rhe(z)/2], then [z,y] C 4,1/, and

[~y < rhp(e)/2 < rp(h,2)/2 < (r/2) max{4, \/2/4,2/A}pu ().

Therefore, Lemma 3.4(iv) implies that w(y) ~ w(z), and Lemma 3.4(v) yields the equivalence w(x) ~
wy(x). O
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In the following lemma and in the sequel, we use the usual notation
LY :={f:[-1,1] =R | Jwf]l < oo}
Lemma 4.3. If Z € Zp, w e WH(2), f € LY, r €N, and A, B,t > 0, then
wi(f, A, B t)w < cllwfll,
where ¢ depends only on r, A and the weight w.

Proof. First of all, it is clear that

M M

S5 B € D Sl M ]

i=1 i=1 '

We now let h € (0,t] and = be such that [z — rhe(x)/2,2 + rhe(x)/2] C J4n, and denote y;(z) =
x+ (i —r/2)hp(z). Then, Lemma 4.2 implies that w(y;(z)) ~ w(x), 0 < i <r, and so

0(0) |87 o (F0900] < 0@ 3 () o) < 2°00) g (2

y 0<i<r
=0

<ec max. lw(y:(2)) f(yi(2))]-

0<i<

This yields Q7 (f, A,t)w < cllwf||, which completes the proof of the lemma. O

Taking into account that wl,(f, 4, B,t)w = w,(f — ¢, A, B,t), for any q € II,,, we immediately get the
following corollary.

Corollary 4.4. If Z € Zps, w € WH(Z), f € LY, r €N, and A, B,t > 0, then
w;(fa A7 B7 t)'w S CE’I"(f’ [_17 1])71)7
where ¢ depends only on r, A and the weight w.
Lemma 4.5. If Z € Zp;, w € WH(Z), f e LY, r € N, and A,t > 0, then
QL(f, A, 2t)0 < Q(f, V2A,V2t) 0, (4.1)
where ¢ depends only on r, A and the weight w.
Now, Proposition 4.1(iii and iv) and Lemma 4.5 imply the following result.

Corollary 4.6. If Z € Zp;, w € W*(Z), f € LY

007

reN, and A,t >0, then
Q;(f? A, t)w ~ Q;(fa \/§A7t)wa
and so
QZp(.ﬂA?t)w ~ QZp(f? ]-7t)w»

where the equivalence constants depend only on r, A and the weight w.
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Moreover,
QG (fi 1, 0)w < QL(F,1,2t) 0w < QG (f, 1),
where ¢ depends only on r and the weight w.
Proof of Lemma 4.5. Recall a rather well-known identity (see [9, (5) on p. 42|, for example)
1 1
AL (fa) = > AR (fy+ [iv+ - +ip —1/2]R). (4.2)
i1=0  i,=0

Now, we fix h € (0,t], and let z be a fixed number such that [z — rhe(z),z + rho(z)] C Jaon (ie.,
x € D(A,2h,r)). We have

1 1
ooy (. D420 £ 3+ 37 Ay ([ + e — 1/2)hp())
i1=0 =0

<o

Aoty (F9)| =2 2'F,

where y := z + vho(z), and v is such that v +r/2 € {0,1,...,r} (and so || < r/2) and

Dot (F9)] = max | A7y (fow+ [ = r/2]hp ()]

0<m<r

Note that Lemma 4.2 implies that w(z) ~ w(y). Also, since = + rhp(z) € [—1,1], we have |z| < (1 —
r2h?)/(1 + r2h?), which implies

|| 1—r2p2
<

o(x) = 2rh
and so
2 272
@(y)] 272 T 272 |z| L rh 1
—| =1—7"h"—29h——>1—~°h" =2|y|/h—— > = + > -
s (@) Mhew 23t 1 22

Therefore, p(x) < v/2¢(y), and

w(z)F < cw(y) |Ahs i (F,9)]

where

0<nt o= 2@ <
o(y)

We now note that p(2h, z;) > V2p(h*, zj) which implies J 4 21, C j\/EAJL*a and so

[y —rh*e(y)/2,y + rh*p(y)/2] = [ + (v = 7/2)he(z),z + (v + 7/2)hep(2)]

C [z —rhe(x), 2+ rhe(2)] CIaon CI g4 p.-
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Therefore, A}, (f7 y) = AV (f, Y, 9 /54, h*), and so we have

w(r)F <c sup esssup,w(y) )Az*go(y) (f,y,JﬁA,h*)‘ < e (f, V2A4,V2t),,
0<h*<V/2t

for almost all z € ®(A, 2h,r). The lemma is now proved. O
Lemma 4.7. Let Z € Zpy, w e WZ), 71 €N, 2 € Z, 24 1,0<e<§2)/2, I :=[z2+¢/2,z+¢€], and let

J = [z+4¢e,2+ ¢+ 0] with § such that 0 < 6 < e/(2r). Then, for any h € [0,/(2r)] and any polynomial
q € 11,., we have

lw(f =l < ellw AL, TUI) s +ellwlf =gl - (4.3)

Additionally,

lw(f = a)ll; < QL (f,546t/€) g0 + clw(f = )l (4.4)
where 0 < t < 1 is such that e = p(t, z), and all constants ¢ depend only on r and the weight w.

Remark 4.8. By symmetry, the statement of the lemma is also valid for I := [z — e,z — &/2] and J :=
[z —e — 0,z — ¢, where z € Z is such that z # —1.

Remark 4.9. The condition £ < §(Z)/2 guarantees that I is “far” from all other points in Z. In particular,
[z2+¢e/2,z2+2]N(ZU{£1}) =0.

Proof of Lemma 4.7. Denoting for convenience g := f — ¢ and taking into account that A}(g,z,R) =
A} (f, z,R) we have

r

)(—1)Tig(a: —rh/2 4+ ih).

i

glx +rh/2) = A} (f,z,R) — Z_: (
=0

We now fix h € [d,¢/(2r)], and note that, for any z such that = + rh/2 € J, we have [z — rh/2,2 + (r —
2)h/2] C I, and so

||g||J S ”AZ(lﬂ '7R)H[z+sfrh/2,z+6+6frh/2] + (27‘ - 1) HgHI
<AL TU Doy + @27 = 1) lgll; -

Suppose now that 0 < ¢t < 1 is such that € = p(¢,z2), let n € N be such that n := |1/t] and pick A4 so
that ¢ = Ap,(z). Note that p,11(2) < e < pp(z) and 1/4 < A < 1. Hence, dist (I U J,2) = ¢/2 > p,(2)/8.
Suppose now that zZ € Z is such that 2 > z and (2,2)NZ = (), i.e., 2 is the “next” point from Z to the right
of z (if there is no such Z then there is nothing to do, and the next paragraph can be skipped).

We will now show that d := dist (I U J, %) > p,(%)/20. Indeed, d = % — z — (¢ + 8) > 6(2) — 3¢/2 > £/2.
If € > p,(2)/10, then we are done, and so we suppose that ¢ < p,(2)/10. Recall (see e.g. [4, p. 27]) the
well-known fact that

pn(u)? < 4p,(v)(Ju —v| + pn(v)), for all u,v € [~1,1]. (4.5)
This implies

72| >



688 K.A. Kopotun / J. Math. Anal. Appl. 435 (2016) 677-700

Also, |5 —z| =d+e+0 < d+3e/2 < 4d, which implies d > (9/160)p,(Z) > pn(2)/20 as needed. Therefore,
we can conclude that

IT'UJ CJiy20,1/m-

Now, using (4.5) we conclude that, if w € T U J, then |u — z| < 3¢/2 < 3p,(2)/2, and so

pr(w)? < dpn(2)(Ju = z[ + pa(2)) < 10p,(2)?
and

on(2)? < 4pu () (Ju — 21 + p()) < 4 (6)(30n(2)/2 + pu(w)).
This implies that, for any v € I U J,
pn(u)/4 < pn(2) < Tpn(u).
Hence, for any u,v € TU J,
=0l < & < pul2) < Tpulu).

It now follows from Lemma 3.4(iv) that w(u) ~ w(v), for any u,v € I U J, and so

lwgll; < ellw-) AL, TU )+ cllwglly

and (4.3) is proved.
In order to prove (4.4), we note that, for any z € I U J,

1— 2| >¢/2=p(t,2)/2 > t*/2,

which implies () > t/v/2, and so, with h := §, we have

nt

h dpn(2) < 70pn(z) < 7_5 <1+ \/§> 70

¢
o S at) S <= (2 +4\/§) < 546t /e.

Therefore, for almost all x € T U J, denoting h* := h/p(x) we have

w(z)A} (f, 2, TUJ) = w(x)Ah. o (fyx, TUJT)

()

w() Ay (f5 5 TU )

< sup
0<h<545t/e

)

and the proof of (4.4) is complete. 0O

Corollary 4.10. Let Z € Zpy, w € W*(Z), r € N, B > 0, and let 0 < t < ¢y, where ¢y is such that
maxi< < p(co, z;) < 0(2)/(2B) (for example, co := min{1,(Z)/(4B)} will do). Then,

wy, (f, 1L, B(1+1/(2r)),1t),, < cwi(f, 1, B,t)w,

where the constant ¢ depends only on v, B and the weight w.



K.A. Kopotun / J. Math. Anal. Appl. 435 (2016) 677-700 689

Taking into account that (1 4+ 1/(2r))™ > 2 for m = [1/logy(1 + 1/(2r))], we immediately get the
following result.

Corollary 4.11. Let Z € Zpy, w € W*(Z), r € N, B > 0, and let 0 < t < ¢y, where ¢y is such that
maxi<;j<nm p(co, z;) < 0(2)/(2B) (for example, co := min{1,(Z)/(4B)} will do). Then,

wy, (f,1,B,1),, < cwl(f,1, B/2,t)w,
where the constant ¢ depends only on r, B and the weight w.

Proof of Corollary 4.10. For each 1 < j < M, let ¢; := Bp(t,z;) and note that ¢; < §(Z)/2. It follows
from Lemma 4.7 and the remark after it that, for any ¢; € II,, §; := ¢;/(2r) and 7; such that p(7;,2;) =
Bp(t,z;) = €;, we have

[w(f =aj)ll < eQG(f,2775/7) 1oy w + e llw(f = g5)ll 7
where I7 = [z; +¢€;/2,2; + ¢;] and JJ = [2; + €;,2j + &5 + §;], and
(= a5) L1 < Q£ 27/ + el = a1

where Ijl. = [2; —¢€;,2; —¢€;/2] and le~ = [z; —€; —0;, z; —¢;]. Note that, if z; =1 or —1, we do not consider
I, J§ or I, JI, respectively.

We now note that [2; —ej,2; +&;] N [~1,1] = 23 , and [2; —&; — 0,25 + 5 + ;] N [-1,1] = Z%’t, where
B := B(1+1/(2r)). Letting ¢; € IL, be such that

lw(f = a)llzy,, < cBr(f, 25 ),
we have
Er(f, 25 Jw < lw(f = a5)lzs
< lw(f =gl +lw(f =gy, , + llwlf =gl
< cllw(f —ai)llyy, , + QU 2775/1) ot + U (F 2775 /1) 17007 0

< CET(f7 Z]é,t)w + CQ;(.ﬂ 27Tj/r)I;UJ§,w + CQ;(fv 27Tj/T)I;UJ;,w~

Now, note that
ITUJ; CIppay and ILUJL CIpjay
Hence, taking into account that 7; < max{B, vV B}t we get

Er(f, 2L D < B (£, 20w + S (F,2775/7), 0 0

< cE.(f, Z’?B,t)w + e (f, 27 max{B, \/E}t/r)

IB/2,tw

Now, with ¢, := 27 max{B,+/B}/r, Proposition 4.1(vi) and Corollary 4.6 imply

Qg (f, C*t)ﬂs/zuw < Qg (f.B/(2 max{c*,cf}),c*t)w < e, (f,1,1),, -



690 K.A. Kopotun / J. Math. Anal. Appl. 435 (2016) 677-700

Therefore,
w:’(f’ LB, t)w = Q;(f’ L, t)w + Z Er(f? Z’Jé,t)w
j=1
M .
< Q1w+ e Er(f, 2% )w
j=1

< Wl (f,1, B, 1),
and the proof is complete. 0O
5. Auxiliary results

Theorem 5.1. (See [7, (6.10)].) Let W be a 27m-periodic function which is an A* weight on [0,2x]. Then
there is a constant C' > 0 such that if T,, is a trigonometric polynomial of degree at most n and E is a
measurable subset of [0,27] of measure at most A/n, 1 < A < n, then

1T W llip.2m) < CM ITaW llig 20 12 -

The following result is essentially proved in [7]. However, since it was not stated there explicitly we sketch
its very short proof below.

Corollary 5.2. Let w € Aj.. If E C [—1,1] is such that [,(1 — 22)"V2dx < N/n with X < n/2, then for
each P, € 11,,, we have

[Pawll_q 1 < cllPawllZyap g
where the constant ¢ depends only on A\ and L*.

Proof. Let W(t) := w(cost), Ty(t) := Py(cost) and E := {0<t<2m | cost € E}. Note that W is a
2m-periodic function which is an A* weight on [0, 27] (see [7, p. 68]), and

meas(E) = /dt =2 / dt = 2/(1 — 2 7V2dz < 2)/n.
B

EN[0,7] E
Hence,
[ Paw| = ||TnW||[0,27r] <c ||TnW||[o,27T]\E =c ||in||[_1,1]\E . O
Lemma 5.3. (See [7, (7.27)].) Let w be an A* weight on [—1,1]. Then, for alln € N and P, € T1,,,
[Prwl] ~ || Ppwn|
with the equivalence constants independent of P, and n.
It is convenient to denote ¢, (z) := ¢(z)+1/n, n € N, and note that w := ¢ is an A* weight and w,, ~ ¢,

on [—1,1].
One of the applications of Corollary 5.2 is the following quite useful result.
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Theorem 5.4. Let w be an A* weight, n € N, 0 < u < n. Then, for any P, €11,

[[we? Ppl| ~ [[wnp" P (5.1)
and

w5 Pl ~ llwn AL Pall (5.2)
where A\, (x) := max {m, 1/n}, and the equivalence constants are independent of p, n and P,.
Proof. We start with the equivalence (5.1). Let m := 2|/2]. Then m is an even integer such that p —2 <

m < u (note that m =0 if p < 2), and Qpym = " Py € Upin C Moy,
Since w is an A* weight, then wy?, v > 0, is also an A* weight (see Remark 2.3) and

('LU(Pv)n ~ wn@%v

where the equivalence constants depend on [v] and the doubling constant of w.

Hence, denoting F,, := [-1 +n"2,1 —n"2], n := p — m, noting that 0 <7 < 2 (and so [5] is either 0, 1
or 2 allowing us to replace constants that depend on [7] by those independent of 1), and using Lemmas 5.3
and 2.4, Corollary 5.2, and the observation that w,,(x) ~ wg(z) if n ~ k, we have

I wPnll = l"w@ntmll ~ [(we")nQnimll ~ [(we")nQnimllg,

~ [[wnpn Qntml| E, ™ [wn " Qn-tml E, -

Since wy " is an A* weight (see Remark 2.3), we can continue as follows:
||wn<PnQn+m”En ~ ||wn‘PnQn+m” = |‘wn<PlLPn|| .
Note that none of the constants in the equivalences above depend on p. This completes the proof of (5.1).
Now, let &, = {z | VI —22<1/n} and note that A\,(z) = 1/n if z € &,, and A\,(2) = ¢(z) if
x € [-1,1]\ &,. Using (5.1) we have

[wAL Pl < lwAL Pulle, + lwAnPalli_y e,
=n" " lwPllg, + llwe" Pall_y e,
< lwP| + lwet Py |
< co (07" wn Pul| + [lwn! Pull)
< 2¢ [[wp AP, -

In the other direction, the sequence of inequalities is exactly the same (switching w and w,,). This verifies
(5.2). O

If we allow constants to depend on p, then we have the following result.
Corollary 5.5. Let w be an A* weight, n € N and p > 0. Then, for any P, €11,
lweh Pl ~ llwe! Po || ~ [lwn@" Pl ~ [lwneh Pall

where all equivalence constants are independent of n and P,.
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Proof. Since A\, (z) < ¢, () < 2\, () and ¢(x) < p,(x), we immediately get from Theorem 5.4
[weh Pl ~ lwng" Pull < lwah Pull ~ llwey Pl -
At the same time,
[weh Po |l ~ [(we™)n Pull ~ llwnen Pall
and the proof is complete. 0O

Theorem 5.6 (Markov—-Bernstein type theorem). Let w be an A* weight and r € N. Then, for alln € N and
P, €1,

P < cllwPy | ~ [lwnPall

n" Hwngorpflr)

[t 2] ~ et

where the constant ¢ and all equivalence constants are independent of n and P,.
Proof. The statement of the lemma is an immediate consequence of Corollary 5.5 and either of the estimates

o P|| < cllwnPal

(see [3, Lemma 6.1], for example), or

ngorpvgr)

< en” |JwPy||
(see [7, (7.29)] or [8, (2.5)]), where the constant ¢ depends only on r and the A* constant of w. O

Lemma 5.7. Let w be an A* weight, A > 0 and Z € Zy;. Then for any n,r € N, 1 < j < M, and any
polynomials Q,, € II,, and q, € Il satisfying ng’)(zj) = qﬁy)(zj), 0 < v <r—1, the following inequality

holds

TQ’SLT)

—r
[0(@n =)z, < en

where the constant ¢ depends only on r, A and the weight w.
Proof. Denote I := ZA 1/ns Z = %, and note that (Qn — q-)™(2) = 0,0 < v <7 — 1. Using Taylor’s
theorem with the integral remainder we have

T

[ = wrQ @,

z

1

Qn(z) — gr(z) = G

which implies

x

0@ = 4l < swpw(o) | [ (- 0@ | < Q)

zel

supw(z)|x — z|"
zel
z

< (Apa())" | @) (),

)

,sup w(z) <c ‘
Izer
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where, in the last inequality, we used the fact that w is an A* weight and p,, () ~ p,(2), ¢ € I. Now, since
w is doubling, w(I)/|I| < cw(z — pn(2), 2 + pn(2)]/|I] < cwp(z) < cwp(z), € I, and so

T

10(@n = )l < e [[wnp Q) we QYY)

<en~
I

b
where the last estimate follows from Theorem 5.6. O

Lemma 5.8. Let Z € Zpr, w € WH(Z), c.. >0, n,r € N, A >0 and 0 < t < c./n. Then, for any P, € 11,
we have

Q5 (Poy Ay t)y < ct” we" P

where ¢ depends only on r, ¢, and the weight w.

Remark 5.9. Using the same method as the one used to prove [4, Lemma 8.2] one can show that a stronger
result than Lemma 5.8 is valid. Namely, if f is such that f("=1 € ACj,c ((—1,1) \ Z) and ngorf(r) H < 00,
then one can show that

we" f(?")

QL(f A )y < ct” . t>0.

However, Lemma 5.8 whose proof is simpler and shorter is sufficient for our purposes.

Proof of Lemma 5.8. Tt follows from [3, Lemma 7.2] and Corollary 5.5 that, for any ¢, > 0 and 0 < t < ¢, /n,

wo(Pnst)w, <ct” wngorP,(f) <ect" wngPT(lT)

)

where the constants ¢ depend on r, ¢, and the weight w. Therefore, since any A* weight w satisfies w(z) <
cwy(z), for any « € [-1,1] and n € N (see (2.4)), we have

Q7 (P, Ayt = sup Hw(~)Afw(,)(Pn,»,JA,h)H < sup Hwn(.)A;W(,)(pn,.,[4,1])“
0<h<t 0<h<t

< ewl (Poyt)w, <ct” wep" P

. O

6. Direct theorem

Theorem 6.1. Let w € W*(2Z), r,ivp € N, vg > 7, 9 >0, f € LY and B > 0. Then, there exists N € N
depending on r, ¥ and the weight w, such that for every n > N, there is a polynomial P, € I1,, satisfying

[w(f = Po)ll < cwip(f,1,B,9/n)w (6.1)
and

e P < en* (£, B, 0/ m)w, 7 < v <, (6:2)

where constants ¢ depend only on r, vy, B, ¥ and the weight w.

We use an idea from [8, Section 3.2] and deduce Theorem 6.1 from the following result that was proved
in [3].
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Theorem 6.2. (See [3, Theorem 5.3 (p = o0)].) Let w be a doubling weight, r,vy € N, vg > r, and [ €
Loo[—1,1]. Then, for every n > r and 0 < ¥ < 1, there exists a polynomial P, € I1,, such that

lwn (f — Pn)|l < CW;(fa /1),
and

wnpti PO|| < (£ 0/m),s 7 < v <m0,

where constants ¢ depend only on r, vy, ¥ and the doubling constant of w.

Proof of Theorem 6.1. Since w;( f,1,B,t), is a nondecreasing function of ¢, without loss of generality we
can assume that with ¢ < 1/(2r). Suppose that N € N is such that N > max{r, 100/(9§(Z))}, n > N, and
let (x;)_, be the Chebyshev partition of [—1,1], i.e., x; = cos(im/n), 0 < i < n (for convenience, we also
denote z; := —1,i >n+1,and z; := 1, i < —1). As usual, we let I; := [x;, 2;,_1] for 1 < i < n. Note that
each (nonempty) interval [2;, z;11], 0 < j < M, contains at least 10 intervals I;.

For each 1 < j < M, denote

v; = min {z | 1<i<nandz€ Ii} and Jj = [T, 11,70, 2]

Note that min in the definition of v; is needed if z; belongs to more than one (closed) interval I; (in which
case v; is chosen so that z; is the left endpoint of I,,). Let ¢; € II, be a polynomial of near best weighted
approximation of f on Jj, i.e., [[w(f — qj)||Jj < cE.(f,Jj)w, 1 <j < M, and define

Fla) = | 9@ o€ 1< M,
f(x), otherwise.

Since (see [4, p. 27], for example) |I;|/3 < |Li11] < 3|L|, 1 <i<n—1, and p,(z) < || < 5p,(x) for all
x € I; and 1 < i < n, we conclude that

maX{|ij+1 - Zj‘v Iij—Q - ZJ|} < maX{|I’/j+1| + |IVj|’ |L/j| + |IVj_1|}

< 4|1L,| < 20p,(z) < (20/9%)p(9/n, 2),

and so

T3 € 23092, 9pmr 157 <M.
Therefore,

_ — L < .
lw(F =il = max [lwlg; = fll;, < max Er(f, i
M .
<Y Er(f, 20 g0 g m)w < b (f,1,20/0%,9/n). (6.3)
j=1

We now estimate w,(F,9/n)y, in terms of the modulus of f. Let 0 < h < 9/n and z such that
[x —rho(x) /2,2 + rhe(x) /2] C [-1,1] be fixed, and consider the following three cases.
Case 1: v € Ry := {x | [x — rhe(x) /2,2 4+ rhe(x) /2] C J;, for some 1 < j < M}.
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Then, for some 1 < j < M, A;W(I)(F,a:, [-1,1]) = A () (gj,2,[—1,1]) =0, and so

=0.

[CHORYH eI EE )]

Case 2: v € Ry := {z | [z — rhy(x)/2,2 + rho(z)/2] N Uj]‘/ilJi =0}.
Then, taking into account that

Jj ) [Zj - |IVj+1|7Zj + |IVj*1|] ) [Zj - |IV_7‘|/37ZJ + |IV7|/3]

O [z = pal2)/3.25 + pu(23) /3] = 2 g1 (6.4)
we conclude that = € Jy/3,1 /5, and so wy,(z) ~ w(z) by Lemma 3.4(v). Also, (6.4) implies that
[_17 1] \ Ujj\ile - [_17 1] \ Ujj\ilz’{/g)l/n - j1/3,1/n - j1/3,h7

and so [z — rho(2)/2, 2 + rhe(x)/2] C J13 5. Therefore, A} (F 2, [=1,1]) = A}, (f,2,91/3,n), and

wn(')A2¢(~)(F» > [_17 1])
| |

o = w0t (s

Case 3: € R}, for some 1 < j < M, where R} is the set of all & such that [ — rhe(z) /2, x + rhe(z) /2]
has nonempty intersections with J; and ([—1,1]\ Jj)d, i.e.,

R} = {& | zu,41 or @y,—2 € [z —rho(2)/2,2 + rhe(z)/2]} .

Note that, because of the restrictions on N, [x —rhp(z)/2, z+rhe(x)/2] cannot have nonempty intersection
with more than one interval J;, and, in fact, fR% is “far” from all intervals J; with i # j.

Without loss of generality, we can assume that x,, 1 € [z — rho(x)/2, 2 4 rhe(z)/2], since the other
case follows by symmetry. Taking into account that x — rho(x)/2 and = + rhe(z)/2 are both increasing
functions in x, we have

dist {zj, [x — rhe(x)/2,x + rhe(x)/2]} = 2j —x —rhe(x) /2 > 2; — T — rhe(T) /2,
where 7 is such that T — rhe(Z)/2 = x,,41. Note that Z < z,; since
xy, —rho(x,,)/2 >z, — 1900 (20,)/2 > 20, — 0|1, 41/2 > 20, 41,
and so T € I, 1. Therefore,

dist {z;, [x — rhe(x) /2, z + rhe(x)/2]}
2 2j = Ty41 — Th(T) 2 Ly, 1] — 1000 (T)
> (=) 11| = (1 =19)pn(25)/3 = pn(2;)/6.
Also,
max{\y — 2] ’ y € lx— Th<p(:v)/2,x+rhg0(x)/2]} =zj—x+rho(x)/2 < z; — T+ 1rhe(Z)/2,

where 7 is such that Z + rhe(Z)/2 = 2., 1. Now, T > x,, 12 since

Ty, 2 +1hp(2y,42) /2 < Ty0 +1pn(T0,42)/2 < iy + 101, 42]/2 < 20,11,
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and so 2 € I, ;2. Therefore,

max {|y — 2] ‘ y € lx—rho(x)/2,x+ Th<p(3:)/2]}
< zj— Ty;41 + ’rh@('/r\) < Ty;—1 — Ty;+1 T 7"’19[)”(%)
<y g1l + L, | + 191, 2] < (20 +4579)p(25) < 50, (25).

Hence,
[ = rh(x) /2, + rheo(2) /2] € Taj61/m N o1/ € I1/6n N Zho 4 /e
Lemma 3.4(v) implies that wy(z) ~ w(z). Also, for any y € [x — rho(x)/2,2 + rhe(x)/2], |z — y| <

rho(x)/2 < rdpn(x)/2 = pp(z)/4, and so Lemma 3.4(iv) yields w(y) ~ w(x).
This implies

W (Vg (F s [-1,1])

R

< Hwn(.)Afw(,)(f’ L1, 1])ng§ N ‘

W (YA} (F = £+ [=1,1])

r

wn() Y (D) IGF = D)= riy2 + g

=0

< effwt) a0 (- 9as0) , +elhotas = DI,

R}

<[ (e +

R}

< e[ wO) Ay (£ 316, + Br(F. B o,
3

Combining the above cases we conclude that

w;(F,ﬁ/n)wn <c¢ sup
0<h<d/n

M

WO A (s T |+ €30 BrlF. T gm g
j=1

< ewl(f,1/6,20/9%,9/n)w < cwl(f,1,20/9%,9/n)u.

We now recall that Theorem 5.6 implies that Hwtp”Péu) H < cn?

Wy, pT”LP7(LV) H, and so applying Theorem 6.2
for the function F' as well as the fact that w(z) < cw,(x) (see (2.4)) we conclude that (6.1) and (6.2) are
proved with w((f, 1, 20/92,9/n),, instead of wi,(f,1,B,9/n), on the right-hand side.

Now, if B > 20/9?, then w[(f,1,20/9*,9/n)y < wl(f,1,B,9/n),. If B < 20/9°, then, since
0/n < 6(2)/(80/9%) < 1, Corollary 4.11 implies that w(,(f,1,20/9%,9/n)w < cwl(f,1,27™-20/9%,9/n), <
cwy(f,1, B,1/n)y, where m := [log,(20/(BY¥?)] € N, and the constant ¢ depends only on r, B, 9 and the
weight w.

The proof is now complete. O

7. Inverse theorem

Theorem 7.1. Suppose that Z € Zyr, w € W*(Z), f € LY, A,B >0 and n,r € N. Then

wz;(f: A, Bynil)w <en " Z krilEk(f: (=1, 1])w,
k=1

where the constant ¢ depends only on r, A, B, and the weight w.
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Proof. Let P} € II,, denote a polynomial of (near) best approximation to f with weight w, i.e.,
cllw(f =Pl < pinf Jw(f =Pl = En(f, =1, 1])w-
We let N € N be such that 2V < n < 2N+, To estimate Q;(f, A,n~ 1), using Lemma 4.3 we have

T —1 T —N

Q(p(f7A7n )w S an(f7Aa2 )w
SQ;(JC_ 2N7A2 N) +Qr( 2NaA2 N)
<cllw(f = Pow)ll + QU (Pav, 4,27N),,
SCEQN(fa [7171])104’9:9( 2NﬂA 27 N)

Now, using

= Pi + Z i1 — Py (7.1)

as well as Lemma 5.8 we have

=
L

N-—1
O (P, A,27N) < 30 00 (Bjs — Py A,27Y), <27 3w (P = P
) 1=0

-
I
o

Now, for each 1 < j < M, taking into account that ngtl C thz if t1 < ty, we have

(. 1 ) < ol o < (= Pisllgs o+ Eel(Pi 5 )

< cByv (f, (=1 ) + (P = 0 (Pi)lzs

where ¢,(g) denotes the Taylor polynomial of degree < r at z; for g. Using (7.1) again, noting that

0(Pp) = i+ 3 4 (Py — P), (7.2)

and taking Lemma 5.7 into account we have

N-1
(B~ 0B Dy, < S I (B — P — 0P — By
s =0 s
N—-1
S C 27N’I” w(pr(P2*1',+1 — Pz*l)(r)
=0

Hence,

N-1
WL (f A By < cEan (£, [~ 1,1])u + 27V 3 wa (Pyiys — P3)™
=0
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Now, using Theorem 5.6 we have

N—-1
Wi (f, A, B, < eBon (f, [~1,1])w + 27N ) 27 Jw(Pyiy — Py
=0
N .
<2 NN 2T Eni(f,[-1,1])w
1=0

<en™" El(fa [_1’1])w+z Z kr_lElc(fa [_171])111

i=1 k=2i—141

<en Y KT E(f, [-1,1])us
k=1
with all constants ¢ depending only on r, A, B, and the weight w. O
8. Realization functionals
For w € W*(Z), r € N, and f € L%, we define the following “realization functional” as follows

).

wgoTPr(f)

Rt M) = ind (Jl(f = Pu)| +¢

and note that Rr,tp(f7 tl, Hn)w ~ RT‘,Lp(f7 tz, Hn)w if tl ~ tQ.

Theorem 8.1. Let Z € Zp;, w € W*(Z), f e LY, A/B >0, r €N, and let 93 > 91 > 0. Then, there exists
a constant N € N depending only on r, ¥1, and the weight w, such that, for n > N and ¥1/n <t < d3/n,

Rr,tp(f7 1/”7 Hn)w ~ w;(f7 A, B7 t)un
where the equivalence constants depend only on r, A, B, ¥, J2 and the weight w.

Proof. In view of Corollary 4.6 it is sufficient to prove this lemma for A = 1. Theorem 6.1 implies that, for
every n > N (with N depending only on r, ¥ and the weight w), there exists a polynomial P, € II,, such
that

Ry (f:1/n, 1) < CW;(fa L, B,¥1/n)w < CW;(fv L, B, t)y. (8.1)
Now, let P, be an arbitrary polynomial from II,,, n € N. Lemmas 4.3 and 5.8 imply that

Q;(f7 1at)w S CQ;(f - an l,t)w + CQ;(PTH 17t)w

< clw(f = Pa)ll +en™" [lwe" P (8.2)

where constants ¢ depend only on r, ¥5 and the weight w. Also, taking into account that Z'jB7t C Z'jB,ﬂQ/n -

Zj

Bos max{92,1},1/n and using Lemma 5.7, we have

M M
D EAf 2w < cllw(f = Pl + Zqierg [w(Pn — )|l
j=1"""

BYo max{dg,1},1/n
j=1

< cllw(f = Pa)ll +en”" |lwe" P
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Therefore, for any n € N, ¥ > 0 and 0 < t < ¥2/n,
WO (31, Byt < Ry (£, 1/0 L), (8.4)
which completes the proof of the theorem. 0O
Theorem 8.1 implies, in particular, that w;(f, Ay, By, t1)y ~ w;(f, Ag, Ba, ta),, if t1 ~ ty with equivalence

constants independent of f.
Finally, we remark that the moduli w((f,A,B,t), are not equivalent to the following weighted

).

This follows from counterexamples constructed in [6], where additional discussions and negative results can
be found.

K-functional

K’r‘ 7t w = i f ( - tr " (T)
o(fit) L [w(f =gl +t" [lwe"g

Appendix A

The following lemma shows that E,.(f, Z%,t)w in the definition of the complete modulus (3.5) can be
replaced with ||w(f — qj)||ZjB K where g; is a polynomial of (near) best weighted approximation to f on any

subinterval of Z%)t of length > ¢p(t, ;).

Lemma A.1. Suppose that Z € Zpr, w € W*(Z), f € LY, and suppose that intervals I and J are such that

IcJc[-1,1] and |J| < co|I|. Then, for any r € N, if g € IL,. is a polynomial of near best approximation
to f on I with weight w, i.e.,

lw(f =Dl < Br(f, Do,

then q is also a polynomial of near best approximation to f on J. In other words,

lw(f = a)ll; < cE(f, T)w,
where the constant ¢ depends only on r, ¢y, c1 and the weight w.

Proof. The proof is similar to that of [4, Lemma A.1]. First, we assume that |I| < §(Z)/2, and so I may
contain at most one z; from Z. Now, we denote by a the midpoint of I and let n € N be such that
pnt1(a) < |[I]/1000 < py(a). Then, p,(a) ~ |I| and, as was shown in the proof of [4, Lemma A.1], I contains
at least 5 adjacent intervals I,y;, i = 2,1,0,—1,—2. Moreover, one of those intervals, I,, is such that
[I.| ~ [I| and I,, C ./, with some absolute constant ¢, and Lemma 3.4(iv) implies that w(x) ~ w(y), for
x,y € I, with equivalence constants depending only on w.

Suppose now that ¢ is a polynomial of near best weighted approximation of f on J, i.e.,
lw(f —q)ll; < cEr(f,J)w. Then, taking into account that |I,| ~ |I| ~ |J| and using the fact that w
is doubling, we have

lw(@—a)ll; < L*J17HIG — qll y w(J) < el L7 17— g

< cw(a,) [ qll;, < cllw@- g,

I, w(ly,)
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Therefore,

lw(f =g, < cllw(f =l +cllwl@—all,

< clw(f =, +cllwlg=al;
(f =y +cllw(@—=Hll; +cllwlf —all;
(f =Dl +ellwf =l

CEr(f, )w + cEr(f, 1w

CEr(fy T)w,

IN

cllw

IA

cllw

IN

IN

and the proof is complete if |I| < §(Z)/2.

If |I| > §(2)/2, then |I| ~ |J| ~ 1, and we take n € N to be such that I contains at least 4M + 4
intervals I;. Then I contains 4 adjacent intervals I; not containing any points from Z, and we can use the
same argument as above. O
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