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O N  M O N O T O N E  A N D  C O N V E X  A P P R O X I M A T I O N  

B Y  A L G E B R A I C  P O L Y N O M I A L S  

K. A. Kopotun 1 and V. V. Listopad 2 UDC 517.5 

The following results are obtained: If a > 0, ~x r 2, a ~ [3, 4], and f is a nondecreasing (convex) 

function on [-  1, 1 ] such that E n (3') _< n -a for any n > a, then E~ a) (f) < Cn -a ( E~ ~ ) (f) < Cn -a) 
for n > or where C = C ( a ) ,  En(j0 is the best uniform approximation of a continuous function by 

polynomials of degree (n - 1 ), and E ~1) (f) (E ~2) (f))  are the best monotone and convex approxi- 

mations, respectively. For a = 2 (~x ~ [3,4] ), this result is not tree. 

1. Introduction and Principal Results 

Recall that coapproximation (or shape-preserving approximation) is the approximation of  functions f such that 

A q ( f ,  x)  > 0 for given q e N, all 0 < h < 2 / q ,  and x e [ -  1, 1], by polynomials with nonnegative q th  deriva- 

tives. Here, 

- -  q(f,x)Ah = 

q 

E ( - - 1 )  q-i  f ( x  
i=0 

O, 

+ ( i - q / 2 ) h )  if  ] x + q h / 2 [ < l ,  

otherwise, 

is the qth symmetric difference. 

Let A q be the set of  such functions f .  Note that if f e  cq[a, b], then f e  A q if  and only if f (q)(x)  >0,  

x ~  [ - 1 ,  1]. 
In the present paper, we consider the monotone and convex approximations by algebraic polynomials, i.e., the 

cases of q = 1 and q = 2 ,  respectively. These kinds of  coapproximation were extensively investigated in recent 

years. Many estimates of  the degree of  coapproximation were obtained in the cases of  the uniform metric and Lp- 

metric, 0 < p < oo. The order of  these estimates is often the same as in the case of unconstrained approximation. 

The following theorem is a result of  this type: 

Theorem A. Let a > O. If, for  a nondecreasing (convex) function f = f ( x  ) on [ -  1, 1] and any integer 

n > a ,  there exists an algebraicpolynomial Pn-1 = Pn-1 (x) o f  the (n  - 1 ) th degree such that 

( 47_x  
I f ( x ) - P n _ l ( X ) [  < + x e  [ -1  1], 

n 7 

then, for  any n > o~- 1, there is a nondecreasing (convex) polynomial P'n-1 = P'n-1 (x  ) such that, for  

x ~  [ - 1 ,  1], 
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I f ( x ) -  p*_l(X)[ < - C (  ~/1-X2n + ~'1 )ct, 

where C = C(r i.e., the constant C depends on o~ and is independent of  n and f . 

Theorem A is a consequence of classical inverse theorems (see, e.g., Dzyadyk [1, p. 263]) and the results of De 

Vore and Yu [2] (for f a  A 1 and 0 < oc < 2) ,  Shevchuk [3] (for f e  A 1 and oc > 2) ,  Leviatan [4] (for f e  A 2 

and 0 <r < 2) ,  Manya and Shevchuk (for f a  A 2 and a > 2; see, e.g., [5]), and Kopotun [6] (for f ~  A 2 and 

It is clear that one of the advantages of Theorem A is the possibility of application of its inverse results. It is 
well known that, in the case of algebraic polynomial approximation in the uniform metric, inverse theorems in terms 
of the standard modulus of smoothness 

COk(f,t):= sup [x (f,x)ll  
O<h<t 

must be pointwise. This explains why Theorem A contains pointwise estimates. 
The situation changed when Ditzian and Totik [7] suggested a new modulus of smoothness 

--k %k (f, t) e := sup Ahr x) p 
O<h<_t 

which differently reflects the behavior of functions near the endpoints of an interval and inside it. On the basis of 
the Ditzian-Totik modulus, it became possible to obtain inverse results in terms of uniform estimates. Together 

k (see, e.g., [6, 8]), this enables one to with some direct results for shape-preserving approximation in terms of cot0 
characterize functions by uniform estimates of algebraic polynomial approximation. 

In this paper, we investigate the relationship between the rates of shape-preserving and unconstrained approxi- 
mations on the basis of uniform estimates (instead of pointwise ones as in Theorem A). 

Let E(nl)(f) and E(n2)(f) be the best ( n -  1)th-degree polynomial approximations, monotone and convex, 

respectively, of monotone and convex functions on [- 1, 1]. Denote by En(f )  the best (n - 1 )th-degree uncon- 

strained polynomial approximation of f ,  i.e., 

En( f )  := inf ] [ f - P , - i  I1.. 
P,-x e P,-1 

and 

E(nq)(f) : =  inf I I f - P , - x  I1~, q = 1, 2, 
Pn-1 ~ Pn-I NAq 

where Pn is the set of algebraic polynomials whose degree does not exceed n. 

The principal results of this paper are formulated in the theorems below. 

Theorem 1. Suppose that ~ > 0, c~ ~ 2, and f is a nondecreasing function on [ -1 ,  1] such that 

En( f )  < n -~ for every n > o~. Then e ( 2 ) ( f )  <_ Cn f o r  n > where  C = 

Theorem 2. For ot = 2, the assertion of  Theorem 1 is not true. 
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T h e o r e m  3. I f  c~ e ( 0 , 3 ) U ( 4 , + o o )  and  f is a convex funct ion on [ - 1 , 1 ]  such that E n ( f )  < n - a  

for  every n > a, then E(n2)(f) < Cn -a  for  n > Ix, where C = C ( a ) .  

Theorem 4. For c~ e [3,4],  the assertion o f  Theorem 3 is not true. 

In particular, Theorems 2 means that, for o~ = 2, the constant C in Theorem 1 cannot be independent of  n 

and f .  The same is true for cz e [3 ,4]  in the case of  the convex approximation. We do not know whether these 

negative statements will remain tree if we weaken the conditions imposed on C, for example, if we assume that C 

depends on a and f but does not depend on n. 
Let us recall some useful definitions and notation (see [7, 5] ). 

Let q0(x) :=  a/1 - x  2 and let B r, r e  NI, be the space of all functions f continuous on [ - 1 , 1 ]  and such 

that their ( r -  1 ) th derivatives f(r-1) are absolutely locally continuous on ( -  1, 1 ) and (q0(x)) rf(r-1) (X) I < o~ 

almost everywhere on ( -  1, 1 ). 

For a function f e  C ( -  1, 1 ), the weighted Ditzian -Totik modulus of  smoothness is defined as follows: 

__k ( f , t ) : =  sup i(l_k ) r / 2 - k  I 
C0o'r - 2 O<h<t x ~ (-1,1) 2 h(p(x) - x 1 - - hop(x) + x Ahv(x~(  f ,  x )  . 

- - k  = o3q~(f, t)~r For k = 0, we set Obviously, co~,0( f ,  t )  k 

--Oo~,~ ( f ,  t)  := ess sup I((p(x))r  f ( x )  . 
x e ( - I ,  1) 

Clearly, the function N ~, r ( f i  t) can be unbounded. As was shown in [51, the necessary and sufficient condition 
- - k  for o~cp, r ( f ,  t) to be bounded for all t > 0  is I ( (p(x) )r f (x )  < M,  X e ( -1 ,  1), where M = c o n s t < o o .  This 

implies that 

-~{ , r ( f ( r ) , t )  < oo, t > 0  r f e  B r. 

For a function f e Br N c r  ( - 1, 1 ), r >_ 1, and k >_ 0, the following inequality is true (see, e.g., [5]): 

r-l-~..k z~(r) Tdk+r- l (r  t )  < C t  tucp, r t j  , t ) ,  t > 0 ,  wJ (p,l \ J  , -- (1) 

where O < l < r - 1 .  

~ k  c.dr) t )  < ~ k  Let B r H [ k , ~ ]  be the set of functions f e  Br f ' lCr ( -1 ,  1) such that tu~0,r~,j , _ ~ ( t ) ,  where ~ e  

(we have ~ e r  if ~ ( 0 )  = 0, ~g = ~g(t) is a continuous and nondecreasing function for t > 0, and t -kgt( t)  does 

not increase). 

We can now define an analog of the class Lip*o~ "= { f [  o~2(f (~), t )  = O(t~) ,  where cr > 0 ,  a =  r + [3, 

r e N [O { 0 }, and 0 < 15 < 1 } in terms of  weighted Ditzian-Totik moduli of  smoothness as follows: 

fri tz = I B r H [ l ' t ~ ]  if 0 ~  N, where r : = [ c z ]  and ~ : =  o ~ -  r, 

t B r H [ 2 , t ]  if a e N ,  where r : = a - 1 .  
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Note that the equivalence f ~  [1 ~ r En(f)  <- Cn -a for any ct < 0 and n > a ,  where C = C ( a )  is a constant 

depending only on ct, is a consequence of the following direct and inverse theorems: 

Direct  T h e o r e m  (see, e.g., [7, 5]). Suppose that k e N ,  ( r + 1 ) e N,  and gt e ~k.  Then, for  a given 

function f ~ Br H [ k, ~] on [-1,  1] and every n > k + r, the following inequality is true: 

En( f )  < Cn-rllt(n-1),  C= C(r, k).  

Inverse  T h e o r e m  ([7, 5]). Suppose that k ~ N, ( r + 1 ) e N, and ~ e �9 k. I f  for  a given function f on 

[-  1, 1] and every n > k + r, the inequality 

En(f  ) <- n-rv(n -1) 

holds, then 

t 1 
c~ = C r !  xg(u)u- ldu  + tk ~ xg(u)u-k- ldu  C = C ( r , k ) .  

In view of these facts, one can conclude that Theorems 1 -4  are consequences of the following theorems: 

T h e o r e m  5. Let  a > 0, a r 2. Then, for a given nondecreasing function f ~ I ta  o n [- 1 ,1  ] and 

every n ~ N, n > ~ ,  the following inequality is true: 

E(1) ( f )  < Cn -a, C= C(t~). 

For o~ = 2, this implication is false. 

T h e o r e m  6. Let  oc e (0 ,  3)1,J(4,+o0) .  Then, for a given convex function f e ffl a on [-  1 ,1 ]  and 

every n ~ N, n > ix, the following inequality is true: 

E(n2)(f) < Cn -a, C= C(a).  

For ct ~ [3,4],  this implication is false. 

2. P r o o f  o f  the  Negat ive  Resul ts  

Below, for arbitrary n and (x = 2 and (x e [3,4] in the monotone and convex cases, respectively, we con- 

struct the sequences of functions {go} C ffl a and { f o }  C /~a such that E ~ 1 ) ( g b ) - - ~  and E(~2)(fb)-~ 
as b ~ ~ .  This will prove the negative statements of Theorems 5 and 6. 

We need the following lemma: 

L e m m a  1 [9].  For arbitrary n ~ N and M =const ,  there exists a convex function f b on 

f~" (x) = bx + b - l n b - l n ( 1  + x) ,  b ~ R, suchthat, for any convex polynomial Pn of  degree n on 

the inequality IIf-p.II > M is true. 

[ - 1 ,  1], 

[ - 1 , 1 ] ,  

By using the same method, one can easily prove a similar result for the monotone case (see also [9]). 
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Lemma  2. For arbitrary n ~ N and M = const, there exists a nondecreasing function gb on [- 1, 1], 

g ~ ( x ) = bx + b - In b - In (1 + x ) , b e R, such that, for any nondecreasing polynomial fan of degree n, the 

inequality Ilf- ~n II > M holds on [- 1, 1]. 

Let us determine classes that contain the functions f b  and gb. 

Lemma 3. For any b ~ R, the functions fb and gb belong to the classes B3H[1, Ct] and B1H[2 ,  Ct], 

respectively, where C is an absolute constant. 

Proof. For any real number b and functions fb  ~ B 4 and gb e B 2, it follows from inequality (1) that 

--I f(b3),t) Ct-~0,4( f(4), EO~,3( < t) = Ct esssup l(~o(x))4(l +x)-e[ _< ct, t>o, 
x e (-I,I) 

and 

_ l ( , , )  ( 1 ) 
Ocp,2 gb , t < sup sup 1 - - h(p(x) - x 

O<h<_t x+_(1/2)htp(x) ~ (-1,1) 2 

H pr 1 
•  ~1 h~p(x) + x ) ( gb ( x  - -21 hcp(x) ) - gb ( x  + ~ hcp(x) ) ) i 

< 2 sup sup h(p(x) ] < 4. 
h x 1 + x + (1 /2)h(p(x)  I 

This implies that --2r ( gb," t )  _< c t ~ l , 2 (  g ; ,  t )  _< Ct, t>O. Thus, Lemma 3 is proved. 

To complete the proof of the negative statements, it suffices to note that B 1H[2, t] = /)2 and B 3 H[  1, t] C 

/ ) a  for a e [3,4] .  
For 0 < a < 2, Theorems 5 and 6 follow from the results obtained by Leviatan [8]. For 2 < ~ < 3, Theorem 6 

follows from [6]. 
The direct statements of Theorems 5 and 6 for other oc can be proved as in [3, 9, 10-12]. The corresponding 

proofs involve nonlinear techniques and are quite cumbersome. At the same time, these theorems are intermediate 

steps in the investigation of degrees of coapproximation of functions from the classes B k H [k, gt] being, thus, only 
of relative value. This is why we omit detailed proofs of these assertions. 

Acknowledgement. The authors are grateful to Prof. I. A. Shevchuk for useful discussions on the subject and 
valuable suggestions. 

REFERENCES 

1. V.K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow 
(1977). 

2. R.A. De Vore and X. M. Yu, "Pointwise estimates for monotone polynomial approximation," Constr. Approx., 1, No. 4, 323-331 
(1985). 

3. I .A. Shevchuk, "On coapproximation of monotone functions," Dokl. Akad. Nauk SSSR, 305,No. 3, 537-541 (1989). 
4. D. Leviatan, "Pointwise estimates for convex polynomial approximation.," Proc. Amer. Math. Soc.,98, No. 3, 471-474 (1986). 



1398 IL A. KOPOTUN AND V. V. LISTOPAD 

5. I .A. Shevchuk, Polynomial Approximation and the Traces of Functions Continuous on a Segment [in Russian],Naukova Dumka, 

Kiev (1992). 
6. K.A.  Kopotun, "Pointwise and uniform estimates for convex approximation of functions by algebraic polynomials," Constr. 

Approx., 10, No 2, 153-178 (1994). 
7. Z. Ditzian and V. Totik, "Moduli of smoothness," Springer Ser. Comp. Math., 9, 300-315 (1987). 
8. D. Leviatan, "Monotone and comonotone polynomial approximation revisited," J. Approx. Theory.,53, 1-16 (1988). 
9. K.A.  Kopotun, "Uniform estimates for coconvex approximation of functions by polynomials," Mat. Zametki,51, No. 3, 35--46 

(1992). 
10. R.A. De Vore, "Monotone approximation by polynomials," SIAM J. Anal.,8, No. 5, 905-921 (1977). 
11. R.A. De Vore, "Monotone approximation by splines, SIAM J. Anal.,8, No. 5, 891-905 (1988). 
12. G.A. Dzyubenko, V. V. Listopad, and I. A. Shevchuk, "Uniform estimates for monotone polynomial approximation," Ukr. Mat. 

Zh.., 45, No. 1, 38-45 (1993). 


