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NEARLY MONOTONE SPLINE APPROXIMATION IN Lp

K. KOPOTUN, D. LEVIATAN, AND A. V. PRYMAK

(Communicated by Jonathan M. Borwein)

Abstract. It is shown that the rate of Lp-approximation of a non-decreasing
function in Lp, 0 < p < ∞, by “nearly non-decreasing” splines can be esti-
mated in terms of the third classical modulus of smoothness (for uniformly
spaced knots) and third Ditzian-Totik modulus (for Chebyshev knots), and
that estimates in terms of higher moduli are impossible. It is known that
these estimates are no longer true for “purely” monotone spline approxima-
tion, and properties of intervals where the monotonicity restriction can be
relaxed in order to achieve better approximation rate are investigated.

1. Introduction and the main results

Throughout this paper, we denote by Πr the space of algebraic polynomials of
degree ≤ r, and by Sr(zn) the (linear) space of all piecewise polynomial functions
(which we refer to as “splines”) of degree r (order r+1) with the knots zn := (zi)n

0 ,
−1 =: z0 < z1 < · · · < zn−1 < zn := 1. In other words, s ∈ Sr(zn) if, on each
interval (zi−1, zi), 1 ≤ i ≤ n, it is a polynomial of degree ≤ r, i.e., s|(zi−1,zi) ∈ Πr.
Note that we do not put any restrictions on smoothness (or even continuity) of
splines at the knots zn. We assume that a spline s and its derivatives are defined
at the knots in zn by continuity, if possible, and not defined otherwise. We also
denote by un and tn the sets of knots for the uniform and Chebyshev partitions,
i.e., un :=

(
−1 + 2i

n

)n

i=0
and tn :=

(
cos (n−i)π

n

)n

i=0
.

Given q ≥ 0 and a set J ⊆ [−1, 1], a function f is said to be q-monotone on J
if its qth divided differences [x0, . . . , xq]f are nonnegative for all choices of (q + 1)
distinct points x0, . . . , xq in J . We denote the class of all such functions by Mq(J),
and note that M1(J) is the collection of all non-decreasing functions on J .

If J ⊆ [−1, 1], we denote by ‖ · ‖Lp(J), 0 < p ≤ ∞, the Lp-(quasi)norm on J ,
and write ‖ · ‖p := ‖ · ‖Lp[−1,1]. For a function f ∈ Lp := Lp[−1, 1], 0 < p ≤ ∞, we
denote by

E(f,F)p := inf
s∈F

‖f − s‖p

the error of Lp-approximation of f by elements from the set F ⊂ Lp. In particular,

E(q)
r (f, zn, J)p := E(f,Sr(zn) ∩Mq(J))p
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and
Ẽ(q)

r (f, zn, J)p := E(f,Sr(zn) ∩Mq(J) ∩ C
r−1)p

are the errors of Lp-approximation of f by splines from Sr(zn) and from Sr(zn) ∩
Cr−1 (i.e., having maximum smoothness) which are q-monotone on J ⊆ [−1, 1].

It is well known (see, e.g., [2, 7]) that for a function f ∈ Lp ∩M1[−1, 1],

Ẽ(1)
1 (f,un, [−1, 1])p ≤ cω2(f, 1/n)p and Ẽ(1)

1 (f, tn, [−1, 1])p ≤ cωϕ
2 (f, 1/n)p ,

where c are constants which are independent of f and n, but dependent on p
when p → 0. (Throughout the paper, c denotes positive constants which are not
necessarily the same even when they occur on the same line. For the definition of
ωk(f, 1/n)p and ωϕ

k (f, 1/n)p see below.) Moreover, these estimates are best possible
in the sense that one cannot replace ω2(f, 1/n)p and ωϕ

2 (f, 1/n)p by ωm(f, 1)p for
any m > 2 (see [10]).

It is natural to ask whether it is possible to improve the above estimates by
relaxing the constraints on the approximating splines, for instance, by allowing them
not to be non-decreasing in some small parts of the interval. We know (see [5]) that
for non-decreasing f ∈ C[−1, 1] (i.e., in the case p = ∞) this is indeed so. Namely,
if we allow the splines not to be non-decreasing in small neighborhoods of the
endpoints ±1, then these inequalities with p = ∞ can be improved by considering
quadratic splines instead of linear ones and replacing the right-hand sides with
ω3(f, 1/n)∞ and ωϕ

3 (f, 1/n)∞, respectively. This problem remained unresolved for
p < ∞, and the main purpose of this paper is to close this gap by investigating the
relaxed constrained approximation of non-decreasing functions in Lp, 0 < p < ∞,
by nearly non-decreasing splines.

Let

∆k
h(f, x) :=

⎧⎪⎨
⎪⎩

k∑
i=0

(
k

i

)
(−1)k−if(x − kh/2 + ih), if |x ± kh/2| < 1,

0, otherwise,

be the kth symmetric difference. Then the (classical) kth modulus of smoothness
of a function f ∈ Lp[−1, 1] is defined by ωk(f, t)p := sup0<h≤t ‖∆k

h(f, ·)‖p, and the
Ditzian-Totik kth modulus of smoothness is ωϕ

k (f, t)p := sup0<h≤t ‖∆k
hϕ(·)(f, ·)‖p,

where ϕ(x) :=
√

1 − x2. (It is well known that ωϕ
k (f, t)p ≤ cωk(f, t)p.) Finally, the

kth modulus of smoothness on a subinterval J ⊂ [−1, 1] is defined by ωk(f, t, J)p :=
sup0<h≤t ‖∆k

h(f, ·, J)‖Lp(J) , where ∆k
h(f, x, J) := ∆k

h(f, x) if x±kh/2 ∈ J , and := 0
otherwise.

Theorem 1.1. Let f ∈ Lp[−1, 1] ∩M1[−1, 1], 0 < p ≤ ∞ (i.e., f ∈ Lp is a non-
decreasing function on [−1, 1]). Then there exists an absolute constant κ > 0 such
that, for every n ∈ N,

Ẽ(1)
2 (f,un, [−1 + κn−1, 1 − κn−1])p ≤ cω3(f, 1/n)p

and
Ẽ(1)
2 (f, tn, [−1 + κn−2, 1 − κn−2])p ≤ cωϕ

3 (f, 1/n)p ,

where c are constants independent of f and n which may depend on p as p → 0.

In Section 2, we introduce the notation to be used throughout the paper, re-
call some well-known properties of algebraic polynomials and discuss properties of
splines from Sr(zn). Then, in Section 3, we provide counterexamples that show that
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the estimates and assumptions in Theorem 1.1 are exact in some sense and can-
not be improved. In Section 4, we provide construction of a nearly non-decreasing
continuous quadratic spline and, in Section 5, we show how this spline can be
“smoothed” to become continuously differentiable. Finally, Theorem 1.1 is proved
in Section 6.

2. Notation and auxiliary results

Let zn := {z0, . . . , zn| − 1 =: z0 < z1 < · · · < zn := 1} be a partition of [−1, 1],
and extend the notation by setting zj := −1, j < 0, and zj := 1, j > n. Throughout
this paper, we use the notation Jj := [zj , zj+1] and denote the scale of the partition
zn by

ϑ := ϑ(zn) := max
0≤j≤n−1

|Jj±1|
|Jj |

,(2.1)

where |J | denotes the length of the interval J .
We now recall several well-known facts about algebraic polynomials which will

be frequently used in the sequel. The first lemma is merely the equivalence of norms
in a finite dimensional space and the well-known Markov’s inequality.

Lemma 2.1. For any polynomial qr ∈ Πr and an interval J ,

‖qr‖Lp(J) ≤ |J |1/p‖qr‖C(J) ≤ c‖qr‖Lp(J) , 0 < p ≤ ∞ ,

and
‖q′r‖C(J) ≤ 2r2|J |−1‖qr‖C(J) .

Hence, in particular, for any 0 ≤ k ≤ r,

(2.2) ‖q(k)
r ‖C(J) ≤ c|J |−k−1/p‖qr‖Lp(J) , 0 < p ≤ ∞ .

Constants c above depend only on r and p as p → 0.

Lemma 2.2. Let I and J be subintervals such that I ⊂ J . If qr ∈ Πr, then, for
0 < p ≤ ∞, ‖qr‖Lp(J) ≤ c (|J |/|I|)r+1/p ‖qr‖Lp(I), where the constant c depends
only on r and p as p → 0.

The following lemma now follows readily by Whitney’s inequality

inf
p∈Πr

‖f − p‖Lp(I) ≤ cωr+1(f, |I|, I)p.

Lemma 2.3. Let f ∈ Lp[−1, 1], 0 < p ≤ ∞, and let I and J be subintervals
such that I ⊂ J ⊆ [−1, 1]. If qr ∈ Πr is a polynomial satisfying ‖f − qr‖Lp(I) ≤
c0ωr+1(f, |J |, J)p, then ‖f − qr‖Lp(J) ≤ cωr+1(f, |J |, J)p, with constant c which
depends only on c0, r, the ratio |J |/|I|, and p as p → 0.

We now present some properties of splines from Sr(zn).

Lemma 2.4. For any s ∈ Sr(zn) and 0 ≤ k ≤ r we have

|s(k)(zj+) − s(k)(zj−)| ≤ c|Jj |−k−1/pωr+1(s, |Jj |, [zj−1, zj+1])p, 1 ≤ j ≤ n − 1,

where c depends on k, r, p and the scale ϑ(zn).



2040 K. KOPOTUN, D. LEVIATAN, AND A. V. PRYMAK

Proof. Denote w := ωr+1(s, |Jj |, [zj−1, zj+1])p. By Whitney’s inequality, there is a
polynomial p ∈ Πr such that ‖s − p‖

Lp[zj−1,zj+1] ≤ cw. Inequality (2.2) implies

|s(k)(zj+) − p(k)(zj)| ≤ c|Jj |−k−1/p‖s − p‖Lp(Jj) ≤ c|Jj |−k−1/pw,

and, similarly, |s(k)(zj−) − p(r)(zj)| ≤ c|Jj−1|−k−1/pw. Hence,

|s(k)(zj+) − s(k)(zj−)| ≤ |s(k)(zj+) − p(k)(zj)| + |s(k)(zj−) − p(k)(zj)|
≤ c|Jj |−k−1/pw.

�
Corollary 2.5. Let s ∈ Sr(zn), and suppose that s

∣∣
Jj

=: pj, 0 ≤ j ≤ n−1. Then,
for 0 < p ≤ ∞,

‖pj − pj−1‖Lp[zj−1,zj+1] ≤ cωr+1(s, zj+1 − zj−1, [zj−1, zj+1])p, 1 ≤ j ≤ n − 1 ,

where c depends on r, p (as p → 0), and the scale ϑ(zn).

Proof. Since, by Taylor’s formula,

pj(x) − pj−1(x) =
r∑

k=0

1
k!

(
p
(k)
j (zj) − p

(k)
j−1(zj)

)
(x − zj)k ,

taking into account that p
(k)
j (zj) = s(k)(zj+) and p

(k)
j−1(zj) = s(k)(zj−), and using

Lemma 2.4 we immediately get

‖pj − pj−1‖C(Jj∪Jj−1) ≤ c

r∑
k=0

|Jj ∪ Jj−1|k
∣∣∣s(k)(zj+) − s(k)(zj−)

∣∣∣
≤ c|Jj ∪ Jj−1|−1/pωr+1(s, zj+1 − zj−1, [zj−1, zj+1])p .

Finally, Lemma 2.1 completes the proof. �

Let δj := |Jj |/3, 0 ≤ j ≤ n − 1, and denote Ĵj := (zj , zj + δj), 0 ≤ j ≤ n − 1,
and Ĵn := (1 − δn−1, 1). The proof of the following lemma is exactly the same as
in [1, Lemma 2.1].

Lemma 2.6. Given f ∈ Lp[−1, 1], 0 < p ≤ ∞, and r ∈ N. There are points
ξ
(r)
j ∈ Ĵj, 0 ≤ j ≤ n, such that, for 0 ≤ j ≤ n − r, the polynomial Lj,r ∈ Πr

interpolating f at ξ
(r)
i , i = j, j + 1, . . . , j + r, satisfies

(2.3) ‖f − Lj,r‖Lp(J̄j) ≤ cωr+1(f, |J̄j |, J̄j)p ,

where J̄j := [zj−1, zj+r+1], and the constant c depends only on r, p (as p → 0), and
the scale ϑ(zn).

We now show that if a function f in the statement of Lemma 2.6 happens to be
a spline from Sr(zn), then the inequality (2.3) is valid for arbitrary (but not too
close to each other) points of interpolation.

Lemma 2.7. Suppose that r ∈ N, s ∈ Sr(zn), and I := Iµ,ν := [zµ, zν ], where
0 ≤ µ < ν ≤ n and ν − µ ≤ c0. Suppose further that the set {ξi}r

0 ∈ I is such
that mini �=j |ξi − ξj | ≥ c1|I|. Then, the polynomial Lr ∈ Πr interpolating s at ξi,
0 ≤ i ≤ r, satisfies

(2.4) ‖s − Lr‖Lp(I) ≤ cωr+1(s, |I|, I)p

where the constant c depends only on r, c0, c1, p (as p → 0), and the scale ϑ(zn).
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Proof. We denote s |Ji
=: pi, and note that, in order to prove (2.4) it suffices to

estimate ‖pl − Lr‖Lp(I) for µ ≤ l ≤ ν − 1. Taking into account that Lr(ξi) =
s(ξi) = pνi

(ξi) for some µ ≤ νi ≤ ν − 1, and using Lemmas 2.1 and 2.3 as well
as the Lagrange interpolation formula (using mini �=j |ξi − ξj | ≥ c1|I|) we have, for
each µ ≤ l ≤ ν − 1,

‖pl − Lr‖Lp(I) ≤ c|I|1/p‖pl − Lr‖C(I) ≤ c|I|1/p max
0≤i≤r

|pl(ξi) − Lr(ξi)|

= c|I|1/p max
0≤i≤r

|pl(ξi) − pνi
(ξi)| ≤ c|I|1/p max

0≤i≤r
‖pl − pνi

‖C(I)

≤ c max
0≤i≤r

‖pl − pνi
‖Lp(I) ≤ c

ν−1∑
i=µ+1

‖pi − pi−1‖Lp(I)

≤ cωr+1(s, |I|, I)p ,

where the last inequality follows from Corollary 2.5 and Lemma 2.2 (taking into
account that |[zi−1, zi+1]| ∼ |I|). �

3. Counterexamples

Theorem 3.1 implies that the third moduli of smoothness in the statement of
Theorem 1.1 cannot be replaced with any moduli of higher order.

Theorem 3.1. For any k ∈ N, A > 0, 0 < p ≤ ∞, r ∈ N, n ∈ N, and a partition
zn := {z0, . . . , zn| − 1 =: z0 < z1 < · · · < zn := 1} of [−1, 1], there exists a function
f ∈ Ck[−1, 1] ∩Mk[−1, 1] such that

(3.1) ‖f − qr‖Lp[zν ,zν+1] > Aωk+3(f, 1)p

for any qr ∈ Πr satisfying q(k)(0) ≥ 0, where 0 ≤ ν ≤ n − 1 is such that zν ≤ 0 <
zν+1.

Proof. This proof is a modification of the proof of inequality (4.2) in [4] and, in
fact, the idea can be traced back to the paper of Shvedov [10]. Let f be such
that f (k)(x) := (x2 − h2)+ := max{x2 − h2, 0}, where h > 0 is a constant to be
prescribed. We now let a polynomial Q ∈ Πk+2 be such that Q(k)(x) = x2 − h2,
and Q(i)(−1) = f (i)(−1) for all 0 ≤ i ≤ k − 1. Then, since

f(x) − Q(x) =
1

(k − 1)!

∫ x

−1

(x − t)k−1
(
f (k)(t) − Q(k)(t)

)
dt ,

we have

‖f − Q‖
C[−1,1] ≤ 1

(k − 1)!

∫ 1

−1

(1 − t)k−1
∣∣∣f (k)(t) − Q(k)(t)

∣∣∣ dt

≤ 2k−1

(k − 1)!

∫ h

−h

(h2 − t2) dt = ch3 .

This implies that

‖f − Q‖
Lp[−1,1] ≤ 21/p ‖f − Q‖

C[−1,1] ≤ ch3

and
ωk+3(f, 1)p = ωk+3(f − Q, 1)p ≤ c ‖f − Q‖

Lp[−1,1] ≤ ch3 .
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Now, assume that (3.1) is not true, i.e., that there exists a polynomial P ∈ Πr

such that P (k)(0) ≥ 0 and ‖f − P‖Lp[zν ,zν+1] ≤ Aωk+3(f, 1)p. Then, for 0 ∈ Jν :=
[zν , zν+1], using (2.2), we have∣∣∣P (k)(0) − Q(k)(0)

∣∣∣ ≤
∥∥∥P (k) − Q(k)

∥∥∥
C(Jν)

≤ c ‖P − Q‖
Lp(Jν)

≤ c
(
‖P − f‖

Lp(Jν) + ‖f − Q‖
Lp(Jν)

)
≤ c

(
Aωk+3(f, 1)p + ‖f − Q‖

Lp[−1,1]

)
≤ c0h

3 ,

where c0 depends on k, r, p, |Jν |, and A, and is independent of h. Finally,

P (k)(0) ≤ Q(k)(0) +
∣∣∣P (k)(0) − Q(k)(0)

∣∣∣ ≤ −h2 + c0h
3 < 0 ,

for sufficiently small h, which is a contradiction. �

The following theorem shows that the intervals near the endpoints where ap-
proximating splines are allowed to be non-k-monotone cannot be much smaller
than nearby intervals Jj produced by zn. (For the sake of simplicity we state it for
the right-hand endpoint only.) It also implies that we will not get any improvement
in orders of approximation if we relax the condition on k-monotonicity of the splines
instead of near the endpoints, somewhere inside the interval [−1, 1].

Theorem 3.2. Let k ∈ N, 0 < p ≤ ∞, r ∈ N, and suppose that, for each n ∈ N,
ξn ∈ (0, 1) and partition zn := {z0, . . . , zn| − 1 =: z0 < z1 < · · · < zn := 1} are
such that the number of indices in the set J := {j|Jj ∩ [2ξn − 1, ξn] = ∅} is bounded
independently of n, i.e., card (J) ≤ c0, where c0 is a constant independent of n.
In addition, suppose that the scale of the partition zn is bounded by an absolute
constant (ϑ(zn) ≤ c1), and that

(3.2) lim inf
n→∞

1 − ξn

|Jν |
= 0 ,

where ν := min{j|j ∈ J}. Then, for any A > 0, there exist an n ∈ N and a function
f ∈ Ck[−1, 1] ∩Mk[−1, 1] such that

(3.3) ‖f − qr‖Lp(Jν) > Aωk+2(f, 1)p

for any qr ∈ Πr satisfying q
(k)
r (ξn) ≥ 0.

Proof. The idea is quite similar to the one used in the proof of Theorem 3.1 above.
For convenience, we denote dn := 1−ξn everywhere in this proof. Let f be such that
f (k)(x) := (1 − 2dn − x)+ := max{1 − 2dn − x, 0}, and let a polynomial Q ∈ Πk+1

be such that Q(k)(x) = 1 − 2dn − x, and Q(i)(−1) = f (i)(−1) for all 0 ≤ i ≤ k − 1.
Then, f ≡ Q on [−1, 1 − 2dn] and, for any x ∈ [1 − 2dn, 1],

|f(x) − Q(x)| ≤ 1
(k − 1)!

∫ 1

−1

(1 − t)k−1
∣∣∣f (k)(t) − Q(k)(t)

∣∣∣ dt

≤ 2k−1

(k − 1)!
dk−1

n

∫ 1

1−2dn

(t − 1 + 2dn) dt

≤ cdk+1
n .
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This implies that

‖f − Q‖p = ‖f − Q‖
Lp[1−2dn,1] ≤ (2dn)1/p ‖f − Q‖

C[1−2dn,1] ≤ cdk+1+1/p
n

and
ωk+2(f, 1)p = ωk+2(f − Q, 1)p ≤ c ‖f − Q‖

Lp[−1,1] ≤ cdk+1+1/p
n .

Now, assume that (3.3) is not true, i.e., that for any n ∈ N, there exists a
polynomial P ∈ Πr such that P (k)(ξn) ≥ 0 and ‖f − P‖Lp(Jν) ≤ Aωk+2(f, 1)p.
Then, letting I(J) :=

⋃
j∈J

Jj , noting that |Jν | ≤ |I(J)| ≤ c0c
c0
1 |Jν |, and using

Lemmas 2.2 and 2.1 we have∣∣∣P (k)(ξn) − Q(k)(ξn)
∣∣∣ ≤

∥∥∥P (k) − Q(k)
∥∥∥

C(I(J))

≤ c (|I(J)|/|Jν |)max{r−k,1}+1/p
∥∥∥P (k) − Q(k)

∥∥∥
C(Jν)

≤ c|Jν |−k−1/p ‖P − Q‖
Lp(Jν)

≤ c|Jν |−k−1/p
(
‖P − f‖

Lp(Jν) + ‖f − Q‖
Lp(Jν)

)
≤ c|Jν |−k−1/p

(
Aωk+2(f, 1)p + ‖f − Q‖

Lp[−1,1]

)
≤ c2|Jν |−k−1/pdk+1+1/p

n ,

where c2 is independent of n. Finally, using (3.2), we get

P (k)(ξn) ≤ Q(k)(ξn) +
∣∣∣P (k)(ξn) − Q(k)(ξn)

∣∣∣ ≤ −dn + c2|Jν |−k−1/pdk+1+1/p
n

≤ dn

(
−1 + c2 (dn/|Jν |)k+1/p

)
< 0 ,

for sufficiently large n, which is a contradiction. �

4. Construction of nearly non-decreasing quadratic spline

We combine the ideas of DeVore, Hu, and Leviatan [1], with a construction by
Leviatan and Shevchuk [5]. The following lemma is similar to [5, Lemma 1].

Lemma 4.1. Let ζ0 < ζ1 < ζ2 < ζ3, and let f ∈ Lp[ζ0, ζ3], 0 < p ≤ ∞, be non-
decreasing on [ζ0, ζ3]. Assume that the quadratic polynomials Q0 and Q1 are such
that, for l = 0, 1, Ql interpolates f at ζi, i = l, l + 1, l + 2, and satisfies

(4.1) ‖f − Ql‖Lp[ζ1,ζ2] ≤ E.

Then, there exists a quadratic polynomial q which is non-decreasing in [ζ1, ζ2], in-
terpolates f at ζ1 and ζ2, and such that

‖f − q‖Lp[ζ1,ζ2] ≤ 21/pE.

Proof. If either Q0 or Q1 is non-decreasing on [ζ1, ζ2], then we take it for q and the
assertion follows from (4.1). Otherwise, necessarily Q0 is concave and Q1 is convex,
and since both interpolate f at ζ1 and ζ2, if we let L be the (non-decreasing) linear
Lagrange polynomial interpolating f at ζ1 and ζ2, then it follows that

Q1(x) ≤ L(x) ≤ Q0(x), x ∈ [ζ1, ζ2].
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For 0 < p < ∞, we have by virtue of (4.1),

‖f − L‖p
Lp[ζ1,ζ2] ≤

∫ ζ2

ζ1

max {|f(x) − Q0(x)|p, |f(x) − Q1(x)|p} dx

≤
∫ ζ2

ζ1

|f(x) − Q1(x)|p dx +
∫ ζ2

ζ1

|f(x) − Q0(x)|p dx ≤ 2Ep.

Thus, we take q := L and the proof is complete. �

Theorem 4.2. Let f ∈ Lp[−1, 1], 0 < p ≤ ∞, be non-decreasing. Then there exists
s ∈ S2(zn) ∩ C[−1, 1] ∩M1[z3, zn−2], such that

(4.2) ‖f − s‖Lp(Jj) ≤ cω3(f, zj+5 − zj−4, [zj−4, zj+5])p , 0 ≤ j ≤ n − 1.

Proof. First, for each 1 ≤ j ≤ n − 2, we use Lemmas 4.1 and 2.6 with r = 2,
ζl = ξ

(2)
j−1+l, l = 0, 1, 2, 3, and

E := max
{
ω3(f, |J̄j−1|, J̄j−1)p, ω3(f, |J̄j |, J̄j)p

}
≤ cω3(f, zj+3−zj−2, [zj−2, zj+3])p ,

and obtain a non-decreasing qj ∈ Π2 interpolating f at ξ
(2)
j and ξ

(2)
j+1, and satisfying

(4.3) ‖f − qj‖Lp[ξ
(2)
j ,ξ

(2)
j+1]

≤ cω3(f, zj+3 − zj−2, [zj−2, zj+3])p .

We now define s̃
∣∣∣[ξ(2)

j ,ξ
(2)
j+1]

:= qj , 1 ≤ j ≤ n − 2. Thus, s̃ is a non-decreasing con-

tinuous quadratic spline which is defined on [ξ(2)
1 , ξ

(2)
n−1] and is close to f . However,

the knots of s̃ are not at zn, and so we need one additional step in our construction.
Let Q̃j , 3 ≤ j ≤ n − 2, be the quadratic polynomial interpolating s̃ at zi,

i = j − 1, j, j + 1. Then, Lemma 2.7 with r = 2, knots {ξ(2)
j }n−1

1 instead of zn,

Iµ,ν = [ξ(2)
j−2, ξ

(2)
j+1], and interpolation points zj−1, zj and zj+1, implies

‖s̃ − Q̃j‖Lp[ξ
(2)
j−2,ξ

(2)
j+1]

≤ cω3(s̃, ξ
(2)
j+1 − ξ

(2)
j−2, [ξ

(2)
j−2, ξ

(2)
j+1])p =: Ẽj .

For each 3 ≤ j ≤ n − 3, we now apply Lemma 4.1 with ζl = zj−1+l, l = 0, 1, 2, 3,
to conclude that there is a quadratic polynomial pj which is non-decreasing on Jj ,
interpolates s̃ at zj and zj+1, and

(4.4) ‖pj − s̃‖Lp(Jj) ≤ c max{Ẽj , Ẽj+1} ≤ cω3(s̃, zj+3 − zj−2, [zj−2, zj+3])p .

Now, we denote s
∣∣
Jj

:= pj , 3 ≤ j ≤ n − 3, and extend s to [−1, 1] by setting
s
∣∣
[zn−2,1] := pn−3, and s

∣∣
[−1,z3] := p3. Obviously, the extension may not be non-

decreasing in [−1, 1], but s is non-decreasing in [z3, zn−2].
It remains to prove (4.2). For 3 ≤ j ≤ n − 3, using inequalities (4.3) and (4.4),

we have

‖f − s‖Lp(Jj) ≤ c‖f − s̃‖Lp(Jj) + c‖s̃ − s‖Lp(Jj)

≤ c‖f − s̃‖Lp(Jj) + cω3(s̃, zj+3 − zj−2, [zj−2, zj+3])p

≤ c‖f − s̃‖Lp[zj−2,zj+3] + cω3(f, zj+3 − zj−2, [zj−2, zj+3])p

≤ cω3(f, zj+5 − zj−4, [zj−4, zj+5])p .

Finally, Lemma 2.3 immediately implies that (4.2) is valid for j = 0, 1, 2, n−2, n−1
as well. �
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5. Smoothing lemma

In this section, we show how nearly non-decreasing splines constructed in Sec-
tion 4 (which were only continuous) can be “smoothed” to become continuously
differentiable.

We introduce, for each 1 ≤ j ≤ n − 1, the auxiliary functions

hj(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
· zj+1 − zj

zj+1 − zj−1
· (x − zj−1)2

zj − zj−1
, x ∈ [zj−1, zj ],

1
2
· zj − zj−1

zj+1 − zj−1
· (x − zj+1)2

zj+1 − zj
, x ∈ (zj , zj+1],

0, x ∈ [zj−1, zj+1],

and

φj(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − zj−1

zj − zj−1
, x ∈ [zj−1, zj ],

x − zj+1

zj − zj+1
, x ∈ (zj , zj+1],

0, x ∈ [zj−1, zj+1].

Note that hj and φj are continuous functions supported on [zj−1, zj+1].
The proof of the following lemma is straightforward and will be omitted.

Lemma 5.1. Each s ∈ S1(zn) has the following representation:

(5.1) s(x) =
n−1∑
i=1

αih
′
i(x) +

n∑
i=0

βiφi(x), x ∈ [−1, 1] \ zn,

where αi := s(zi−) − s(zi+), 1 ≤ i ≤ n − 1, and

βi :=
zi+1 − zi

zi+1 − zi−1
· s(zi+) +

zi − zi−1

zi+1 − zi−1
· s(zi−), 0 ≤ i ≤ n .

Now, we are ready to prove

Lemma 5.2. Let s ∈ S2(zn) ∩ C[−1, 1] ∩M1[zµ, zν ], where 0 ≤ µ < ν ≤ n. Then
there is s̃ ∈ S2(zn) ∩ C1[−1, 1] ∩M1[zµ+1, zν−1] satisfying

‖s − s̃‖
Lp(Jj)

≤ cω3(s, zj+2 − zj−1, [zj−1, zj+2])p, 0 ≤ j ≤ n − 1,

where c depends on r, p, and the scale ϑ(zn).

Proof. Since s′ ∈ S1(zn) it follows by Lemma 5.1 that s′(x) =
∑n−1

i=1 αih
′
i(x) +∑n

i=0 βiφi(x), x ∈ zn. We now define

s̃(x) := s(−1) +
n∑

i=0

βi

∫ x

−1

φi(t) dt, x ∈ [−1, 1].

Then clearly s̃ ∈ S2(zn) ∩ C1[−1, 1] and, for x ∈ Jj , s̃′(x) =
∑n

i=0 βiφi(x) =
βjφj(x) + βj+1φj+1(x). Since βi ≥ 0 for all µ + 1 ≤ i ≤ ν − 1 (because s′(zi±) ≥ 0
for these i), we conclude that s̃′(x) ≥ 0 for x ∈ Jj , µ + 1 ≤ j ≤ ν − 2, and so
s̃ ∈ M1[zµ+1, zν−1].
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Finally, for each 0 ≤ j ≤ n − 1, taking into account that ‖hi‖Lp[zi−1,zi+1] ≤
c|Ji|1+1/p, and using Lemma 2.4 we have

‖s − s̃‖
Lp(Jj) =

∥∥∥∑n−1
i=1 αihi

∥∥∥
Lp(Jj)

= ‖αjhj + αj+1hj+1‖Lp(Jj)

≤ c|αj | ‖hj‖Lp(Jj)
+ c|αj+1| ‖hj+1‖Lp(Jj)

≤ c|Jj |−1−1/pω3(s, zj+1 − zj−1, [zj−1, zj+1])p · |Jj |1+1/p

+c|Jj+1|−1−1/pω3(s, zj+2 − zj , [zj , zj+2])p · |Jj+1|1+1/p

≤ cω3(s, zj+2 − zj−1, [zj−1, zj+2])p .

�

6. Proof of Theorem 1.1

Let f ∈ Lp[−1, 1], 0 < p < ∞, be a non-decreasing function on [−1, 1]. Theo-
rem 4.2 and Lemma 5.2 imply that there exists s̃ ∈ S2(zn)∩C1[−1, 1]∩M1[z4, zn−3]
such that

‖f − s̃‖
Lp(Jj)

≤ c ‖f − s‖
Lp(Jj) + c ‖s − s̃‖

Lp(Jj)

≤ c ‖f − s‖
Lp(Jj) + cω3(s, zj+2 − zj−1, [zj−1, zj+2])p

≤ c ‖f − s‖
Lp[zj−1,zj+2] + cω3(f, zj+2 − zj−1, [zj−1, zj+2])p

≤ cω3(f, zj+5 − zj−4, [zj−4, zj+5])p , 0 ≤ j ≤ n − 1 .

Finally, since the scales of the uniform and Chebyshev partitions are bounded, the
inequality

‖f − s̃‖p
p =

n−1∑
j=0

‖f − s̃‖p
Lp(Jj)

≤ c
n−1∑
j=0

ω3(f, zj+5 − zj−4, [zj−4, zj+5])p
p

and the estimates (see, e.g., [3, 2])
∑n−1

j=0 ωk(f, |J∗
j |, J∗

j )p
p ≤ cωk(f, 1/n)p

p (if zn =
un), and

∑n−1
j=0 ωk(f, |J∗

j |, J∗
j )p

p ≤ cωϕ
k (f, 1/n)p

p (if zn = tn), where Jj ⊂ J∗
j and

|Jj | ∼ |J∗
j |, complete the proof of Theorem 1.1 for 0 < p < ∞. In the case p = ∞,

the proof is similar and, in fact, simpler (also see [5]).
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