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ABSTRACT 

Let & denote the set of all n x n doubly stochastic matrices, and let ok(A) be 
the sum of all subpermanents of order Ic of matrix A. We prove that az(A) and 
OS(A) are convex on 0,, for n 2 2 and n 2 4, respectively, and also conjecture 
the following: For every k 2 3 there exists nk 2 k + 1 such that the inequality 
gk ((YJ% + (1 - cx)A) 5 cwk(Jn) + (1 - cr)gk(A) holds for all o E [0, l] and all 
A E C12, with n 2 nk, where J, = (l/n)c,__1 E R,. It is shown that this conjecture 
is true for k 5 4 with n3 = 4 and n4 = 6. 

1. INTRODUCTION 

Let R, denote the set of all n x n doubly stochastic matrices, 1, be the 
n x n identity matrix, and J, = (l/n)ljzl E R,, the matrix each of whose 
entries equals l/n. We also denote by Q(A) the sum of all subpermanents 
of A of order k-, 1 2 Ic 2 n. In particular, gn(A) = per(A), and al(A) = n 
if A E R,. 

It is well known that the permanent function is not convex on R, for 
n 2 3, and that it is convex on & (see [I] and [18], for example). However, 
some weaker relations than those for convex functions have been estab- 
lished. For example, Brualdi and Newman [l] showed that for all cy E [0, l] 
and A E R, 

per(oJ?% + (1 - CY)A) 5 LY + (1 - cr) per(A). (1) 

Wang [22] called a matrix B E R, a star if it satisfies the inequality 

per(cuB + (1 - cx)A) 5 aper + (1 - cry) per(A) (2) 

for all Q: E [0, l] and A E R,, and conjectured that the only stars for n > 3 
are permutation matrices. This conjecture remains unsettled. 
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The following characterization of stars is due to Brualdi and Newman 
[l]: A matrix B E R, is a star if and only if the inequality 

2 b, per(Aij) I per(B) + (n - 1) per(A) 
i,j=l 

(3) 

holds for all A E St,, where A, denotes the (n - 1) x (n - 1) matrix 
obtained by deleting the ith row and jth column of A. (In fact, it was 
shown in [l] that in this characterization the inequality (3) is necessary, 
and that it is sufficient with the assumption that equality in (3) occurs 
only if A = B. However, this assumption can be removed. For further 
discussions see Section 2.) 

Brualdi and Newman [l] also showed that J3 is not a star. Wang [22] 
noted that letting A = (I, + P,)/2 [ w h ere P,, is the full-cycle permutation 
matrix corresponding to the full cycle (12. . . n)] in (3) shows that if B is a 
star, then per(B) 2 21Vn. Hence, J,, is not a star for n > 3. 

Lih and Wang [ll] conjectured that 

per(crJ, + (1 - a)A) 5 crper(J,) + (1 - a)per(A) (4) 

for Q E [i , l] and A E R,. They proved (4) for n = 3, and also in the 
particular case (Y = i and n = 4 (see also [4]). 

Hwang [8] conjectured that the permanent function is convex on the 
straight line segment joining J, and (J, + A)/2 for all A E R, and proved 
it for n = 3 (see also Remark 4 in Section 4). 

It is fairly natural to inquire whether (Tk has properties similar to (l)- 
(4) of the permanent function. Recently, Malek (151 proved that if A E R,, 
then a2(aJn + (1 - cr)A) 2 cw~(J,) + (1 - cr)a~(A) for o E [0, l], and 
as(aJn + (1 - cr)A) 5 cw3(Jn) + (1 - cx)~(A) for (Y E [i, 11. Using a 
method developed by Marcus and Mint [17], he also showed the validity of 
the inequality ak(ct!J, + (1 - a)A) 5 mYk(Jn) + (1 - LY)Q(A) for normal 
A E R, with all eigenvalues in the sector [-7r/2k, 7r/21c] of the complex 
plane. 

A further discussion of the properties of ck is the main subject of this 
note. 

2. PROBLEMS, CONJECTURES, RESULTS 

Following Wang, we introduce the following convention. Let F be a func- 
tion defined on 0,. We call a matrix B E iI,, an F-star if it satisfies the 
inequality 

F(crB + (1 - cz)A) 5 (YF(B) + (1 - a)F(A) (5) 
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for all (Y E [0, l] and A E R,. For example, a per-star is simply a star in 
the sense of the definition (2). Clearly, a function F is convex on R, if and 
only if every matrix in f12, is an F-star. Below we consider the cases when 
F=ak, k=2 ,..., n. 

In view of the results quoted in Section 1 the following questions natu- 
rally arise: Is it true that for every k = 2, , n - 1 the sum of all subper- 
manents of order k, uk, is a convex function on a,? If not, then what can 
we say about flk-stars? 

Using the ideas of Brualdi and Newman [I], it is not difficult to show 
the validity of the following characterization of ok-stars similar to (3): A 
matrix B E 0, is a Q-star if and only if 

2 bijc%-1(&j) 5 ok(B) + (k - 1)0/c(A) 
i,j=l 

(6) 

for all A E s2,. 
Indeed, this characterization immediately follows from the trivial 

observation 

(9 E @[O, El, g(O) = 0 and g(a) > 0, Q E [O, ~1) * (g’(0) > 0) , (7) 

the identity 

$ flk(aB + (1 - a)A) = 2 bijak-l(Aij) - kak(A), (8) 
cr=o z,j=l 

and the following lemma, which is a stronger version of Lemma 1 of [l] for 
differentiable functions. 

LEMMA 1. Let C be a nonempty convex set of a vector space, f be a 
real-valued differentiable function defined over C, and x be a fixed element 
of c. If 

f(x)-f(y)-$f(al:+(l-a)y) 2 0 
cr=o 

for all y E C, then the inequality 

f (ax + (1 - Q)Y) i d(Z) + (1 - a)f (Y) (10) 

is valid for all cy E [0, l] and all y in C. 

Proof. Suppose (10) is not satisfied for some y in C and some as E (0, l), 
and consider the line segment between y and x. Denoting for simplicity 
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AU(a) := f(oz + (1 - o)Y) and w(o) := aA, + (1 - cz)A,(O) - A,(o), 
thus, we have w(crs) < 0 and w(O) = 0. Since w(o) is a continuous function, 
then there exists cyi E [0, (~0) such that w(ai) = 0 and w(o) < 0 for all 
cy E (cY~, cys]. Now, using the mean-value theorem and the fact that W(Q) 
is differentiable, we conclude that there is (~2 E (oi, cyc) such that 

w’((Y2) = w(ao) - 4%) 4Qo) =-. 
a0 - 01 Qo - 01 

Let z := ~22 + (1 - cys)Y E C; then (9) implies 

(11) 

Also, since 

A,(a) = f(cu + (1 - o)z) = f([o + a2(1 -a)]% + (1 - a)(1 - os)Y) 

= AJcx + a2 - cwz), 

then 

& A=(Q) = $ Ar,(‘u + crp - QI(YZ) = A&(a,)(l - ~2). 
a=0 cr=o 

Therefore, using (ll), (12), and the last equality, we have 

0 I f(x) - f(z) - +2)(1- a2) 

= A,(l) - 4,(“2) - A&(az)(l - (~2) 

= A,(l) - &,(a~) - (1 - a2) A,(l) - A,(O) - s) 

= ~24,(1) + (1 - a,)&,(O) - A&2) + $=$~(a,,) 

= w(Q12) + 
1 - cY2 

-w(cQ) < 0. 
oo - a1 

The contradiction obtained verifies the validity of the lemma. ??

In this paper we investigate the case k _< 3 and obtain some partial 
results for k > 3 and B = J,. Namely, the following theorems are proved. 

THEOREMS (k = 2 and3). The functions ~72 (A) and 0s (A) are conwex 
on C12, for n 2 2 and n 1 4, respectively. 
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THEOREM 2 (Ic = 4). 

(i) For any n 2 6 the matrix J,, is a ad-star. 
(ii) For n = 5 the following inequality is valid for cy E [0.43, l] and all 

A E 0,: 

a4(c~Jn + (1 - CX)A) I aad + (1 - CY)CI(A). (13) 

Recall that Jn is not a as-star (ad-star) for n = 3 (n = 4), and therefore 
these cases are excluded from the assertions of the theorems. Theorems 1 
and 2 give some support to the following conjecture (the case k = 2 is not 
considered because of its triviality). 

CONJECTURE 1. For every k > 3 there exists nk > k + 1 such that the 
inequality 

ck (cuJ, + (1 - CY)A) 5 aak(Jn) + (1 - a)c%(A) (14) 

holds for all CY E [O, l] and all A E R, with n 2 nk. 
In other words, the matrix J, is a ak-star for suficiently large n. 

Using the characterization (6) and the identity 

2 Ok_i(&j) = (n - k + l)‘ak_i(A), 
i,j=l 

A E R,, (15) 

we can rewrite Conjecture 1 in the following equivalent form: 

CONJECTURE 1’. For every k > 3 there exists nk 2 k + 1 such that for 
all A E R,, n 2 nk, the following inequality holds: 

(k - l)a(A) + ok(k) 2 (n - ’ + 1)2uk_1(A). 
n (16) 

It follows from Theorems 1 and 2 that the conjecture is true for k = 3 
(n3 = 4) and k = 4 ( 724 = 6). The question about the validity of (14) and 
(16) for k = 4, n = 5 and k 2 5 remains open. 

Conjecture 1’ is a strengthening of the following well-known Holens- 
Dokovic conjecture in the case n > nl, > k + 1. 

CONJECTURE (Holens [7] and Dokovic [3]). If A E !Ct2, and 2 < k < n, 
then 

kg/z(A) 2 (n - Ic + %-1(A) 
n (17) 

with equality in the case 2 5 k < n - 1 only if A = J,. 
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Indeed, (17) immediately follows from (16) and the following Tverberg- 
Friedland inequality (see [5] and [20]): 

if A E R, and A # Jn, then ok(A) > ak(Jlz), 2 5 Ic I n. (18) 

The Holens-DokoviC conjecture is known to be true for k < 3 [3] and 
k = 4, n 2 5 [lo]. It is equivalent to the assertion that the function 
ok(0.L + (1 - @A) is decreasing in the interval [0, 11. This assertion is 
known as the monotonicity conjecture and was partially resolved for some 
special classes of matrices (see [6, 9, 12, 16, 181, and [19], for example). 

It follows from the above-mentioned result of Malek [15] that Conjecture 
1 (1’) is valid for normal matrices in 0, all whose eigenvalues lie in the 
sector [-x/2k, x/2k] of the complex plane. In fact, the following stronger 
result can be easily proved (note that we do not require the condition 
k 5 n - 1). 

THEOREM 3. Let A E i12, be normal and 2 5 k 2 n. If all eigenvalues 
of A lie in the sector [-n/2k, 7r/2k] of the complex plane, then the following 
inequality holds for all a E [0, 11: 

og.k(J,J + (1 - a)mc(A) - a/c(cxJn + (1 - a)A) 

(19) 

Using (7), (8), (i5), and (19), one immediately gets. 

COROLLARY 1. If A satisfies the hypotheses of Theorem 3, then the 
following inequality holds: 

COROLLARY 2. If A satisfies the hypotheses of Theorem 3 and A # J,, 
then 

(k - l)gk(A) + arc(&) > (n - Ic + 1)2ak_l(A). 
n (21) 

Finally, we remark that it is straightforward to check that the function 

Fk(A) := (k - l)uk(A) - 
(n - k + 1)2 

n %-l(A) + a(&) 
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has a strict local minimum at J,. Thus, it follows from Theorem 3 of [lo] 
that if all entries of an Fk-minimizing matrix A on s1, are positive, then 
A = J,. 

Section 3 contains proofs of Theorems 1-3. Some relevant remarks con- 
cerning Conjecture 1 (1’) are given in Section 4. 

3. PROOFS 

Throughout this section we let A = (a~)& E %, and c := )$,. 
The following formulae for 02, ~3, and cr4 (see [3] and [lo]) are used: 

~a(A)=;xa;~+ 
n(n - 2) 

2 , (22) 
- 6n -I- 10) 

u3(A) = ; c a$ + 9 c a$ -t n(n2 6 , (23) 

and 

u4(A) = ;~a$+;(n-G)~a$ 

+ 
n2 - 10n + 28 

4 

+&(n3-12n2+52n-84). (24) 

The estimate in the following lemma is well known as the Jensen in- 
equality (see Lemma 1 of [13], for example), and will be used in the proof 
of Theorem 2. 

LEMMA ii. Let x1, x2,. . ,x, be nonnegative numbers, and let 
Cz”=, Xi = p. If S > 1, then 

-gx: 2 -& 
i=l 

(25) 

Equality holds if and only if Xi = p/m, i = 1,. . . , m. 

Proof of Theorem 1. The assertion of Theorem 1 immediately follows 
from (22) and (23), the fact that the sum of convex functions is also convex, 
and the observation that f(x) = xs is convex on [0, l] for any s 2 2. ??
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Proof of Theorem 2. The proof of Theorem 2 is rather straightforward, 
but computationally involved. First, we show that the inequality (16) is 
valid for Ic = 4 and n 2 6. Using exactly the same considerations as in 
the proof of the Holens-DokoviC conjecture for lc = 4, n > 5 in [lo] (i.e., 
applying the inequalities (16), (18), (19), and (17) from [lo]) we obtain the 
following estimate for every real r: 

&(A) = 304(A) - voz(A) + 04(k) 

> 32n2 - 273n - 36 
- 24n 

+ 
n3 - 10n2 + 21n + 69 

4n 
-&-;(r2+;)]ca: 

3n 
+;rs + - - 

6n4 - 60n3 + 176n2 + 123n - 36 
4n - 4 24n2 

Now we choose r = 2; then the coefficients of c a$ and c a$ are equal 
to 

and 

32n2 - 273n - 36 
24n 

n3 - 10n2+21n+69 3 18 18 ------ 
4n 2n-2 25 5n’ 

respectively. Since they are positive for n 2 6, we can use the inequality 
(25) for s = 2 and s = 3. Hence, 

F4(A) 2 
32n2 - 273n - 36 

24n 

( n3-10n2+21n+69 3 18 18 
+ _----- 

+g + _&I”” 6n4 

2n - 2 25 5n > 
- 60n3 + 176n2 + 123n - 36 

24n2 
= 0 = F4(Jn). 

It follows from Lemma A that for any n > 6 and A E 0, the equality 
F4(A) = 0 occurs if and only if A = J,. The proof is complete. 

For the proof of the inequality (13) for cy E [0.43, l] the following lemma, 
which is verified by straightforward computations (see also [17], for exam- 
ple), will be useful. 
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LEMMA B. If X is an arbitrary n-square matrix and s is a scalar, then 

Ic (k-u)! 
ak(& + x) = c nk_v 

v=l 

2 

&%,(X) + skCQ(&). (26) 

In particular, 

C72(sJ, + X) = 02(X) + 
(n - 1)2 
-------Al + s2~2(Jrl), 

n (27) 

a3(sJn + X) = Q(X) + ~ (n - 2)2 SD2 (X) 
n 

+ (n - l)“(n - 2)2 

2n2 
s2a1(X) + S3Q(&), (28) 

and 

(n - 3)2 
(T~(SCJ, + X) = 04(X) + ___ sa7(X) + (n - 2)2(n - 3)2s202(x) 

n ~ 2n2 

+ (n - U2(n - 2)“(n - 3)2s”gl(x) + s4g4(J 

6n,3 
) 

n (29) 

Using (29) with n = 5, we have for any A E 05 

41- Q)F,(A) 

:= CYCT~(&) + (1 - CY)CT~(A) - CT~ (CL& + (1 - ci)A) 

= cy(1 - cy)(c? - 30 + 3)a4(A) - $p(l - 4303(A) 

- $a2(1 - ~y)~a~(A) - !$“(l - cy) + $x(1 - cy3). 

Since for (IY = 1 the inequality (13) becomes an equality, it is sufficient 
to consider (Y < 1. Using the Holens-Dokovii: inequality for k = 4, n = 5. 
we get the following estimate for F,(A): 

F,(A) L 
-3cu2 + 5Q - 1 

5 
g3(A) - $r(l - ct)c72(A) + %(I + a - 3a”). 

Now, using (22) and (23), one has 

J’,(A) 2 
2(-3a2 + 50 - 1) 

15 x4 

+ 
3cY2 + 7a - 5 5. Caz + 3a2 -;ir + lg 
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Since the coefficient of c a$ is nonnegative for CY E [0.43, 11, we are able to 
use the following inequality (see (13) of [lo]), which is valid for (~ij)$=~ E 
0,: 

2 

L eafj, i= l,...,n. (30) 
j=l 

Hence, 

If (I E [0.43, 11, then the function 

f(x) = 
2(-3cu2+5a-1)x2+ 3a2+7~-5 

15 50 x 

is increasing on [l/5, +oo), and therefore f(x) > f(i) for all x > $. To- 
gether with the estimate C,“=, u$ 2 i, i = 1,. . . ,5, which follows from 
Lemma A, this implies 

;(-3a2+5cu-l)+ 3a2 + 7cY - 5 3a2 - F,(A) 41cE + 19 2 + = 
5. 150 

o 

with equality if and only if A = J5. The proof of Theorem 2 is now 
complete. W 

Proof of Theorem S. The proof is based on Lemma B and the following 
result of Marcus and Mint [17]. 

LEMMA C [17]. 

(9 

(ii) 

If S is a real n-square matrix each of whose row and column sums 
is 0, then u2(S) = ljS112/2 2 0 with equality if and only if S = 0. 
If A E 0, is normal and such that all eigenvalues of A lie in the 
sector [-T/~/C, n/2k] of th e complex plane, then al(A - Jn) = 0 and 
~,(a - Jn) > 0, Y = 2,. . . , k. In the case Y = 2 equality can occur if 
and only if A = J,. 
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Lemma C together with (26) yields the inequalities 

oak(&) + (1 - cr)ak(A) - Q (oJ, + (I- o)A) 

= oak(&) + (1 - a)~(& + (A - Jn)) - ffk (& + (1 - a)(A - Jn)) 

a(1 - cr)a2(A - Jn) 

which complete the proof of Theorem 3. ??

4. REMARKS 

1. 
The following conjecture of Wang is known to be true for n = 3 (Wang 

[21]) and n = 4 (Chang [2]). 

CONJECTURE (Wang [21]). The inequality 

per ( n:lF) 5 per(A) 

holds for all A E Cl,. 

We propose the following generalization. 

CONJECTURE 2. For all A E R, and k = 2,. . , n the inequality 

CTk ( n:++;) i:%(A) 

holds. 

Conjecture 2 is clearly weaker than the Holens-DokoviC conjecture and 
is true for k 5 4. This follows from Theorem 1 for k = 2 and for k = 3, 
n 2 4, from Theorem 2 for k = 4, n 1 5, from Wang [21] for k = n = 3, 
and from Chang [2] for k = n = 4. Also, Theorem 3 (see also (151) implies 
that Conjecture 2 is valid for normal A E 0, whose eigenvalues all lie in 
the sector [-vr/2k, r/2k] of the complex plane. 
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2. 
Using (22) and (23) as in the proof of Theorem 1, one can show that 

the function 83(A) - s(n)az(A) is convex on 0,, n > 3, if s(n) 5 n - 4. In 
particular, OS(A) - [(n. - 2)‘/3n]cz(A) is convex on 0, for n 2 5. 

3. 
Even though the permanent function is not convex on s1,, n 2 3, 

there is hope that it is convex on some subset(s) of 0,. In fact, this is 
the case for @ C !&, where 52: denotes the set of all matrices in R, 
with zero main diagonal. Indeed, if A E slg, then ali = uzz = ass = 0, 
ai2 = azs = usi = Z, and uis = a21 = u32 = 1 - x, 0 2 x I 1, and there- 
foreper = $Ca$-~Cc$+~ =3x2-3x+l.Sincef(x) =3x2-3x+1 
is a convex function, convexity of per(A) on @ follows. 

4. 
We propose a different (short) proof of the following lemma, which is 

the main auxiliary result in [8]. 

LEMMA (Lemma 3 of [8]). F or any A E R3, fi(l/Z) = $az(A - 53) + 
3per(A - J3) 2 0, with equality if and only if either A = J3 or A is a 
permutation of (3J3 - 13)/2. 

Proof. Using (27) and (28) with s = -1, n = 3, we write 

f$(;, = 8 [aa - $1(A) + az(J3)] 

+ 3 [as(A) - $2(A) + &(A) - as(J3)] 

= 3a3(A) - ia2(A) 2 0. 

The last inequality is the Holens-DokoviC conjecture for Ic = n = 3, which 
was proved by DokoviC [3]. It was also shown in [3] that equality is attained 
if and only if A = J3 or A is a permutation of (3Js - &)/2. ??
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