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i. iIn the paper we consider the question on the coconvex approximation by polynomials 

of functions with deteriorating smoothness at the endpoints of a segment. We denote by ~r 
the class of continuous functions f on [-I, I] that have the absolutely continuous (r - l)-th 
derivative locally in (-i, i), and 

II'" (x) (l-x=) ' =1~ I (0. l )  
f o r  a l m o s t  a l l  x e [ - 1 ,  1 ] .  

For  r ~ 3 t h e  f o l l o w i n g  theorem w i l l  be p r o v e d :  

THEOREM 1. Le t  r e N, r # 4, and I :  = [ - 1 ,  1 ] .  I f  a s  f = f ( x )  i s  convex on 

I ,  and f ; e  ~ r ,  t h e n  f o r  any n a t u r a l  number n ~ r - 1 t h e r e  e x i s t s  an a l g e b r a i c  p o l y n o m i a l  
Pn = Pn(x)  o f  d e g r e e  ~n t h a t  i s  convex on I ,  and such  t h a t ,  

If(z) -P,, (x) [ <C,~-'. C=C(r:) =const, x~/.  ( 0 . 2 )  

The corresponding theorem for the approximation without restrictions was proved by 
Ditzian and Totik [i, pp. 40-41, 79-83] (see also Dzyadyk [2, Chap. IX]). A similar theorem 
for the comonotone approximation in the case r = i, 2 follows from the paper by LexTiatan [3], 
and in the case r ~ 3 it was proved by Dzyubenko, Listopad, and Shevchuk [4] by using the 
method f~om [5]. A modification of the method is used in the present paper too. Theorem 1 
for r = i, 2 also is a consequence of the paper by Leviatan [3]. It follows from Theorem 2 
that TheOrem 1 does not hold for all r, contrary to the corresponding theorems for the ap- 
proximation without restrictions, and the comonotone approximation. Namely, the theorem is 
not true ifor r = 4. 

THEOREM 2. ~ n E N  VC~R, 3 f ~ ' ,  /"(x)~O. xe/:  VP,,. P.,"(x)~O, xE/ 3Xo~/: [](xo)-P,,(xo)l>C. 
i 

We Use the notation from [5]: 
[ 

Let iL(x, g, [a, b]) be the Lagrange polynomial of degree Sr - 3 that interpolates the 

function g at the points a + i(b - a)/(r - 3), i = 0, r - 3, r > 3; 

h,. (y):=n-'+Vt-~/=n -', Y~!; A:=A. (z), xml; 

!~:=r j=O, n; 

xj:=cos(in/n-n/2n), ]=1,  n; 

z~~ =cos (]n/n-n/4n), ]<n/2: 
z~~ ] ~ n/2: 
L:=iz j ,  x,_,], h~:=x~_,-z. 7=1, u; 
tj.,,: = (x-x~ ~ cos" 2n arccos x+  ( x - s  -= sin = 2n arccos :, 

is an algebraic polynomial of degree <-4n - 2; 

t', d , ,r. . . T j ( x ) : = ~ ,  j, C9) .r 

r~ (z ) :  = .~:, (.~i-.r3 (~,-,-.v)t.,~: +' (.v)di/ 

-( S '_, ( y - .~9  (.~,_,-y)tj;'," ' (y)d.v)- '-  
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are polynomials of degree _<6r(2n - i) + i and <_2(3r + l)(2n + i), respectively; 

Y,, , . ( t)= (sin n t /2 / s in  '" '~' " ~ 1,2)" ( .~_~ (sia nt /2 / s in  t / 2 ) " ' r d t )  - '  

is a kernel of the Jackson type; 

~Z~.(y.x)= ( 2 8 r - 1 ) !  Ox ' - - ' ' ( x -y )2 ' ' - '  ~ ...... o . . . .  J . . ~ ( t )d !  

is a polynomial kernel of the Dzyadyk type, 
positive numbers that depend on r only. 

Also we use the following inequalities 

in which m = arccosy, x, y e I, and C, C i are 

2(Ix- -y l+A)>lx- -y l+A. (y )>  (Ix-yl+/A)lZ; 

hj• A<h~<5A for  xEl i .  

In Proposition 2 and Lemmas 3-7 of the next section, we assume that r _> 5. 

2. Some Lemmas and Definitions. Similarly to the proof of Lemma 6 from [6, p. 17-19], 
it is easy to check the following inequalities 

!-z~-,  < .i'..,/', (x) d.r < ! . x j :  

l- .r~_,< l~_,r~(x)dx<l-x, ,  i={~n:  

From this it follows that there exist numbers a = a(j) e (0, i) and $ = ~(j) e (0, i), such 
that, for the polynomials 

0 (x):----~ '  ( aTi (y) - t - ( I -a )7 ' ,~  (y ) )dy .  

~ ( ~ l : : - , t ,  (~r,(.~)+(,-~)r~.,(,,))d,j. ]=,,,,-, 

we have the equalities 

o,(I) =oj(1) = I-~, (i. i) 

(a similar consideration was applied in the proof of the theorem from [7]). 

We denote Tj: = hj(lx - xjl + hj) -I, for short. We put Xj(X): = 0 if x <- xj, Xj(X): = 

1 if x > xj, and write (x - xj)+: = ~_~Xxj(t)dt. 

Proposition i. The following estimates hold: 

0<-0~" (x) ~C,hs-'x~"', x ~ I N I  .... (1.2) 

Io," (x)l~<C,h,-'t? ', z~l. (1.3) 
_< 6r-2  , i (X_Xj) +_ Oi (X) I .~C,hjX j Z+/,  (1.4) 

C,hj- 'xj '~ <<.oj " (x)  ~C,h~- 'T~",  x ~ l ,  ~ ( 1 . 5  ) 

I (x-x,) . -%(x)l<C,hjT' / - '  , x~l.  (1.6) 

The proof of Proposition i is similar to the proof of Lemma 6 from [6], where we take 
into account the equalities (i.i) and the inequalities hj+1-1~j+1 sr < 312r-lhj-iTj sr, x e I. 

LEMMA i. Suppose that a set E consists of some segments Iji. The polynomial 

Q~ E~.,,,hF, ' (aj, (x)-o,~ (x) ) 

of degree <_2(3r + l)(2n + i), where {i}: = {ilIji e E, Iji+1 e E}, satisfies the inequalities 
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tQ,,(,~. E)I <~Gn-'' x~i.  
0 . "  (x, E)>~-C,A-'n-', z~E, 
~,, " (x, E) >~CsA-'n -~ (A/(dist (x, E) +A) )"'-~, x ~ l \ E ,  

where E: = E\{Iji[lji+ I �9 E}. 

P r oo f .  The f o l l o w i n g  e s t i m a t e  i s  a consequence  of  t h e  i n e q u a l i t i e s  ( 1 . 4 )  and ( 1 . 6 ) :  

,9 ~-~ IO.,(x,E)l<~n~'E .C r, . 

and from this 

. ~ <  - r  . g r - 3  Ir162 I-~2C,n Ei=, r <- 

~C~n-~2'z'5" 'A3~-''5 .~ '_, (I x - t l  +A) -~,§ dt<~C~n-', x~ l .  

From t h e  inequalities (1.2), (1.3), and (1.5), we get 

- I  ' - I  I t  i t  

Q (x .E)>~-n-  E ~ j , ( x ) h , ,  ~--n- 'h , .  ( Io~ . (x ) l+31~ , ' - , ( z ) l ) ,  

where t h e  index  j*  i s  chosen in  such a way t h a t  x �9 I j , ,  i . e . ,  Qn"(x,  E) _~ -C4A-ln  - r  f o r  

x �9 E. F i n a l l y ,  from ( 1 . 2 )  and ( 1 . 5 ) ,  we g e t  

h-2 ,r -2 , Os ,, . �9 rj ~>~C2n-'hj. %. >I 

>~C,,A-Zn-'(A/(dist(z.E)+A)) '~'-~, x ~ I \ E ,  

where j* is chosen in such a way that lj, is the interval from E that is closest to x, 

dist(x, E) = dist(x, lj,). The lemma is proved. 

LEMMA 2 Let 0 < g'r(X) < n-rA -2 . - - , x �9 I. Then the polynomial 

R.  (x. g): = Z ~ Ix,+,. x,. xj_, : g] ( x , _ , - x . , ) o j ( x ) +  
i = l  " 

+g(x  .... ) + [ x . , X ~ _ , ; g l ( x - x  .... ) 

i.e., 

of degree ~6r(2n - i) + 2 is convex on I, and moreover, 

l g ( x ) - R . ( x ,  g)I<~Gn -', x~ l .  (1.7) 

Proo[f. Since the function g is convex, therefore, [xj+z, xj, xj-z; g] ~ 0, and, by 

using (i.i5), the polynomial Rn(x , g) is convex. We shall prove the inequality (1.7). By 
the Lagrange formula, we have 

! 
i [x . , . x j .  x~-,. g] I -- ~ Ig"(O)I ~ < 113n- 'hf ~, 

0~  {x,§ xj_,]: 

I [x, x, x~-,;.g]l<~13n-rh, -~, xml,. 

From thisl and using (1.6), for x �9 (xi, xi- I] we get 

I g ( z ) - R .  (x, g) I = I Ix,, x, z,_,; gl ( x - x , )  (x-x,_,)  + 
+ g ;J~ [x~+,. x~, xj_,; g] ( z~_ , -x . , )  ( (x -x j )  +-oj (x)) I <<- 

- r  - ~ ,  " I I r - - ~  ~ t 3 n - ' +  ~] " - '  113n hi 4h~C,hjT~ "~Cen-', 
�9 j = l  

x~/ .  

The lemma] is proved. 
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For a function g = g(x) that has the second derivative on [-i, i], we write 

.~(x,q): =g(-l)+g'(-l)(x+t)+~i,~,L(y,g".l)dydt, 
L(x,y): =g(x)+g'(x)(y-x)+i~L(t,g",[x,x+Sl)dtdz. 

Proposition 2. If g ~ ~r, then the following inequalities hold: 

i) [ g ( x )  - . ~ ' ( x ,  g)[ 5 C7, x e I; 

2) [g(y) - L(x, y)[ ~ Csn-r(Ix - y[ + A)=ra-=r, Ix, x + ~] c I, y ~ I. 

Proof. Let Yi: = -i + 2i/(r - 3), i = 0, r - 3. Then 

I g ( x ) - ~ ( z , g )  I ~ 
•  _,,~'_, I ( y - y o ) . . . ( y - y , - , ) I  .~" ~",. . .  ~ ' , - , ( i+  

. . ) -~" = d r , _ . , , . ,  d t l  d y  d t  -~ + ( y o + ( y , - y o ) t , +  . + ( y - y , _ , ) t , _ , )  

+ I ' _  "'_ �9 �9 "'  . . . . .  ,.~ , I(y-yo). .  I.~o' ...L (1 

�9 . _(Vo+... +(y-y,_,)t~_.,.)) -~ "~dt,_....dt=: ~ ' & ) ' . . .  

We prove, for instance, the boundedness of the first integral. Put gr(t) = (i + t) r/=-= 

if r is odd, and gr(t) = (i + t) r/=-21n(l + t) if r is even, which gives gr(r-2)(t) = Cs(I + 
t) -r/2 . We have 

" -I~ x 
y ,  < -<C ,  " '  , .  . .  .~ , l (Y- t~ . )  . ( y - ~ , - , ) l  ' 

. . .  ~ ,,.,gt . . . .  (y , ,+ . . .  + ( y - y . _ O t , _ . . ) d l . _ , . . .  dt = 

- 1  =C, ~.', ~'._, I g . ( y ) -L (y ,g . / ) l d . vd t~ ( ' , , , .  

because the estimate [gr(Y) - L(y, gr, I)[ <- C9", y e I, follows from [2, pp. 

2) We fix x e I i and set Yi: = x + Ai/(r - 3), i = 0, r - 3. Then 

159-16i]. 

[g(y)-L(x, y) l<~ 
~ x  x , " " 0  " '  

.~ ' , - , ( -1 -  ( E o + ( ~ , - ~ , , ) t  + . . .  * ( t - ~ , - D t , - O " )  ' "  ( i t  . . . . . . . .  
' ' "  0 

. . , d t d z - -  : C ( y ) .  

We consider three cases. 

a) If -I + n -2 <- x, x + h <_ i - n -2, -i + n -2 <_ y <_ I - n -2, then 2~i - x 2 > hA, 

16r > nA2/([x - Yl + A), and 

G ( y ) < ~ C ( . l x - y [ + A ) "  (I.L. y[+A)~_:[x_y[:~  
n A  z 

<~Csn_~(.lx-y, +A 1-'" 
A 

b) Let xy > 0. We consider the case x e [-i, 0) and y e [-I, 0) (the case x ~ [0, i] 
can be proved in a similar way). We write x* = min{x, y}, y* = max{x, y}. Using a), we con-- 
sider the case x* < -I + n -2 only. Similarly to I), we have the following estimate: 
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- + t ) r / 2 - 2  ( I+t t where gr*~t) = (i + if r is odd, and gr(t) = (i + t) r/2-2 in l-~y*'" if r is even. 

We notice that Igr(t) I <_ (i + y,)r/2-2, t �9 [-i, y*]. Then 

c) For the remaining cases we have C S n-r(Ix - Yl + A)2rA-2r, and the estimate G(y) ! 
C can beiproved similarly to I). The proposition is proved. 

LEMMA 3. Suppose that a function r ~ O r and a set F ~ I are given. If r = 0 for 
x e F, then the polynomial 

D, (x, 0 ) :  =~'_, (O (y) -_q~ (y, r  )~),; (y, x)dy+.~' (x, O) 

of degree ~14r(n - i) approximates the function r and its derivatives, and 

/• r ) | 2 r 7 ~  v lr (x) - D .  r (x, |  [ ~<C.A-Pn -~ ( 
A -t- dist (x, I\F) 

x~I,  p - 0 V i V 2 .  

(~..8) 

Progf. Put g(x): = r - ~(x, r It follows from Proposition 2 that Ig(x)I s c7, 
x �9 i. we assume that x + A �9 I, where x is fixed, for convenience. Similarly as in Lemma 
3 from [6], we reduce the proof of (1.8) to an estimate of the integral 

(x, y)--g(y))-~xp2Z~. (y, x)dy. 

Using Proposition 2 and Proposition 1 from [5], we obtain 

IfI~S-,'IL(x, y)-g(y)IC,:A"'-:-~(Ix-yl +A)-"'+'du~ 
~<(~t ~ ~-~r At=,-z-p/ +A)-'2'+'  -~..-,--,=.~ ~_~., ~lx-y] dy~C,,n-'A-", 

which means that the inequality (1.8) is proved in the case x e F. 

In ~he case Ix, x + 5] the polynomial L(x, y) coincides with g(y) for y �9 F. 
fore, if x ~ F, then assuming Ix, x + A] c F, for convenience, we have 

J i \ ~  ~ ~' (I x - -  v I + --< 
n- rA t2r - ' z -v  

~2CsC,=a-rA t=r-=-p ~+| (t + A) -'=r+~ dt ,.< Cn 
J dist(x, I \ F )  (A + dist) ~=r-= 

There- 

The lemma I is proved. 

LEMMA 4. Suppose that the following is given: 

consists bf 2r - 5 adjacent intervals lj, i.e., 

a function g �9 O r, and a set ~j, that 

*/i=/~U/i+, U... Olj+~(r-,). 

If for any i = O, 2r -- 6 there exists a point xi �9 Ij+i such that [g"(xi)I ! n-rAn-2(xi), 

then Ig"(~)l ~ Cls n-rA-2 for all x e @~. 

Proo~ • Let s g", i X2p) be the Lagrange polynomial of degree ~r - 3 that approximates 
i 

g" at X2p i p = O, r -- 3. We represent the derivative g" in the following form 
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g"(x)=[g"(x):L(x, g", ~4)l-t(x, s  ~,,!+Z(z, g", ~,,}. 

We estimate the last term 

<3" < C,,,,-'A-', 

The relevant estimate for the second term s g" - L, X2p) follows from the above and from 

the estimate [g"(x) - L(x, g", ~i) l S Czsn-rA -2, which follows from the proof of Proposition 
2. The lemma is proved. 

Let a function f = f(x) be convex on I and f e ~r. 

Definition i. An interval Ij we will call the interval of type I if for all x e Ij, 

f"(x) 5 C13(C 4 + Cs)n-rA-2; the interval of type II if it is not the interval of type I and 
for all x ~ Ij, f"(x) ~ (C4 + Cs)'n-rA -2 The remaining intervals Ij we call the intervals 

of type III. We denote by Ez, E2, and E 3 the sum of the intervals of type I, type II, and 
type III, respectively. 

LEMMA 5. The number of adjacent intervals of the type III is g(2r - 6), i.e., each set 

~/~, j = O, n - 2r + 6, consists of at least one interval Ij that is not of the type III. 

Lemma 5 follows from Lemma 4. 

We represent the set E z U E s U {lj e E211j• I ~ E2} as a finite union of disjoint inter- 

vals. We denote by G I the set of all intervals such that they contain at least (4r - 8) in- 
tervals Ij. 

Therefore, G z = [xjz , xjo] U [xjz, xj2] N .... where 0 5 Jv < Jv+1S n. We write Jr: = 

Jv + (I + (-l)V)/2. If [xjv[ = I, then we put Sv(x): = i; if Ixjvl # I, then we put 

"= -"  Y-'~ ( x l , -  y)'-My. .% (x): ~ i= ~" (y  - -  xj,. 

" X l " ~  - .  t ' - 2  . . ( ) ~ g ( y . x ~ O  ( x ~ - -  ~,)'-2d~) -'. 

Definition 2. Define g1(x): = 0 for x e GI, gl(x): = f"(x)Sv(x ) for x e [xjv , xjv], 

and gz(x): = f"(x) in the remaining cases. Define g2(x): = f"(x) - g1(x). We set 

/, (x): = / ( -  t ) +I' (-1) (x+ t) +.i'_, f!., g, (u)d~ dr: 
x �9 " =" ' t f : (  )-----.~-, ~-,  g,(y)dyd. 

Obviously, f(x) = fz(x) + f2(x). 

LEMMA 6. The functions gl and g2 are nonnegative, and the following inequalities hold 

[g,(x) t<O,,n-'A-L x~/', 

Igs (t-x'-)"-'j <~c,,. x~l.  
( 1 . 9 )  

Proof. Obviously, the functions gz and g2 are nonnegative. The first of the inequal- 
ities (1.9) follows from [Sv(x)l S 1 and the inequality If"(x)[ S Cn-rA -2, x ~ Gl, which is 
proved similarly to Lemma 4, keeping in mind Lemma 5. 

Now we prove the inequality 

Ig~'-2'(x)(l-xZ)"~]~C,~, x~l. ( 1 . 1 0 )  

Fix a point x e I. If gi(x) = 0 or g1(x) = f"(x), then the inequality (i.i0) is obvious. 

Therefore, it is enough to prove it for x e [xjv' Xjv]'; IxJv I # i. Since the interval 
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[x]v' xJv] does not contain •  therefore, we have the inequality If(r)(x)l ~ 2rn-r& -r. 
From this, using the estimate If"(x) i E Cn-rh -=, x e Gz, and with the help of inequalities: 

of the Kolmogorov type, we obtain if(J+2)(x)[ 5 C~sn-r&-(J +~), j = O, r - 2. Using the 

inequality Isv(k)(x)i ~ C20~ -k, k = O, r - 2, we have 

" ( ' )  = Z;-;o(" 7') '''+''(')'':-'-''(') < 
< (r 7 2) < ( ' - - x ' )  . 

The second of the inequalities (1.9) follows from (0.i) and (i.i0) with C~7 = C~s + i. 
The lemma is proved, 

We write G2: = {xldist(x , E2) 5 3"rA}, where E=: = {ljlle E2, lj $ G~}. It follows 

from Lemma 5 and Definition 2 that g2(x) = 0 for x e I\G2. 

We notice that for n~ ~ n the following inequality holds 

~.,(x)(dist(x.G~)+A~,(x))-'~C~,A(dist(x,E~)+A)-t 

From Lemmas 3 and 6, and Definitions i and 2, we get 

LEM~A~ 7. For any natural number n~ ~ n, the polynomial Dn~(X , f2) of degree <14rn~ 
has the properties 

Ih (~) - D . ,  (~, h )  I < c~. . - ' ,  x~I ,  

a I ' " - '  �9 - - -  i , x~l \~= ,  
d m t  (x,  E~) +A 

D,,." (x, [z) ~ (C,-kC.~)n-'A-r-C2.~n,-'Ah,-Z(x). x~E,~, 

where C22 = C11C17 , C23 = C11C17C2112r-2 

3. ~roof of Theorem i in the Case r ~ 5. Let n I e N, n I ~ n. We write Phi(X): = 
I 

Qn(x' E~)i + Dn1(X' f2) + Rn(x, fl), and notice that the polynomial is of degree <14rn I. 

following! estimates result from Lemmas i, 2, 6, and 7: 

The 

I f (x ) -P  ,(x) I~< (C.~+C,C,,+Cdn-'=C~,n -~, x~t .  
s ,  r 2 P,,, (.~)>~r A- -C~,A,,,-~(z)n,-t x~B~, 

t' " x ' > - ' 3  ...... " . . . . . . . .  ~ .. - . . - .~  ( _X ) '~'-~ 
. ~ j ~ ( .  t.~,i '~ - c : ~ n ,  .a. ,  (x))(dis t (x ,~)+A t , 

It remains to choose n I such that the following inequality is satisfied: 

C n - r A - 2 ~  950 rsp  - - r ~  Z /  

For this it is enough to take n z [[~slr2r ~ -111/(r-4) + l]n. , = ~ ~ J 2 3 ~ 5  J 

Thus! for n > [(3slr2c23Cs-1)I/(r-") + l]r = C24 the theorem is proved. 

l<_niC 
(2c9"/c9) 

The case r- 

~4 follows from the case n = r - i, and it is enough to take Pn(x): =:~(x, f) + 
K 2 . 

. 

3 lies in 
general, 
prove the 

LEM~ 

the polyn< 

;ome Len~nas and the Proof of Theorem 1 for r = 3. The peculiarity of the case r = 

the fact that the second derivative of a function f e 83 , f", does not exist, in 
tt the endpoints of the interval I. Using this information, it is not difficult to 
following analogs of Proposition 2 and Lemmas 2-7 from Sec. 2 in the case r = 3. 

, 2 I. Let g e 8 3 , g"(x) ~ 0 for x e I, g"(x) ~ n-3A -2 for x e 1\(11U In). Then 

,mial Rn(x , g) is convex on I, and moreover, Ig(x) - Rn(x , g) | 5 C6n -3. 
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We set 

~(x, e ) :=g(- l )+g' ( - l )  (x+i)+g" (0) (x+ I):/2, 
E(x. y):=g(x) +g" (x) (y--x)+g" (x+A/2) (y-x)=~2. 

We notice that for g e ~, Proposition 2 is satisfied if the functions ~(x, g) and L(x~ y) 
are substituted by ~(x, g) and ~(x, y). 

LEMMA 31 Suppose that a function r e ~a and a set F c I are given. If r = 0 for 
x e F, then the polynomial 

D,,(x, 0 )=~  ~, (e (y ) -~ (y ,  O))~.(y,x)dy+.~(x, O) 

approximates the function @ and its derivative in such a way that 

IO(z)-/~,(x, |  -3, xet. 

I ~"(x)-fi , '(x,  ~) I~ C,,n-aA -' "dist(x, 7 \ F )  +A.  

xel\ (/,U/.), 
/)." (x, | >1-C~,n, xeT. 

LEMMA 4 z. L e t  a f u n c t i o n  g e ~3 and  an  i n t e r v a l  I j  be  g i v e n  (Ej  N (Ez U I n ) = # ' ) .  I f  

t h e r e  e x i s t s  a p o i n t  x e I j  a t  w h i c h  I g " ( x ) ]  < n - a S n - 2 ( x ) ,  t h e n  I g " ( x ) [  < C13n-3A -2 f o r  a l l  
x e  Ij. 

Definitions 1 and 2 remain unchanged, only we replace C i by Ci. 

LEMMA 5 z. The third type intervals can be I l and I n only. 

LEMMA 6 z. The functions gl and g2 are nonnegative, and the following estimates hold: 

LEMMA 71. 

Ig, (x) I<C,,n-'A--t x e l \  ( l ,U/ . )  : 

Ig,' (x) ( t -x ' ) '" l  <C,,, 

For each n z > n, the  po lynomia l  ])nl 

Ih(z)-D,,,(x,l=)l<~C,.~,-t x~l ,  

o", (x, I.,) >~-C.,e,,--' ~,,,-' (x) ( 
h 

dist (x, E2)+A 

=e/ \  (E, uliul,,), 
/%," (x, 1,)I> (C,+C,)n-%-'-C.~,n,-~A~ 

D.," (x,/,,)>~-C~,n,, xel,UI.. 

x~[. 

(x, f2) has the properties 

) 36 

xeE, \  (l,Ul,,), 

Similarly to Sec. 3, it is not difficult to show that there exists n z (for instance, 

nz = [1022s~23Cs-Z]n), such that, the polynomial Pn1(X): = Qn(x, E2) + On1( x, f2) + Rn(x, fz) 
has the properties 

LEMMA 8. 

I / (z)-P.,(x) l~<C,,n-% x~I; 
P.,"(x)>>-O. x~I\(l,Ul,,); 
P.,"(x)>-(C,+C~)n,, z~I_,Ul.. 

For the a l g e b r a i c  po l ynomia l  

O- (x)" = _, _, sin -~- areeos t/sin ~ arecos t n-  '~ dt dy 
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of degree S5n, the following inequalities hold 

(~,'(x)>~O, x~l; O<~Q,(x)<~2. iO'n -', x~l; 

O~"(x)> ( 2 )  '~ 2 -'~ , x~l,. 
7t 

Finally, we obtain that the polynomial 

~., (x) : = P . ,  (x) + (C,+C,,) 2 '~ [ tWt'C~sC,-' ] n (Q. (z) +Q.  ( - x )  ) 

is conve x on I, and satisfies the inequality (0.2). 

Thus, for r = 3 and n > C26, Theorem 1 is proved. For the remaining n, the proof fol- 
lows from the case n = 2, in which it is sufficient to take P2(x): = ~(x, f). 

5. Proof of Theorem 2. We assume to the contrary that Theorem 2 is not true. Then 

3 n ~ N  3Co-R,  Co>i: W/~W',  ,~">0 :tt'.,_,,, P,">/O; 

It(x)-P~(x) I<Co. z~t .  

It is well known that the inequality [Ei=0naixi[ <_ i, x �9 I, implies the estimate 

la,[<M" M,=M(n)=const. i=O,-'-n. (5.1) 

Take a function fb such that its derivative fb"(x) = -bx + b - in b - in(l - x), where 

b = 2 exp 8nMIC 0. It is obvious that fb/4 e ~ and fb"(x) > 0, x e I. Take a polynomial 

Pn = Pn(x) such that Pn"(X) = Ei=0n-2ai Xi. Then 

(3 x 2 

I + M , x + M ) +  _, -, In (1 -z )dzdy  <Co, a:~I, 

�9 X ' y  From (5. 1 ) and the inequality I.~,t .~_,ln(l-z)dzdvl<7. x e I, we have 

[a,I <8m,C.. i - -2 . . -2 :  
la,+bl<8M,C,; lao-b+ln b]<8M,C.. 

From this we get I 

p,,,(|)=v .... a < ( . - i ) M , C o . 8 - 1 n b < O .  

We Wave obtained a contradiction, which proves Theorem 2. 

Thelmethod of proof of Theorem 2 allows us to generalize it to the classes Aq, q > 2, 

of functions f e C(1), such that, Ahq(f , x) ~ 0, x e I, where Ahq(f, x) is the q-th differ- 
ence of ~he function f with the difference h. (We note that A I is the set of nondecreasing 
function@ on I, and b 2 is the set of convex functions on I.) To do this it is sufficient to 
r lthe function fb, whose the q-th derivative is of the form 

~cq)(x)=-bx+b-ln b - I n ( l - x ) ,  x ~ l ,  

and the inequalities r - q ~ 2 and r/2 ~ r - q are satisfied, i.e., an analog of Theorem 1 

for bq, q ~ 2, does not hold when r = q + 2, 2q (see Fig. i). The domains I and II are still 
not investigated. 
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