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Abstract

Let Mk be the set of all k-monotone functions on (−1, 1), i.e., those functions f for which
the kth divided differences [x0, . . . , xk; f ] are nonnegative for all choices of (k + 1) distinct
points x0, . . . , xk in (−1, 1). We obtain estimates (which are exact in a certain sense) of kth
Ditzian–Totik Lq-moduli of smoothness of functions in Mk � Lp(−1, 1), where 1 � q <

p � ∞, and discuss several applications of these estimates.

1. Introduction

Given an interval (closed, open or half-open) I , a function f : I → R is said to be k-
monotone on I if its kth divided differences [x0, . . . , xk; f ] := ∑k

i=0 f (xi)/w
′(xi), where

w(x) := ∏k
i=0(x − xi), are nonnegative for all selections of k + 1 distinct points x0, . . . , xk

in I . We denote the class of all such functions by �k(I ), and note that �1 and �2 are convex
cones of all monotone and convex functions, respectively. As usual, Lp(J ), 1 � p � ∞,
denotes the space of all measurable functions f on J such that ‖ f ‖Lp(J ) < ∞, where
‖ f ‖Lp(J ) := (

∫
J | f (x)|p dx)1/p if p < ∞, and ‖ f ‖L∞(J ) := ess supx∈J | f (x)| (if f is con-

tinuous on [a, b], then we also use the notation ‖ f ‖C[a,b] := max x∈[a,b] | f (x)|). For sim-
plicity, we write Lp := Lp[−1, 1] and ‖ f ‖p := ‖ f ‖

Lp[−1,1]. It needs to be emphasized
that the classes �k(I ) essentially depend on whether or not the interval I is closed. For
example, convex functions in the class �2(0, 1] do not have to be defined at 0 and hence
have to be neither bounded nor integrable on (0, 1]. ( f (x) = 1/x is an example of one such
function.) At the same time, the class �2[0, 1] consists of all functions f which are con-
vex and continuous on (0, 1), defined at 0 and 1, and such that lim x→0+ f (x) � f (0) and
lim x→1− f (x) � f (1). Therefore, �2[0, 1] consists only of bounded functions continuous
everywhere put perhaps the endpoints of [0, 1] and hence belonging to all Lp[0, 1] spaces.
Clearly, �k(I ) ⊂ �k(I ) where I is the closure of I . All our results in this paper are given
for the (larger) function classes Mk(I ) := �k(int (I )), where int (S) denotes the interior of
a set S. Note that, with this notation, Mk := Mk[−1, 1] = Mk(−1, 1), etc.

Functions from Mk(I ) enjoy various smoothness properties. For example (see [11, 12]),
if f : [a, b] 	→ R is k-monotone for some k � 2, then, for all j � k − 2, f ( j)(x) exists
on (a, b) and is (k − j)-monotone. In particular, f (k−2)(x) exists, is convex, and therefore
satisfies a Lipschitz condition on any closed interval [ξ, ζ ] contained in (a, b), is abso-
lutely continuous on [ξ, ζ ], is continuous on (a, b), and has left and right (nondecreasing)
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derivatives, f (k−1)
− (x) and f (k−1)

+ (x) on (a, b). Moreover, the set E where f (k−1)(x) fails to
exist is countable, and f (k−1) is continuous on (a, b) \ E .

For k ∈ N, the kth (classical) modulus of smoothness of a function f ∈ Lp(J ) is defined
by

ωk( f, δ, J )p := sup
0<h�δ

‖�k
h( f, ·, J )‖Lp(J ),

where

�k
h( f, x, J ) :=

⎧⎪⎨
⎪⎩

k∑
i=0

(
k

i

)
(−1)k−i f (x − kh/2 + ih), if x ± kh/2 ∈ J,

0, otherwise,

is the kth symmetric difference.
It is rather straightforward to show that, if 1 � q < p � ∞ and a function f ∈ Lp[a, b]

has s < ∞ changes of monotonicity (note that k-monotone functions can have at most k −1
points of monotonicity changes), then

ω1( f, δ, [a, b])q � cδ1/q−1/p ‖ f ‖
Lp[a,b] (1·1)

with a constant c depending on s. (Since ωk+1( f, δ, J )p � 2max {1,1/p}ωk( f, δ, J )p, k ∈ N,
the same inequality holds for all kth moduli.) The idea of the proof is to prove this in-
equality for any monotone function first (using considerations similar to what we use be-
low to estimate Ditzian-Totik moduli of functions in M1), represent [a, b] as a union of
intervals such that f is monotone on each of them, and finally use Hölder’s inequality
‖ f ‖

Lq (I ) � |I |1/q−1/p ‖ f ‖
Lp(I ), q � p � ∞, to obtain estimates near points of monotonicity

changes (we omit details). Also, note that the constant c in (1·1) cannot be made independ-
ent of s, and so (1·1) may no longer be valid for an arbitrary function f from Lp[a, b]. For
example, consider fβ(x) := sin (πβx), 0 � x � 1, where β ∈ N. Clearly, fβ has β changes
of monotonicity, ‖ fβ‖Lp[0,1] � 1, and assuming that δ � 1/2, we have

∥∥�1
h( f, x)

∥∥q

Lq [0,1] =
∫ 1−h/2

h/2
|sin πβ(x + h/2) − sin πβ(x − h/2)|q dx

= 2q |sin (πβh/2)|q
∫ 1−h/2

h/2
|cos (πβx)|q dx

∼ |sin (πβh/2)|q .

Hence,

ω1( f, δ, [0, 1])q ∼ sup
0<h�δ

|sin (πβh/2)| ∼ min {1, βδ}.

In particular, if δ := 1/β and β → ∞, then δ−1/q+1/pω1( fβ, δ, [0, 1])q → ∞, and so cannot
be bounded by ‖ fβ‖Lp[0,1].

We also remark that the power of δ in (1·1) cannot be increased. Indeed, for p < ∞,
fα := x−α, 0 < α < 1/p, is monotone and ‖ fα‖Lp[0,1] ∼ c(α, p). At the same time,
ω1( fα, δ, [0, 1])q � cδ1/q−α , and so if (1·1) were valid with δ1/q−1/p+ε , ε > 0, one could
choose any α � 1/p − ε/2 in order to obtain a contradiction.

Uniform estimates of polynomial approximation in terms of classical moduli of smooth-
ness are rather imperfect since, as is rather well known, the rate of approximation can be
improved near the endpoints of an interval (see e.g. [4]). If approximation in the uniform
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norm is investigated, pointwise estimates yield constructive characterization of the smooth-
ness classes via approximation orders achieved by algebraic polynomials. If one desires to
obtain exact uniform estimates (e.g. for approximation in the Lp norm, p < ∞), then one
can no longer use the classical moduli of smoothness, and the new measure of smoothness
is needed. Different approaches are possible (see e.g. [3, chapter 13] for discussions and
comparisons), but the one that has received most attention in recent years is the theory de-
veloped by Ditzian and Totik [3] (there is also Ivanov’s τ -modulus ([5]) which is equivalent
to the Ditzian–Totik modulus for some values of parameters which we do not discuss in this
paper).

The kth Ditzian–Totik modulus of f ∈ Lp is

ω
ϕ

k ( f, t)p := sup
0<h�t

∥∥�k
hϕ(·)( f, ·)∥∥

p
,

where ϕ(x) := √
1 − x2 and �k

μ( f, x) := �k
μ( f, x, [−1, 1]).

The following theorem is one of our main results.

THEOREM 1·1. Let k ∈ N, 1 � q < p � ∞, and f ∈ Mk � Lp. Then

ω
ϕ

k ( f, δ)q � cϒδ(k, q, p) ‖ f ‖p, (1·2)

where

ϒδ(k, q, p) :=

⎧⎪⎪⎨
⎪⎪⎩

δ2/q−2/p, if k � 2,
δ2/q−2/p, if k = 1 and p < 2q,
(δ

√| ln (δ)|)1/q, if k = 1 and p = 2q,
δ1/q, if k = 1 and p > 2q.

Note that the estimates in Theorem 1·1 are exact in the sense that the powers of δ in
(1·2) cannot be increased. In the cases k � 2, and k = 1 and 2q > p, this follows, for
example, from a simple observation (see also [3, page 35]) that, if fε(x) := (1 + x)ε−1/p,
ε > 0, ε − 1/p � N0, then f or − f is k-monotone, ‖ fε‖Lp[0,1] ∼ c(ε, p), and ω

ϕ

k ( fε, δ)q �
cδmin {k,2/q−2/p+2ε} if k � 2/q − 2/p + 2ε. In the case k = 1 and 2q � p, it is sufficient
to notice that ω

ϕ

1 (sign(x), δ)q ∼ δ1/q . In fact, ω
ϕ

k (sign(x), δ)q ∼ δ1/q , for all k ∈ N, which
shows, in particular, that Theorem 1·1 is no longer true in general if the assumption that
f ∈ Mk is removed. (Note that a finer analysis and other counterexamples are possible.)

Perhaps Theorem 1·1 would not be too interesting by itself, and our main motivation in
considering it and writing this note is several applications which we discuss in Section 2. In
particular, as we discuss in Section 2, Theorem 1·1 provides a new method of proving some
known as well as several new results.

2. Applications

1. Recall the following well-known result which holds for all (and not only k-monotone)
functions in Lq (see [3, theorem 7·2·1]): for k ∈ N and 1 � q � ∞, there exists a constant
c which depends only on k such that, for any f ∈ Lq and n � k − 1, there is a polynomial
rn ∈ �n such that

‖ f − rn‖q � cωϕ

k ( f, n−1)q . (2·1)
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Now, let 1 � q < p � ∞, and let f ∈ Lp � Mk , k ∈ N, be such that f (m) ∈ Lp with
0 � m � k − 1. Then, using Theorem 1·1 and the fact that f (m) ∈ Mk−m , we conclude that
for any n � k − 1, there exists a polynomial rn of degree � n such that

‖ f − rn‖q � cωϕ

k ( f, n−1)q � cn−mω
ϕ

k−m

(
f (m), n−1

)
q

� cn−mϒ1/n(k − m, q, p)
∥∥ f (m)

∥∥
p
.

In other words,

‖ f − rn‖q � c
∥∥ f (m)

∥∥
p

×
⎧⎨
⎩

n−m−2/q+2/p, if m � k − 2, or m = k − 1 and p < 2q,
n−m−1/q | ln n|1/(2q), if m = k − 1 and p = 2q,
n−m−1/q, m = k − 1 and p > 2q.

(2·2)

Remark 2·1. If k = 1 or k = 2, then the polynomial rn in (2·2) may be chosen to be from
Mk . This immediately follows (see [9, 13, 14]) from the fact that, for k = 1 or k = 2, any
f ∈ Mk � Lq , 1 � q � ∞, and n � k − 1, there exists a polynomial rn ∈ �n � Mk such
that ‖ f − rn‖q � cωϕ

k ( f, n−1)q , where c is an absolute constant.

Now, recalling a consequence of Hölder’s inequality ‖g‖q � ‖g‖α
p ‖g‖1−α

1 , α :=
p(q − 1)/q(p − 1), 1 � q < p � ∞, and using Theorem 1·1 and (2·1) we have the
following estimates for f ∈ Mk such that f (m) ∈ Lp, 0 � m � k − 1:

‖ f − rn‖q � cωϕ

k ( f, n−1)q � cn−mω
ϕ

k−m

(
f (m), n−1

)
q

� cn−m sup
0<h�n−1

∥∥�k−m
hϕ(·)

(
f (m), ·)∥∥α

p

∥∥�k−m
hϕ(·)

(
f (m), ·)∥∥1−α

1

� cn−m ω
ϕ

k−m

(
f (m), n−1

)α

p
ω

ϕ

k−m

(
f (m), n−1

)1−α

1

� cn−m ω
ϕ

k−m

(
f (m), n−1

)α

p
ϒ1/n(k − m, 1, p)1−α

∥∥ f (m)
∥∥1−α

p
. (2·3)

Recalling that

ϒ1/n(k − m, 1, p) =

⎧⎪⎪⎨
⎪⎪⎩

n−2+2/p, if 0 � m � k − 2,
n−2+2/p, if m = k − 1 and p < 2,
n−1

√
ln n, if m = k − 1 and p = 2,

n−1, if m = k − 1 and p > 2,

we have, for 1 < q < p � ∞ and 0 � m � k − 1,

‖ f − rn‖q = o(n−ml(n)), (2·4)

where

l(n) :=
⎧⎨
⎩

n−2/q+2/p, if 0 � m � k − 2, or m = k − 1 and p < 2,
(n−1

√
ln n)2/q−1, if m = k − 1 and p = 2,

n−(p−q)/q(p−1), if m = k − 1 and p > 2.

In particular, for 0 � m � k − 1, p = ∞, and f ∈ Mk such that f (m) ∈ L∞, we have

‖ f − rn‖q = o
(
n−m−min {(k−m)/q,2/q}) , 1 < q < ∞. (2·5)

Additionally, if m = 0, then for f ∈ Mk � L∞, we have

‖ f − rn‖q = o
(
n− min {k/q,2/q}) , 1 < q < ∞. (2·6)



Moduli of smoothness of k-monotone functions 217

If k = 1 or k = 2, then by Remark 2·1, rn in inequalities (2·3)–(2·6) can be chosen to
be from Mk . In the case k = 2, (2·6) is the main result in [10]. Finally, we mention that the
above estimates improve [8, theorem 3].

2. Recently, Konovalov, Leviatan and Maiorov [6] investigated the orders of best approxim-
ation by polynomials and ridge functions of certain classes of k-monotone radial functions1.
They obtained several asymptotically exact estimates. Our Theorem 1·1 yields a different
(and simpler) proof of the upper estimates in [6]. Moreover, we are able to obtain results
for monotone and convex polynomial approximation as an immediate consequence of The-
orem 1·1, some known estimates, and lower estimates in [6]. In order to discuss this further,
we need to introduce some new notation.

Let Mk
Bp denote the intersection of Mk with the unit ball in Lp, i.e., Mk

Bp is the set of
all k-monotone functions f on (−1, 1) such that ‖ f ‖p � 1, and let �n be the space of all
algebraic polynomials of degree � n. Also,

E(Mk
Bp, �n)q := sup

f ∈MkBp

inf
rn∈�n

‖ f − rn‖q

denotes the rate of approximation of the set Mk
Bp by �n . It was shown in [6] that, for

1 � q � p � ∞,

E(Mk
Bp, �n)q �

{
n− min {1/q,2/q−2/p}, if k = 1 and p � 2q,
n−2/q+2/p, if k � 2,

(2·7)

where, for positive sequences (an) and (bn), an � bn means that c1an � bn � c2an for some
positive constants c1 and c2 and all n ∈ N.

The upper estimates in (2·7) now immediately follow from (2·2) with m = 0 (taking into
account that, in the case k = 1 and p � 2q, ϒδ(k, q, p) = δmin {1/q,2/q−2/p}).

Now, let

E(Mk
Bp, �n � Mk)q := sup

f ∈MkBp

inf
rn∈�n�Mk

‖ f − rn‖q

be the rate of approximation of the set Mk
Bp by k-monotone polynomials in �n . Clearly,

E(Mk
Bp, �n)q � E(Mk

Bp, �n � Mk)q .

Therefore, (2·2), the observation after it, and lower estimates in (2·7) immediately imply
that

E(Mk
Bp, �n � Mk)q �

{
n− min {1/q,2/q−2/p}, if k = 1 and p � 2q,
n−2/q+2/p, if k = 2.

Note that, in the case k = 1 and p = 2q, we get

E(M1
Bp, �n � M1)p/2 � cn−2/p(ln n)1/p, n � 2.

3. Auxiliary results and proof of Theorem 1·1
It is convenient to denote

Dα := {x : x ± αϕ(x) ∈ [−1, 1]} =
{

x : |x | � 1 − α2

1 + α2

}
.

Then, �k
hϕ(x)( f, x) = 0 if x � Dkh/2.

1 The author is indebted to the authors of [6] for discussion of their new results.
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LEMMA 3·1. Let 0 < α < 1 and −α � β � α. Then, for any integrable function f , we
have∫

Dα

f (x + βϕ(x)) dx = 1

1 + β2

∫ 1−2α(α−β)/(1+α2)

−1+2α(α+β)/(1+α2)

f (y)

(
1 + βy√

1 − y2 + β2

)
dy.

Proof. The function g(x) = x +βϕ(x) is strictly increasing on Dα, since the only critical
point x0 of g (in the case β � 0) satisfies

x2
0 = 1

1 + β2
� 1

1 + α2
>

1 − α2

1 + α2
>

(
1 − α2

1 + α2

)2

,

and hence x0 � Dα. Now, solving the equation y = x + βϕ(x) we get x = (1 + β2)−1(y −
β
√

1 − y2 + β2), and it remains to change the variable of integration.

The following auxiliary result is interesting in its own right, and is more general than
Theorem 1·1. While we only need the cases k = 1 and k = 2 in Theorem 3·2 in order to
prove Theorem 1·1, the proof for arbitrary k ∈ N is not much longer. However, since it is
somewhat technical we postpone it until the last section.

THEOREM 3·2. Let k ∈ N, f ∈ Mk � L1 and δ � 1/k. If k is even, then

ω
ϕ

k ( f, δ)1 � c(k)(‖ f ‖
L1[−1,−1+k2δ2] + ‖ f ‖

L1[1−k2δ2,1] + δk ‖ f ‖1).

If k is odd, then

ω
ϕ

k ( f, δ)1 � c(k)
( ‖ f ‖

L1[−1,−1+k2δ2] + ‖ f ‖
L1[1−k2δ2,1]

+ sup
0<h�δ

hk
∥∥ f (y)(1 − y2)−k/2

∥∥
L1[−1+k2h2/2,1−k2h2/2]

)
.

The following corollary immediately follows by Hölder’s inequality and the fact (in the
case for odd k) that, for 1 � p′ � ∞ (with 1/p′ + 1/p = 1),

∥∥(1 − y2)−k/2
∥∥

Lp′ [−1+k2h2/2,1−k2h2/2] � c(k)

⎧⎨
⎩

h−k+2/p′
, if kp′ > 2,

| ln (h)|1/p′
, if kp′ = 2,

1, if kp′ < 2.

In particular, if k � 3, then ‖(1 − y2)−k/2‖Lp′ [−1+k2h2/2,1−k2h2/2] � c(k)h−k+2/p′
, and, if k = 1,

then

∥∥(1 − y2)−1/2
∥∥

Lp′ [−1+h2/2,1−h2/2] � c

⎧⎨
⎩

h−1+2/p′
, if p′ > 2,√| ln (h)|, if p′ = 2,

1, if p′ < 2.

COROLLARY 3·3. Let k ∈ N, f ∈ Mk � Lp, 1 � p � ∞. Then

ω
ϕ

k ( f, δ)1 � c(k) ‖ f ‖p

⎧⎨
⎩

δ2−2/p, if k � 2, or k = 1 and 1 � p < 2,
δ
√| ln (δ)|, if k = 1 and p = 2,

δ, k = 1 and 2 < p � ∞.

We now generalize the estimates in Corollary 3·3 in the case k = 1 and k = 2 providing
estimates of ω

ϕ

k ( f, δ)q for all 1 � q < ∞. We need two auxiliary lemmas.
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LEMMA 3·4. Let 1 � q < ∞, and let f ∈ Lq be nonnegative on [−1, 1]. Then,

ω
ϕ

1 ( f, δ)q � ω
ϕ

1 ( f q, δ)
1/q
1 . (3·1)

Proof. The following inequalities immediately follow from the convexity of xq and pos-
itivity of (1 + x)q − xq − 1 for x > 0 and q � 1:

21−q(a + b)q � aq + bq � (a + b)q, a � 0, b � 0 and q � 1. (3·2)

Since by (3·2), |a1 − a2|q � |aq
1 − aq

2 |, a1 � 0 and a2 � 0, q � 1, for any nonnegative
function f we have ∣∣�1

μ( f, x)
∣∣q �

∣∣�1
μ( f q, x)

∣∣ ,
which implies (3·1).

LEMMA 3·5. Let 1 � q < ∞, and let f ∈ M2 � Lq be nonnegative on [−1, 1]. Then,

ω
ϕ

2 ( f, δ)q � 21−1/qω
ϕ

2 ( f q, δ)
1/q
1 . (3·3)

Proof. If a1 � 0, a2 � 0, a3 � 0, and a1 − 2a2 + a3 � 0 and q � 1, then using (3·2) we
have

(a1 − 2a2 + a3)
q + (2a2)

q � (a1 + a3)
q � 2q−1

(
aq

1 + aq
3

)
,

and so

(a1 − 2a2 + a3)
q � 2q−1

(
aq

1 − 2aq
2 + aq

3

)
.

This implies that, for a convex and nonnegative function f ,(
�2

μ( f, x)
)q � 2q−1�2

μ( f q, x),

and (3·3) immediately follows.

Now, taking into account that, for a nonnegative f , ‖ f q‖1/q
p/q = ‖ f ‖p, and using Lem-

mas 3·4 and 3·5, and Corollary 3·3 (with p/q instead of p) we get the following result.

COROLLARY 3·6. Let k = 1 or k = 2, 1 � q < p � ∞, and let f ∈ Mk � Lp be
nonnegative. Then

ω
ϕ

k ( f, δ)q � c(k) ‖ f ‖p

⎧⎨
⎩

δ2/q−2/p, if k = 2, or k = 1 and p < 2q,
(δ

√| ln (δ)|)1/q, if k = 1 and p = 2q,
δ1/q, k = 1 and p > 2q.

We are now ready to prove Theorem 1·1. First, note that, if (1·2) holds for functions f1

and f2 which have the same sign at all points in [−1, 1] (i.e., f1(x) f2(x) � 0, −1 � x � 1),
then it is also valid for f1 + f2. Indeed, since

‖ f1‖p + ‖ f2‖p � 2 ‖max (| f1|, | f2|)‖p � 2 ‖| f1| + | f2|‖p = 2 ‖ f1 + f2‖p,

we have

ω
ϕ

k ( f1 + f2, δ)q � ω
ϕ

k ( f1, δ)q + ω
ϕ

k ( f2, δ)q � cϒδ(k, q, p)
(‖ f1‖p + ‖ f2‖p

)
� cϒδ(k, q, p) ‖ f1 + f2‖p. (3·4)

The following lemma shows that it is sufficient to prove Theorem 1·1 for functions f ∈
Mk such that f (i)(0) = 0, 0 � i � k − 1, where f (k−1)(0) := f (k−1)

− (0) (any number
between f (k−1)

− (0) and f (k−1)
+ (0) would do), since ω

ϕ

k ( f − Tk−1( f ), δ)q = ω
ϕ

k ( f, δ)q .
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This lemma is an immediate corollary of a stronger [7, theorem 1] taking into account [2]
(see also [1, Theorem 4·6·3]).

LEMMA 3·7 ([7]). Let k ∈ N, 0 < p � ∞, and f ∈ Mk � Lp. Denote by
Tk−1( f, x) := ∑k−1

i=0 (i !)−1 f (i)(0)xi the McLaurin polynomial of degree � k − 1, where
f (k−1)(0) := f (k−1)

− (0). Then, there exists a constant c = c(k, p) such that

‖ f − Tk−1( f, ·)‖p � c ‖ f ‖p .

Proof of Theorem 1·1. Let f ∈ Mk � Lp be such that f (i)(0) = 0, 0 � i � k − 2, and
f (k−1)
− (0) = 0. Then, as is easily shown by induction (see also [7, lemma 7]), f ∈ M j [0, 1]

and (−1)k− j f ∈ M j [−1, 0] for all j = 0, . . . , k − 1. Now, let

f1(x) :=
{

0, if −1 � x � 0,
f (x), if 0 < x � 1,

and f2(x) :=
{

f (x), if −1 � x � 0,
0, if 0 < x � 1,

Note that the functions f1 and f2 have the same sign on [−1, 1] ( f1(x) f2(x) = 0 for all x),
and that f = f1 + f2.

If k = 1, then f1(x) and − f2(−x) are both nonnegative functions in M1 � Lp, and if
k � 2, then f1(x) and (−1)k f2 are both nonnegative functions in M2 � Lp. Therefore,
Corollary 3·6 and (3·4) imply that (1·2) is satisfied for f = f1 + f2 (taking into account that
ω

ϕ

k ( f, δ)q � cωϕ

2 ( f, δ)q for k � 2, see [3, theorem 4·1·3]).

4. Proof of Theorem 3·2
It is convenient to denote

J(β, y) := 1

1 + β2

(
1 + βy√

1 − y2 + β2

)
.

Taking into account that �k
hϕ(x)( f, x) � 0, for every x , and using Lemma 3·1 with α = kh/2

and β = (i − k/2)h, 0 � i � k, we have

∥∥�k
hϕ(x)( f, x)

∥∥
1

=
∫

Dkh/2

�k
hϕ(x)( f, x) dx

=
k∑

i=0

(
k

i

)
(−1)k−i

∫
Dkh/2

f (x + (i − k/2)hϕ(x)) dx

=
k∑

i=0

(
k

i

)
(−1)k−i

∫ 1−4k(k−i)h2/(4+k2h2)

−1+4kih2/(4+k2h2)

f (y) J((i − k/2)h, y) dy

=
k∑

i=0

(
k

i

)
(−1)k−i

(∫ −1+4k2h2/(4+k2h2)

−1+4kih2/(4+k2h2)

+
∫ 1−4k2h2/(4+k2h2)

−1+4k2h2/(4+k2h2)

+
∫ 1−4k(k−i)h2/(4+k2h2)

1−4k2h2/(4+k2h2)

)
f (y) J((i − k/2)h, y) dy

=:
k∑

i=0

(
k

i

)
(−1)k−i (I1 + I2 + I3) .
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Since |J((i − k/2)h, y)| � 2, 0 � i � k, we have∣∣∣∣∣
k∑

i=0

(
k

i

)
(−1)k−i (I1 + I3)

∣∣∣∣∣
� 2

k∑
i=0

(
k

i

)(∫ −1+4k2h2/(4+k2h2)

−1+4kih2/(4+k2h2)

+
∫ 1−4k(k−i)h2/(4+k2h2)

1−4k2h2/(4+k2h2)

)
| f (y)| dy

� 2k+1
(‖ f ‖

L1[−1,−1+4k2h2/(4+k2h2)] + ‖ f ‖
L1[1−4k2h2/(4+k2h2),1]

)
� c(k)

(‖ f ‖
L1[−1,−1+k2h2] + ‖ f ‖

L1[1−k2h2,1]
)
. (4·1)

Now,
k∑

i=0

(
k

i

)
(−1)k−i I2 =

∫ 1−4k2h2/(4+k2h2)

−1+4k2h2/(4+k2h2)

f (y)Ak(y, h) dy, (4·2)

where

Ak(y, h) :=
k∑

i=0

(
k

i

)
(−1)k−i J((i − k/2)h, y)

=
k∑

i=0

(
k

i

)
(−1)k−i 1

1 + (i − k/2)2h2

(
1 + (i − k/2)hy√

1 − y2 + (i − k/2)2h2

)
. (4·3)

Changing the order of summation (i.e., letting j = k − i) we get

Ak(y, h) =
k∑

j=0

(
k

j

)
(−1) j 1

1 + ( j − k/2)2h2

(
1 − ( j − k/2)hy√

1 − y2 + ( j − k/2)2h2

)
. (4·4)

Therefore, adding (4·3) and (4·4) we have

2Ak(y, h) =
k∑

i=0

(
k

i

)
(−1)i

1 + (i − k/2)2h2

(
(−1)k + 1 + (i − k/2)hy

(
(−1)k − 1

)
√

1 − y2 + (i − k/2)2h2

)
.

In particular, if k is even, then

Ak(y, h) =
k∑

i=0

(
k

i

)
(−1)i

1 + (i − k/2)2h2

and, if k is odd, then

Ak(y, h) =
k∑

i=0

(
k

i

)
(−1)i+1

1 + (i − k/2)2h2
· (i − k/2)hy√

1 − y2 + (i − k/2)2h2
.

We now consider the cases for even and odd k separately.
Case I: even k. It is well known that if g(m) is continuous on [a, b] and if x0, x1, . . . , xm are

any m + 1 distinct points in [a, b], then for some ξ ∈ (a, b), [x0, . . . , xm; f ] = g(m)(ξ)/m!.
Since

�m
h ( f, x) = m! hm [x − mh/2, x − mh/2 + h, . . . , x + mh/2; f ],

we conclude that, if g(m) is continuous on [x − mh/2, x + mh/2], then for some ξ ∈ (x −
mh/2, x + mh/2),

�m
h (g, x) = hm g(m)(ξ). (4·5)
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We now note that it follows from the definition of the kth symmetric difference that, if
g(t) := (1 + t2)−1, then

Ak(y, h) = (−1)k�k
h(g, 0)

and (4·5) implies that for some ξ ∈ (−kh/2, kh/2)

|Ak(y, h)| = hk |g(k)(ξ)|.
Since g ∈ C

∞[−1, 1], we conclude that |g(k)(ξ)| � c(k) and so |Ak(y, h)| � c(k)hk . It now
follows from (4·2) that∣∣∣∣∣

k∑
i=0

(
k

i

)
(−1)k−i I2

∣∣∣∣∣ � c(k)hk

∫ 1−4k2h2/(4+k2h2)

−1+4k2h2/(4+k2h2)

| f (y)| dy � c(k)hk ‖ f ‖1.

Hence, recalling (4·1),∥∥�k
hϕ(x)( f, x)

∥∥
1
� c(k)

(‖ f ‖
L1[−1,−1+k2h2] + ‖ f ‖

L1[1−k2h2,1] + hk ‖ f ‖1

)
and so for even k we have

ω
ϕ

k ( f, δ)1 � c(k)
(‖ f ‖

L1[−1,−1+k2δ2] + ‖ f ‖
L1[1−k2δ2,1] + δk ‖ f ‖1

)
.

Case II: odd k. Let y ∈ [−1 + 4k2h2/(4 + k2h2), 1 − 4k2h2/(4 + k2h2)] be fixed and
denote γ := √

1 − y2 and

g̃(t) := t

(1 + t2)
√

γ 2 + t2
.

Then,

Ak(y, h) = (−1)k−1 y �k
h(g̃, 0)

and so by (4·5)

|Ak(y, h)| = |y| hk |g̃(k)(ξ)|, ξ ∈ (−kh/2, kh/2).

To estimate the kth derivative of g̃(t) for t ∈ [−kh/2, kh/2] we note that γ � kh/2 and so
|t | � γ . Now, notice that g̃(t) = G(t/γ ) where

G(x) := 1

1 + γ 2x2
· x√

1 + x2
.

It is not difficult to show that ‖G(k)‖C[−1,1] � c(k), and so∣∣g̃(k)(t)
∣∣ = ∣∣γ −k G(k)(t/γ )

∣∣ � c(k)γ −k , for all |t | � γ . (4·6)

Hence,

|Ak(y, h)| � c(k)hk(1 − y2)−k/2,

and it follows from (4·2) that∣∣∣∣∣
k∑

i=0

(
k

i

)
(−1)k−i I2

∣∣∣∣∣ � c(k)hk

∫ 1−4k2h2/(4+k2h2)

−1+4k2h2/(4+k2h2)

| f (y)|(1 − y2)−k/2 dy

� c(k)hk
∥∥ f (y)(1 − y2)−k/2

∥∥
L1[−1+k2h2/2,1−k2h2/2] .
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Therefore, recalling (4·1) we have∥∥�k
hϕ(x)( f, x)

∥∥
1
� c(k)

( ‖ f ‖
L1[−1,−1+k2h2] + ‖ f ‖

L1[1−k2h2,1]
+ hk

∥∥ f (y)(1 − y2)−k/2
∥∥

L1[−1+k2h2/2,1−k2h2/2]
)

and finally

ω
ϕ

k ( f, δ)1 � c(k)
( ‖ f ‖

L1[−1,−1+k2δ2] + ‖ f ‖
L1[1−k2δ2,1]

+ sup
0<h�δ

hk
∥∥ f (y)(1 − y2)−k/2

∥∥
L1[−1+k2h2/2,1−k2h2/2]

)
.

The proof of Theorem 3·2 is now complete.
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