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ABSTRACT

Let 2, denote the set of all n x n doubly stochastic matrices, and let 0. (A) be
the sum of all subpermanents of order k of matrix A. We prove that 02(A) and
o3(A) are convex on §2, for n > 2 and n > 4, respectively, and also conjecture
the following: For every k > 3 there exists nx > k + 1 such that the inequality
or{(adn + (1 - a)A) < aoJn) + (1 — a)or(A) holds for all a € [0, 1] and all
A € Qn withn > ng, where J, = (1/n)7 ;=1 € Qn. It is shown that this conjecture
is true for k < 4 with nz3 = 4 and n4 = 6.

1. INTRODUCTION

Let €2, denote the set of all n x n doubly stochastic matrices, I,, be the
n x n identity matrix, and J,, = (1/n)7;_; € {2, the matrix each of whose
entries equals 1/n. We also denote by g,(A) the sum of all subpermanents
of A of order k, 1 < k < n. In particular, o,(A) = per(4), and 0;(A) = n
ifAeQ,.

It is well known that the permanent function is not convex on 2,, for
n > 3, and that it is convex on 25 (see [1] and [18], for example). However,
some weaker relations than those for convex functions have been estab-
lished. For example, Brualdi and Newman [1] showed that for all o € [0, 1]
and A e Q,

per(al, + (1 — a)A) < a+ (1 — «) per{A4). (1)

Wang [22] called a matrix B € Q,, a star if it satisfies the inequality
per(aB + (1 — a)A) < aper(B) + (1 — «) per(A) (2)
for all @ € [0, 1] and A € €, and conjectured that the only stars for n > 3

are permutation matrices. This conjecture remains unsettled.
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The following characterization of stars is due to Brualdi and Newman
[1]: A matrix B € §, is a star if and only if the inequality

Z b;j per(A;;) < per(B) + (n — 1) per(A) (3)

i,j=1

holds for all A € Q,, where A;; denotes the (n — 1) x (n — 1) matrix
obtained by deleting the ith row and jth column of A. (In fact, it was
shown in {1} that in this characterization the inequality (3) is necessary,
and that it is sufficient with the assumption that equality in (3) occurs
only if A = B. However, this assumption can be removed. For further
discussions see Section 2.)

Brualdi and Newman [1] also showed that J3 is not a star. Wang [22]
noted that letting A = (I, + P,,)/2 [where P, is the full-cycle permutation
matrix corresponding to the full cycle (12---n)] in (3) shows that if B is a
star, then per(B) > 21", Hence, J, is not a star for n > 3.

Lih and Wang [11] conjectured that

per{aJ, + (1 — a)A) < aper(Jp) + (1 — a) per(A4) 4)

for « € (1, 1] and A € Q,. They proved (4) for n = 3, and also in the
particular case a = 1 and n = 4 (see also [4]).

Hwang (8] conjectured that the permanent function is convex on the
straight line segment joining J,, and (J, + A4)/2 for all A € Q, and proved
it for n = 3 (see also Remark 4 in Section 4).

It is fairly natural to inquire whether o has properties similar to (1)-
(4) of the permanent function. Recently, Malek [15] proved that if A € Q,,,
then oz(aJn + (1 — ®)A) < aoa(Jn) + (1 — a)oz(A) for a € [0, 1], and
os(at, + (1 — a)4) < aos(Jn) + (1 — a)o3(A) for a € [4, 1]. Using a
method developed by Marcus and Minc [17], he also showed the validity of
the inequality o (aJd, + (1 — @)A) < aok(Jp) + (1 — a)or(A) for normal
A € Q, with all eigenvalues in the sector [—m/2k, 7/2k] of the complex
plane.

A further discussion of the properties of g is the main subject of this
note.

2. PROBLEMS, CONJECTURES, RESULTS

Following Wang, we introduce the following convention. Let F be a func-
tion defined on £2,,. We call a matrix B € Q,, an F-star if it satisfies the
inequality

F(aB + (1 - a)A) < aF(B) + (1 — a)F(A) (5)
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for all @ € [0, 1] and A € Q,. For example, a per-star is simply a star in
the sense of the definition (2). Clearly, a function F is convex on €, if and
only if every matrix in §,, is an F-star. Below we consider the cases when
F=O’k, k=2,...,n.

In view of the results quoted in Section 1 the following questions natu-
rally arise: Is it true that for every k£ = 2,...,n — 1 the sum of all subper-
manents of order k, oy, is a convex function on Q,7 If not, then what can
we say about og-stars?

Using the ideas of Brualdi and Newman [1], it is not difficult to show
the validity of the following characterization of oi-stars similar to (3): A
matrix B € 0, is a ok-star if and only if

> bijor_1(Ay) < ok(B) + (k — 1)ox(A) (6)

i,j=1

for all A € Q,,.
Indeed, this characterization immediately follows from the trivial
observation

(g € C0, €], g(0) =0 and g(a) >0, @€ [0, €]) = (¢'(0) > 0), (7)

the identity

= Z bijUk—l(Aij) - kUk(A)7 (8)

a=0 4=l

% or(aB + (1 — a)A)

and the following lemma, which is a stronger version of Lemma 1 of [1] for
differentiable functions.

LEMMA 1. Let C be a nonempty conver set of a vector space, f be a
real-valued differentiable function defined over C, and x be a fized element

of C. If

£(@) - F) ~ o flaa+ (1—ay)| 20 ©

a=0

for all y € C, then the inequality
flaz + (1 - a)y) < af(z) + (1 -a)f(y) (10)
is wvalid for all € [0, 1] and all y in C.

Proof. Suppose (10) is not satisfied for some y in € and some oy € (0, 1),
and consider the line segment between y and z. Denoting for simplicity
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Ay(a) = flar + (1 - a)y) and w(a) := aly(1) + (1 — a)Ay(0) — Ay(a),
thus, we have w(ap) < 0 and w(0) = 0. Since w(a) is a continuous function,
then there exists oy € [0, ap) such that w(a;) = 0 and w(a) < 0 for all
a € (a1, ap). Now, using the mean-value theorem and the fact that w(a)
is differentiable, we conclude that there is ap € (a1, ag) such that

(o) = )=o) _ wloo) 1)

Let z := azz + (1 — az)y € C; then (9) implies
fz) = f(z) = 5= Azla) > 0. (12)

Also, since

Az(a) = flaz + (1 - 0)z) = fla + o1 - )]z + (1 - )(1 - az)y)

= Ay(a+ g — aaz),

then

Az(a) = —aAy(a+a2 —aaz) = A;(QQ)(]. —az).

a=0

Therefore, using (11), (12), and the last equality, we have
0< f(z) = £(2) — Ay(o2)(1 = 02)
= Ay(l) - Ay(az) - A;(az)(l - ag)

=Ay(1) = Ay(az) - (1 - az2) (Ay(l) — A,(0) — M_)

Qp — a1

1- (65

= 02Ay(1) + (1 — 22)Ay(0) - Ay(az) + w(ao)
Qo — Oy

1- Qg
= <0.
wlag) + - alw(ao)
The contradiction obtained verifies the validity of the lemma. |

In this paper we investigate the case k < 3 and obtain some partial
results for k > 3 and B = J,. Namely, the following theorems are proved.

THEOREM 1 (k = 2 and 3). The functions 02(A) and o3(A) are convez
on Q, forn > 2 and n > 4, respectively.
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THEOREM 2 (k = 4).

(i) For any n > 6 the matriz J, is a o4-star.
(it) For n = 5 the following inequality is valid for a € [0.43,1} and all
AeQy:

oa(ady + (1 — a)4) < acy(J,) + (1 - a)os(A). (13)

Recall that J, is not a o3-star (04-star) for n = 3 (n = 4), and therefore
these cases are excluded from the assertions of the theorems. Theorems 1
and 2 give some support to the following conjecture (the case £ = 2 is not
considered because of its triviality).

CONJECTURE 1. For every k > 3 there exists ng, > k + 1 such that the
inequality

o (ady + (1 — a)A) < aok(Jn) + (1 — a)or(A) (14)

holds for all « € [0, 1] and all A € Q,, with n > ny.
In other words, the matriz J,, is a oy-star for sufficiently large n.

Using the characterization (6) and the identity

2”: ok-1(4i5) = (n—k+ 1)%05_1(A), AeQ,, (15)

ij=1

we can rewrite Conjecture 1 in the following equivalent form:

CONJECTURE 1’. For every k > 3 there exists ny > k+ 1 such that for
all A € Q,, n > ng, the following inequality holds:

(n—k+1)?

(k — Dog(A) + ok (Jn) > or-1(4). (16)
It follows from Theorems 1 and 2 that the conjecture is true for k = 3
(n3 = 4) and k = 4 (n4 = 6). The question about the validity of (14) and
(16) for k = 4, n =5 and k > 5 remains open.
Conjecture 1’ is a strengthening of the following well-known Holens-
Dokovié conjecture in the case n > ny > k + 1.

COoNJECTURE (Holens [7] and Dokovié [3]). IfA€Q, and2 <k < n,
then

kop(A) >

_ 2
kD, ) (17)

with equality in the case 2 <k <n-1only if A = J,.
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Indeed, (17) immediately follows from (16) and the following Tverberg-
Friedland inequality (see [5] and {20]):

if AeQ, and A#J,, then ox(A4)>o0k(Jn), 2<k<n. (18)

The Holens-Dokovié conjecture is known to be true for k < 3 [3] and
k = 4, n > 5 [10]. It is equivalent to the assertion that the function
ok(8J, + (1 — 8)A) is decreasing in the interval [0, 1]. This assertion is
known as the monotonicity conjecture and was partially resolved for some
special classes of matrices (see [6, 9, 12, 16, 18], and [19], for example).

It follows from the above-mentioned result of Malek [15] that Conjecture
1 (1) is valid for normal matrices in Q, all whose eigenvalues lie in the
sector [—n/2k, 7/2k] of the complex plane. In fact, the following stronger
result can be easily proved (note that we do not require the condition
k<n-1).

THEOREM 3. Let A € Q, be normal and 2 < k < n. If all eigenvalues
of A lie in the sector [~ /2k, 7 /2k] of the complez plane, then the following
inequality holds for all o € {0, 1]:

aok(Jn) + (1 — a)or(A) — or(adn + (1 — a)A)

2
> (’;—n_k_z—z)' (Z:g) a(l — a)||A - Ju|%. (19)

Using (7), (8), (15), and (19), one immediately gets.

COROLLARY 1. If A satisfies the hypotheses of Theorem 3, then the
following inequality holds:

(k — L)o(A4) - (n_#lf-ok_l(A) + k()
2
> 2 (025) -, (20)

COROLLARY 2. If A satisfies the hypotheses of Theorem 3 and A # Jp,
then

(k - l)O'k(A) + O'k(Jn) >

(b A D  (a). (21)

Finally, we remark that it is straightforward to check that the function

Fu(4) == (k — 1)o(A) -

Wok_l(A) +ok(Jn)
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has a strict local minimum at J,. Thus, it follows from Theorem 3 of [10]
that if all entries of an Fji-minimizing matrix A on 2, are positive, then
A=J,.

Section 3 contains proofs of Theorems 1-3. Some relevant remarks con-
cerning Conjecture 1 (1’) are given in Section 4.

3. PROOFS

Throughout this section we let A = (a;;)P;_; € Qn and - := 300,
The following formulae for o3, 03, and o4 (see [3] and [10]) are used:

1 nn — 2

O'Q(A) = ‘2- a?j + —(~2——)-, (22)
2 n—4 n(n? — 6n + 10

o3(A) = 3 a?j + 5 g afj + (———6————-—), (23)

and
3 4,2 3
c4(4) = 3 E a;; + g(n -6) ) a3
n? - 10n + 28 5 1 5 \2
g ()

1 . Sl Y 2
+ Z Z ( ailjai2j> + Z Z (Z aijlaijz)
Jj=1

1< <ig<n \ j= 1<j1<j2<n \i=1
2 2
I3 (34) -1 ()
i=1 \ j=1 j=1 \i=1
+ %(n?’ — 122 + 52n — 84). (24)

The estimate in the following lemma is well known as the Jensen in-
equality (see Lemma 1 of [13], for example), and will be used in the proof
of Theorem 2.

LEMMA A. Let zy,Zo,...,%, be nonnegative numbers, and let
STz =p. Ifs>1, then
m ps
>l 2 : (25)
7 ms—1
1=

Equality holds if and only if x, = p/m,i=1,...,m.

Proof of Theorem 1. The assertion of Theorem 1 immediately follows
from (22) and (23), the fact that the sum of convex functions is also convex,
and the observation that f(z) = =° is convex on [0, 1] for any s > 2. [ |
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Proof of Theorem 2. The proof of Theorem 2 is rather straightforward,
but computationally involved. First, we show that the inequality (16) is
valid for £k = 4 and n > 6. Using exactly the same considerations as in
the proof of the Holens-Dokovi¢ conjecture for £ = 4, n > 5 in [10] (i.e.,
applying the inequalities (16), (18), (19}, and (17) from [10]) we obtain the
following estimate for every real r:

~ n — 3)2
F4(A) = 30’4(A) — (—n-—)—Ug(A) + 0'4(Jn)
32n? — 273n — 36 3
> 3
- ( 24n +9T+4n—4> %ij
n® — 10n2 + 21n + 69 3 9/, 2r 9
+[ 4n _2n—2—§<r +Z>]Za“‘
9, 3n 6n* — 60n3 + 176n? + 123n — 36
+-r 4+ - :
2 dn — 4 24n2

Now we choose r = %; then the coefficients of 3 a?j and Y a?j are equal
to

32n? —273n —36 18 3

24n 5+4n——4

and
n3 — 10n2 + 21n + 69 3 18 18

4n T on_—2 25 Bp’

respectively. Since they are positive for n > 6, we can use the inequality
(25) for s = 2 and s = 3. Hence,

~ 32n2 - 273n - 36 18 3 1
F“(A)Z( 24n +'5_+4n—4>ﬁ
+(n3—10n2+21n+69_ 3 *1_§_E>
4n 2n—2 25 b5n
+1§ N 3n 6n* — 60n® + 176n* + 123n — 36
25 ' 4n—4 24n2
=0=F(J).

_ It follows from Lemma A that for any n > 6 and A € Q,, the equality
F4(A) = 0 occurs if and only if A = J,,. The proof is complete.

For the proof of the inequality (13) for a € [0.43; 1] the following lemma,
which is verified by straightforward computations (see also [17], for exam-
ple), will be useful.
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LEMMA B. If X is an arbitrary n-square matriz and s is a scalar, then

nk

: V)' n-v)’ k
or(sJn + X) :Z <k»l/) Vo (X) + sFop(Tn). (26)

r=1
In particular,

(n-1)

oa(sdp + X) = 02(X) +

Ug(SJn +X) = O’3(X) + (n — 2)2

soa(X)

(n—1)*(n —2)?

S (X) + Sas(), (28)
and
ga(sTn + X) = o4(X) + (n— 3)280.3()() + (li%%(;__i)is%g(X)
+(n— 1)2(n—2)2(n—3)28301(X) +S4U4(Jn)- (29)

6n3

Using (29) with n = 5, we have for any A € Q5

a(l — a)Fu(A)
= aoy(Js) + (1 — a)oa(A) —og (ads + (1 — ) A)
= a(l — a)(e® — 30+ 3)04(4) — 2a(1 — @)’03(A)

- 28a%(1 - a)?03(A) — Lol —a) + La(l - 7).

Since for @ = 1 the inequality {13) becomes an equality, it is sufficient

to consider a < 1. Using the Holens-Dokovié inequality for k = 4, n = 5,
we get the following estimate for F,,(A):

-30% + 50 —1

Fa(A) > :

o3(A) — Ba(l — a)or(A) + 2 (1 + a - 3a?).

Now, using (22) and (23), one has

Fo(A) > 2(~3a? +5a—1)za“

3a? +7a -5 s 3a? —4la+19
R D DL 150 '
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Since the coefficient of 3 a3. is nonnegative for o € [0.43, 1], we are able to
use the following inequality (see (13) of [10]), which is valid for (a;;)7;-; €
Q.

2

n n
Za?j Sza?ja i=1,...,n. (30)
=1 j=1

Hence,

2
5 5
Z 2(—3a? +5a—1 Z 3a +T7a—5

i=1 j=1

+ 3a? —- 4la + 19
150 ’

If & € [0.43, 1], then the function

2(-3c2+5a-1) , 3a®+Ta- 5

f=) = 15 Y TR

is increasing on [1/5, +00), and therefore f(z) > f(3) for all z > ¢. To-
gether with the estimate E?=1 afj > %, 1 = 1,...,5, which follows from
Lemma A, this implies

2 9 3al+7a -5 3a?-4la+19
—(=30° +ba—1)+ 50 + 150 =0

>
with equality if and only if A = Js. The proof of Theorem 2 is now
complete. u

Proof of Theorem 3. The proof is based on Lemma B and the following
result of Marcus and Minc [17].

LemMA C [17].

(i) If S is a real n-square matriz each of whose row and column sums
is 0, then 02(S) = ||S||2/2 > 0 with equality if and only if S = 0.

(ii) If A € Q, is normal and such that all eigenvalues of A lie in the
sector [—m/2k, w/2k] of the complex plane, then 01(A—J,) =0 and
o(a—Jp) >0,v=2,...,k. In the case v = 2 equality can occur if
and only if A= J,.
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Lemma C together with (26) yields the inequalities

0o (Jp) + (1 — a)ok(A) — ok (adn + (1 — @) A)
= aok(Jn) + (1 — @)op(Jn + (A = Jp)) — ok (Jn + (1 = ) (4 = Jp))

2
%ﬁ%ﬂ<2:§)au—awa—LJ

k 2
S E (7YY ol -0 e - 1)

(k—2)! [n-2\°
= gnk—z) k—9 a(l—a)llA—Jnllz,
which complete the proof of Theorem 3. ]
4. REMARKS
1

The following conjecture of Wang is known to be true for n = 3 (Wang
[21]) and n = 4 (Chang [2]).

CONJECTURE (Wang [21]). The inequality

holds for all A € Q,,.
We propose the following generalization.

CONJECTURE 2. Forall A€ Q, and k =2,...,n the inequality

<an+A
0’ ——
n+1

) <or(A)
holds.

Conjecture 2 is clearly weaker than the Holens-Dokovié¢ conjecture and
is true for k& < 4. This follows from Theorem 1 for ¥ = 2 and for & = 3,
n > 4, from Theorem 2 for k = 4, n > 5, from Wang [21] for k = n = 3,
and from Chang [2] for £ = n = 4. Also, Theorem 3 (see also [15]) implies
that Conjecture 2 is valid for normal A € £,, whose eigenvalues all lie in
the sector [—m/2k, 7/2k] of the complex plane.
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2.

Using (22) and (23) as in the proof of Theorem 1, one can show that
the function o3(A) — s(n)oz(A) is convex on Q,, n > 3,if s(n) <n—-4.In
particular, 03(A4) — [(n — 2)2/3n|o2(A) is convex on Q, for n > 5.

3.

Even though the permanent function is not convex on ,, n > 3,
there is hope that it is convex on some subset(s) of ,. In fact, this is
the case for Qg C Q3, where Q2 denotes the set of all matrices in Q,
with zero main diagonal. Indeed, if A € 3, then a;; = ax = azgz = 0,
Q12 =G93 = a3y = T, and a13 = a1 = azz =1 —1x,0 <z <1, and there-
fore per(A) = 23 a3, — 1 > a2 +5 = 322 -3z+1. Since f(z) = 32% -3z +1
is a convex function, convexity of per(A4) on Qf follows.

4.
We propose a different (short) proof of the following lemma, which is
the main auxiliary result in [8].

LEMMA (Lemma 3 of (8]). For any A € Qs, f4(1/2) = 202(A — J3) +
3per(A — J3) > 0, with equality if and only if either A = J3 or A is a
permutation of (3J3 — I3)/2.

Proof. Using (27) and (28) with s = —~1, n = 3, we write

4(3) = 2 [02(4) — 301(A) + 02(J3)]
+3 [03(A) - %0'2(14) + %U](A) — 0'3(J3)]
= 303(A) - %UQ(A) 2 0.
The last inequality is the Holens-Dokovié¢ conjecture for £ = n = 3, which

was proved by Dokovié [3]. It was also shown in [3] that equality is attained
if and only if A = J3 or A is a permutation of (3J3 — I3)/2. [ ]
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