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Abstract

For each q ∈ N0, we construct positive linear polynomial approximation operators Mn that simultane-
ously preserve k-monotonicity for all 0 ≤ k ≤ q and yield the estimate

| f (x)− Mn( f, x)| ≤ cωϕ
λ

2


f, n−1ϕ1−λ/2(x) (ϕ(x)+ 1/n)−λ/2


,

for x ∈ [0, 1] and λ ∈ [0, 2), where ϕ(x) :=
√

x(1 − x) and ωψ2 is the second Ditzian–Totik modulus of
smoothness corresponding to the “step-weight function” ψ . In particular, this implies that the rate of best
uniform q-monotone polynomial approximation can be estimated in terms of ωϕ2 ( f, 1/n).
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1. Introduction and main result

Recall that ∆k
δ( f, x) :=

k
i=0


k
i


(−1)k−i f (x − kδ/2 + iδ), denotes the kth symmetric

difference of a function f with a step δ (as is customary, we also define ∆k
δ( f, x) := 0 if

x ± kδ/2 ∉ [0, 1]). We say that a function f ∈ C[0, 1] is q-monotone if ∆q
δ ( f, x) ≥ 0 for

all δ > 0, and denote the set of all q-monotone (continuous) functions by ∆(q). In particular,
∆(0), ∆(1) and ∆(2) are, respectively, the classes of all nonnegative, nondecreasing and convex
functions from C[0, 1]. We also remark that, for q ≥ 3, f ∈ C[0, 1] is q-monotone if and only
if f ∈ Cq−2(0, 1) and f (q−2) is convex in (0, 1).

Let Πn be the space of all algebraic polynomials of degree ≤ n, ∥·∥ := ∥·∥L∞[0,1], and denote
by

E (q)n ( f ) := inf
pn∈∆(q)∩Πn

∥ f − pn∥ (1.1)

the degree of best q-monotone polynomial approximation of f ∈ ∆(q) in the uniform norm, and
by

ωk( f, t) := sup
0<h≤t

∆k
h( f, ·)

 and ω
ψ
k ( f, t) := sup

0<h≤t

∆k
hψ(·)( f, ·)


the kth classical and kth Ditzian–Totik moduli of smoothness, respectively.

Both uniform and pointwise Jackson type estimates for q-monotone polynomial
approximation are rather well investigated for q ≤ 3 though there are still several open
problems remaining even in these “simple” cases (see our survey [13] for the history and detailed
discussions), and we are mostly interested in q ≥ 4 in the current paper. In particular, our main
motivation for the present work was the Jackson type estimate

E (q)n ( f ) ≤ cωϕ2 ( f, 1/n), n ∈ N, (1.2)

where ϕ(x) :=
√

x(1 − x) and N denotes the set of all natural numbers. It has been known for
some time that estimate (1.2) is true with ω2 instead of ωϕ2 and that, for q ≥ 4, it is no longer valid
if ωϕ2 is replaced by ωϕ3 or even by ω3 (see [13] for details). While (1.2) has not been explicitly
proved anywhere (as far as we know) and appeared as an open problem in the literature (see,
e.g., [6, (15.12)]), in our survey [13, p. 52], we wrote that, for q ≥ 4, (1.2) “can be derived
from results in the article by Gavrea, Gonska, Păltănea and Tachev [10], combined with the
q-monotonicity preservation properties of the Gavrea operators (see Gavrea [9]), appearing in
the paper of Cottin, Gavrea, Gonska, Kacsó and Zhou [4]”.

However, it turns out that this statement was not justified (we thank Jorge Bustamante from
Universidad Autónoma de Puebla, Mexico for bringing this to our attention), and that the
validity of (1.2) cannot be immediately concluded from the results in these articles (this was
also confirmed by the corresponding author of [4] who was not aware of any other papers that
would yield this estimate). The confusion was that, in these papers, the same notation was used
for operators preserving q-monotonicity, q ≥ 3, and for operators yielding estimates in terms of
ω
ϕ
2 ( f, 1/n). However, these operators depended on different generating polynomials and so, in

fact, were different operators not satisfying both conditions at the same time.
Hence, the main purpose of this manuscript is to justify/modify our statement in [13] and

show how (1.2) “can be derived from [9,4,8]” (note that [10] in our original statement is replaced
by an earlier paper [8]) by constructing positive linear polynomial approximation operators that
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simultaneously preserve k-monotonicity for all k ≤ q and yield (1.2). Additionally, we make this
paper self-contained and provide all proofs (except for some straightforward statements that can
be verified directly and some classical properties of ultraspherical polynomials). Furthermore,
we prove a more general statement than (1.2) by bridging pointwise and uniform estimates (see
[6, Section 14] for the history of this type of estimates) and, in fact, making them a bit stronger
than what usually appears in the literature. For example, pointwise inequalities in terms of ωϕ2
are obtained as a by-product of our estimates.

Let N0 := N ∪ {0}. Our main result is the following theorem which is proved in Section 2.5.

Theorem 1.1. Let q ∈ N0. Then, for each n ∈ N, there exists a positive linear operator
Mn : C[0, 1] → Πn preserving k-monotonicity for every 0 ≤ k ≤ q (i.e., f ∈ ∆(k) implies
Mn( f, ·) ∈ ∆(k)) and such that, for any 0 ≤ λ < 2, f ∈ C[0, 1], x ∈ [0, 1] and 0 < h ≤ c0, one
has

| f (x)− Mn( f, x)| ≤ c


1 +

ϕ2−λ(x)

h2n2 (ϕ(x)+ 1/n)λ


ω
ϕλ

2 ( f, h), (1.3)

where c0 is some absolute constant, and the constant c depends only on q and on λ as λ → 2−.

Remark 1.2. The operators Mn are particular instances (for the generating polynomials con-
structed in Lemma 2.13) of, what we call, Gavrea’s operators Hn whose construction is based
on Ioan Gavrea’s clever combination of genuine Bernstein–Durrmeyer polynomials with coeffi-
cients of appropriate generating polynomials (see (2.15)). This construction heavily relies on a
very powerful but little known and hardly accessible article by Alexandru Lupaş [15], extend-
ing the Bernstein–Durrmeyer operators by introducing ultraspherical weights (see Appendix for
details).

We wish to emphasize that the range for λ in the statement of Theorem 1.1 is not a misprint and
that, indeed, we work with λ ∈ [0, 2) and not just λ ∈ [0, 1] which is what is usually done. This
does not seem to have been considered in the literature as far as we know, and we discuss why

it is sometimes useful to work with these λ’s and corresponding moduli ωϕ
λ

2 by considering an
analog of Theorem 1.1 for the classical Bernstein polynomials (see Corollary 2.7) and comparing
various estimates for a particular function ( fϵ(x) = xϵ) in Section 2.1.

We also note that (1.3) is not valid if λ = 2. In fact, it is not difficult to see that the estimate

En( f ) := inf
pn∈Πn

∥ f − pn∥ ≤ cωϕ
2

2 ( f, 1)

is not valid with c independent of f . Indeed, if gϵ := ln(x + ϵ), then ωϕ
2

2 (gϵ, 1) ≤ c
ϕ4g′′

ϵ

 ≤ c
where c is an absolute constant. At the same time, for any A ∈ R and n ∈ N there exists 0 < ϵ <

1 such that En(gϵ) > A. This follows from the observations that |pn(0)| ≤ c(n) ∥pn∥C[1/2,1],
for any pn ∈ Πn , and ∥gϵ∥C[1/2,1] ≤ ln 2. Hence, if qn ∈ Πn is such that ∥qn − gϵ∥ ≤ A, then

| ln ϵ| = |gϵ(0)| ≤ |gϵ(0)− qn(0)| + |qn(0)| ≤ A + c(n)(A + ln 2),

and one obtains a contradiction by taking ϵ > 0 sufficiently small.
For 0 ≤ λ < 2, choosing h := min{c0, 1} n−1ϕ1−λ/2(x) (ϕ(x)+ 1/n)−λ/2 (which implies

that h ≤ c0) we immediately have the following consequence of Theorem 1.1.
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Corollary 1.3. Let q ∈ N0. Then, for each n ∈ N, there exists a positive linear operator
Mn : C[0, 1] → Πn preserving k-monotonicity for every 0 ≤ k ≤ q, and such that, for any
0 ≤ λ < 2, f ∈ C[0, 1] and x ∈ [0, 1], one has

| f (x)− Mn( f, x)| ≤ cωϕ
λ

2


f, n−1ϕ1−λ/2(x) (ϕ(x)+ 1/n)−λ/2


, (1.4)

where c is a constant that depends only on q and on λ as λ → 2−. In particular, for λ = 0 and
λ = 1 we have, respectively,

| f (x)− Mn( f, x)| ≤ cω2


f,

√
x(1 − x)

n


(1.5)

and

| f (x)− Mn( f, x)| ≤ cωϕ2


f, n−1


ϕ(x)

ϕ(x)+ 1/n


≤ cωϕ2


f, n−1


. (1.6)

Remark 1.4. Estimate (1.6) verifies (1.2). Inequality (1.5) was proved by Cao and Gonska in
1994 [3, Theorem 4.5]. However, the operator yielding it in [3] was not positive.

Remark 1.5. Estimate (1.4) can be rewritten as

| f (x)− Mn( f, x)| ≤ cωϕ
λ

2


f, δn,λ(x)


,

where, for n ∈ N and 0 ≤ λ < 2,

δn,λ(x) :=


n−1ϕ(x)

1−λ/2
, if x ∈


0, n−2


∪


1 − n−2, 1


,

n−1ϕ1−λ(x), if n−2 < x < 1 − n−2,

and implies that, for f ∈ C[0, 1] with f ′
∈ ACloc(0, 1) and

ϕ2λ f ′′
 < ∞,

| f (x)− Mn( f, x)| ≤ c

δn,λ(x)

2 ϕ2λ f ′′

 , x ∈ [0, 1].

Throughout this paper, we use the notation ei (x) := x i , i ∈ N0, and (β)k := β(β+1) . . . (β+

k − 1) for k ≥ 1, and (β)0 := 1 (i.e., (β)k is the Pochhammer function).

2. Approximation by positive linear operators preserving linear functions

Recall that an operator L : C[0, 1] → C[0, 1] is positive if L( f, x) ≥ 0 for all x ∈ [0, 1]

provided f (x) ≥ 0, x ∈ [0, 1].
Let

Ω :=


ψ ∈ C[0, 1]

 ψ(x) > 0, 0 < x < 1, and ψ2 is concave on [0, 1]


and

K2,ψ ( f, h2) := inf
g′∈ACloc(0,1)

(∥ f − g∥ + h2
∥ψ2g′′

∥).
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The following lemma is a corollary of a more general theorem [8, Theorem 1] that was proved
for positive linear operators preserving constants.

Lemma 2.1 (Felten [8]). Suppose that ψ ∈ Ω and L : C[0, 1] → C[0, 1] is a positive linear
operator preserving linear functions (i.e., L(ei ) = ei , i = 0, 1). Then, for any f ∈ C[0, 1] and
x ∈ (0, 1), one has

| f (x)− L( f, x)| ≤ 4K2,ψ


f,

L(e2, x)− x2

ψ2(x)


.

Lemma 2.2 (Bustamante [2, Theorem 11]). Suppose that ψ ∈ Ω and L : C[0, 1] → C[0, 1] is
a positive linear operator preserving linear functions. Then, for any f ∈ C[0, 1] and x ∈ (0, 1),
one has

| f (x)− L( f, x)| ≤


3
2

+
3

2h2ψ2(x)


L(e2, x)− x2


ω
ψ

2 ( f, h).

If one does not worry about the constants then Lemma 2.2 follows from Lemma 2.1 provided
that ψ is such that K2,ψ ( f, h2) ≤ cωψ2 ( f, h).

Since

ϕλ ∈ Ω if and only if 0 ≤ λ ≤ 1,

we conclude that Lemmas 2.1 and 2.2 hold for ψ := ϕλ with 0 ≤ λ ≤ 1.
We will now provide a rather elementary proof that a similar statement (we do not worry about

constants) is valid for all 0 ≤ λ < 2 (for 1 < λ < 2 this seems to be a new result).

Lemma 2.3. If L : C[0, 1] → C[0, 1] is a positive linear operator preserving linear functions,
then for any 0 ≤ λ < 2, f ∈ C[0, 1], x ∈ [0, 1], ξ ∈ (0, 1) and h > 0, one has

| f (x)− L( f, x)| ≤


2 +

4
2 − λ

·
L(e2, x)− x2

+ 2(x − ξ)2

h2ϕ2λ(ξ)


K2,ϕλ( f, h2). (2.1)

Proof. We first show that for any g ∈ C[0, 1] such that g′
∈ ACloc(0, 1),

g(t)− g(ξ)− (t − ξ)g′(ξ)
 ≤

4
2 − λ

(t − ξ)2

ϕ2λ(ξ)

ϕ2λg′′

 , (2.2)

for all ξ ∈ (0, 1) and t ∈ [0, 1].
Since g′

∈ ACloc(0, 1) we haveg(t)− g(ξ)− (t − ξ)g′(ξ)
 =

 t

ξ

(t − u)g′′(u)du

 ≤

ϕ2λg′′

  ξ

t

u − t

ϕ2λ(u)
du.

Without loss of generality, assume that ξ ∈ (0, 1/2]. If ξ/2 ≤ t ≤ 1 − ξ/2, then ϕ(u) ≥

ϕ(ξ/2) ≥ 2−1/2ϕ(ξ) for any u between t and ξ , and so ξ

t

u − t

ϕ2λ(u)
du ≤

4

ϕ2λ(ξ)

 ξ

t
(u − t) du = 2

(t − ξ)2

ϕ2λ(ξ)
.
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If 0 ≤ t < ξ/2, then ξ

t

u − t

ϕ2λ(u)
du ≤

 ξ

0

u

ϕ2λ(u)
du ≤

1
(1 − ξ)λ

 ξ

0
u1−λ du =

1
2 − λ

ξ2

ϕ2λ(ξ)

≤
4

2 − λ

(ξ − t)2

ϕ2λ(ξ)
.

For the remaining case 1 − ξ/2 < t ≤ 1, the proof is exactly the same, and so (2.2) is verified.
Since L is positive we conclude that, for any functions F,G ∈ C[0, 1] such that |F(t)| ≤

G(t), t ∈ [0, 1], the inequality |L(F, x)| ≤ L(G, x) is valid for all x ∈ [0, 1]. Applying this
observation to (2.2) and recalling that L is linear and preserves linear functions we immediately
get

|L(g, x)− g(ξ)− (x − ξ)g′(ξ)| ≤
4

2 − λ

ϕ2λg′′


ϕ2λ(ξ)


L(e2, x)− 2xξ + ξ2


, x ∈ [0, 1].

Together with (2.2) (with t replaced by x) this yields

|L(g, x)− g(x)| ≤ |L(g, x)− g(ξ)− (x − ξ)g′(ξ)| + |g(x)− g(ξ)− (x − ξ)g′(ξ)|

≤
4

2 − λ

ϕ2λg′′


ϕ2λ(ξ)


L(e2, x)− 2xξ + ξ2


+

4
2 − λ

ϕ2λg′′


ϕ2λ(ξ)
(x − ξ)2

=
4

2 − λ

ϕ2λg′′


ϕ2λ(ξ)


L(e2, x)− x2

+ 2(x − ξ)2

.

Suppose now that, for each ε > 0, gε ∈ C[0, 1] with g′
ε ∈ ACloc(0, 1) is such that

∥ f − gε∥ + h2
∥ϕ2λg′′

ε ∥ ≤ K2,ϕλ( f, h2)+ ε.

Taking into account that any positive linear operator L preserving constants is a contraction
(i.e., |L(F, x)| ≤ ∥F∥) we have

| f (x)− L( f, x)| ≤ | f (x)− gε(x)| + |gε(x)− L(gε, x)| + |L(gε − f, x)|

≤ 2 ∥ f − gε∥ +
4

2 − λ

ϕ2λg′′
ε


ϕ2λ(ξ)


L(e2, x)− x2

+ 2(x − ξ)2


≤


2 +

4
2 − λ

·
L(e2, x)− x2

+ 2(x − ξ)2

h2ϕ2λ(ξ)


(K2,ϕλ( f, h2)+ ε),

and (2.1) follows. �

Remark 2.4. Clearly, Lemma 2.3 remains valid if ϕλ is replaced by a function φ such that, for
ξ ∈ (0, 1) and t ∈ [0, 1], ξ

t

u − t

φ2(u)
du ≤ c

(t − ξ)2

φ2(ξ)
. (2.3)

In particular, this inequality is satisfied if φ is such that

(i) x−βφ(x) and (1−x)−βφ(x) are, respectively, quasi decreasing and quasi increasing on (0, 1)
for some β < 1 (g is quasi decreasing if g(x) ≥ cg(y) for x ≤ y for some absolute constant
c; g is quasi increasing if −g is quasi decreasing), and

(ii) φ(x) ≥ c max{φ(ϵ), φ(1 − ϵ)}, for any 0 ≤ ϵ ≤ 1/2 and ϵ ≤ x ≤ 1 − ϵ.
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For example, any φ such that φ(x) ∼ φ(1 − x) and φ2 is concave on [0, 1] satisfies these
conditions. Note also that (2.3) is not valid for φ(x) = ϕ2(x) (which is concave on [0, 1]) and so
we cannot replace the inequality “β < 1” in (i) by “β ≤ 1”.

Note that if L : C[0, 1] → C[0, 1] is a positive linear operator preserving linear functions,
then L( f, 0) = f (0) and L( f, 1) = f (1) for any f ∈ C[0, 1]. Indeed, suppose that it is not the
case and, without loss of generality, assume that ϵ := L( f, 0)− f (0) > 0 for some f ∈ C[0, 1].
Continuity of f implies that there exists m ∈ R depending on f such that l(x) := mx + L( f, 0)
satisfies l(x) ≥ f (x)+ϵ/2 for all x ∈ [0, 1]. (For example, one can choose m := 2 ∥ f ∥ /δ where
δ > 0 is such that | f (x) − f (0)| < ϵ/2 for 0 ≤ x ≤ δ.) Then l(x) = L(l, x) ≥ L( f, x) + ϵ/2
and letting x = 0 we get a contradiction.

The above observation implies that, if Ln : C[0, 1] → Πn is a sequence of positive
linear polynomial operators preserving linear functions and such that Ln( f, ·) ∈ Π2 provided
f ∈ Π2, then Ln(e2, x) = x2

+ αnϕ
2(x), αn > 0. Taking into account a well known fact that

K2,ϕλ( f, h2) ∼ ω
ϕλ

2 ( f, h), for 0 < h ≤ c0 (see [7, Theorem 2.1.1]), we immediately have the
following consequence of Lemma 2.3 by setting

ξ :=


x, if βn ≤ x ≤ 1 − βn,

x +

βnϕ(x), if 0 ≤ x < βn,

x −

βnϕ(x), if 1 − βn < x ≤ 1,

where βn := min{αn, 1/4}, and noting that

αnϕ
2(x)+ 2(x − ξ)2

ϕ2λ(ξ)
≤


αnϕ

2−2λ(x), if x ∈ [βn, 1 − βn],

12αnβ
−λ/2
n ϕ2−λ(x), if x ∈ (0, βn) ∪ (1 − βn, 1),

≤
50αnϕ

2−λ(x)
ϕ(x)+

√
βn
λ .

Corollary 2.5. If Ln : C[0, 1] → Πn is a sequence of positive linear polynomial operators
preserving linear functions, then for any 0 ≤ λ < 2, f ∈ C[0, 1], x ∈ [0, 1] and 0 < h ≤ c0,
one has

| f (x)− Ln( f, x)| ≤ c


1 +

αnϕ
2−λ(x)

h2

ϕ(x)+

√
min{αn, 1/4}

λ

ω
ϕλ

2 ( f, h), (2.4)

where αn > 0 is such that Ln(e2, x) − x2
= αnϕ

2(x), c0 is some absolute constant, and the
constant c depends on λ as λ → 2−.

Remark 2.6. Estimate (2.4) implies the following weaker inequality

| f (x)− Ln( f, x)| ≤ c


1 +

αnϕ
2−2λ(x)

h2


ω
ϕλ

2 ( f, h)

which, in turn, yields

| f (x)− Ln( f, x)| ≤ cωϕ
λ

2


f,

√
αn ϕ

1−λ(x)

.
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In the next section, we discuss some applications for the classical Bernstein polynomials
(clearly, similar results can be stated for many other positive linear polynomial operators) and
show how our estimates can be used for λ ∈ (1, 2).

2.1. Some applications for Bernstein polynomials

Let

pn,k(x) :=


n

k


xk(1 − x)n−k, 0 ≤ k ≤ n,

be the Bernstein fundamental polynomials, and recall that the classical Bernstein operator

Bn( f, x) :=

n
k=0

f (k/n)pn,k(x)

is positive, linear, preserves linear functions and Bn(e2, x)− x2
= ϕ2(x)/n. Corollary 2.5 (with

αn = 1/n) implies the following result.

Corollary 2.7. If n ∈ N and Bn : C[0, 1] → Πn is the classical Bernstein polynomial, then, for
any 0 ≤ λ < 2, f ∈ C[0, 1], x ∈ [0, 1] and 0 < h ≤ c0, one has

| f (x)− Bn( f, x)| ≤ c


1 +

ϕ2−λ(x)

h2n

ϕ(x)+ n−1/2

λ

ω
ϕλ

2 ( f, h), (2.5)

where c0 is some absolute constant, and the constant c depends on λ as λ → 2−. In particular,

| f (x)− Bn( f, x)| ≤ cωϕ
λ

2


f, γn,λ(x)


, (2.6)

where

γn,λ(x) := n−1/2ϕ1−λ/2(x)

ϕ(x)+ n−1/2

−λ/2

∼


n−1x(1 − x)

(2−λ)/4
, if x ∈


0, n−1


∪


1 − n−1, 1


,

n−1/2
[x(1 − x)](1−λ)/2, if n−1 < x < 1 − n−1.

Remark 2.8. Clearly, γn,λ(x) ≤ n−1/2ϕ1−λ(x) and so (2.6) immediately implies

| f (x)− Bn( f, x)| ≤ cωϕ
λ

2


f, n−1/2ϕ1−λ(x)


, (2.7)

which is the main result of [5] in the case 0 ≤ λ ≤ 1.

Remark 2.9. For λ = 1, (2.6) becomes

| f (x)− Bn( f, x)| ≤ cωϕ2


f, n−1/2


ϕ(x)

ϕ(x)+ n−1/2


, (2.8)

which is equivalent to [18, Theorem 1.1].

We will now consider a very simple example in order to compare the estimates produced by
different methods.
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Suppose that one wants to know how well Bernstein polynomials approximate the function
fϵ(x) := xϵ , 0 < ϵ < 1. One can easily calculate (see also [7, Section 3.4]) that, for 0 ≤ λ ≤ 2,

ω
ϕλ

2 ( fϵ, t) ∼


t2, if ϵ + λ− 2 ≥ 0,
tϵ/(1−λ/2), if ϵ + λ− 2 < 0.

The classical results (estimate (2.7) for λ = 0 and λ = 1) immediately yield

| fϵ(x)− Bn( fϵ, x)| ≤ c


n−1/2ϕ(x)
ϵ

and ∥ fϵ − Bn( fϵ, ·)∥ ≤ cn−ϵ . (2.9)

Using (2.7) for 0 ≤ λ ≤ 1, we may conclude that

| fϵ(x)− Bn( fϵ, x)| ≤ c


n−1/2ϕ1−λ(x)
ϵ/(1−λ/2)

, (2.10)

but this is not better than (2.9) since, for all x, λ ∈ [0, 1],

min


n−1/2ϕ(x), n−1


≤


n−1/2ϕ1−λ(x)

1/(1−λ/2)
.

However, if we choose λ = 2 − ϵ (note that 1 < λ < 2), then ωϕ
λ

2 ( fϵ, t) ∼ t2, and (2.6) yields

| fϵ(x)− Bn( fϵ, x)| ≤ cn−1 ϕϵ(x)
ϕ(x)+ n−1/2

2−ϵ
.

This implies

| fϵ(x)− Bn( fϵ, x)| ≤ c


n−1ϕ2ϵ−2(x), if x ∈ [1/n, 1 − 1/n],

n−1/2ϕ(x)
ϵ
, if x ∈ [0, 1/n) ∪ (1 − 1/n],

(2.11)

which is better in the middle of [0, 1] than anything that one can get from (2.9) or (2.10). Now,
the classical Voronovskaya theorem yields

lim
n→∞

n ( fϵ(x)− Bn( fϵ, x)) = −
ϕ2(x)

2
f ′′
ϵ (x) =

ϵ(1 − ϵ)

2
xϵ−2ϕ2(x), (2.12)

and this implies that (2.11) in the middle of [0, 1] cannot be improved (note that (2.12) actually
implies (2.11) in the middle of [0, 1] for sufficiently large n depending on x).

This elementary example illustrates that it is sometimes advantageous to work with moduli

ω
ϕλ

2 with λ’s greater than 1.

2.2. Genuine Bernstein–Durrmeyer operator

Let Un : C[0, 1] → Πn , n ≥ 2, be defined by

Un( f, x) := f (0)(1 − x)n + f (1)xn
+ (n − 1)

n−1
k=1

pn,k(x)
 1

0
pn−2,k−1(t) f (t)dt.

It seems that operators Un were first considered by Goodman and Sharma in [12] (see [11] for
further discussions of the history of these operators as well as different names used for them in
the literature).
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Clearly, Un are positive linear operators with Un( f, 0) = f (0) and Un( f, 1) = f (1). Also, it
immediately follows from the following lemma that

Un(e0, x) = 1, Un(e1, x) = x and Un(e2, x) = x2
+

2x(1 − x)

n + 1
, (2.13)

and so operators Un preserve linear functions.

Lemma 2.10. For any n ≥ 2,

Un(ei , x) =
(n − 1)! i !

(n + i − 1)!

i−1
j=max{0,i−n}


i − 1

j


n

i − j


x i− j , i ≥ 1, (2.14)

and Un(e0, x) = 1.

Proof. The proof is standard and is based on the fact that, for any i ≥ 0, n ≥ 0 and 0 ≤ k ≤ n, 1

0
pn,k(t)ei (t)dt =

(k + 1)i
(n + 1)i+1

and (k)i xk
= x ·

d i

dyi yk+i−1

y=x

.

We omit details. �

Remark 2.11. The following identity can also be used to calculate Un(ek, x):

Un(ek+1, x) =
(n − k)x + 2k

n + k
Un(ek, x)−

k(k − 1)(1 − x)

(n + k)(n + k − 1)
Un(ek−1, x).

2.3. Gavrea’s operator

In this section, we discuss several properties of the operator Hn+2 that was introduced by
Gavrea [9]. Everything here follows from [9,4], and we include this section in the current
manuscript only for readers’ convenience (we also somewhat clean up some of the proofs making
them, in our opinion, more transparent by utilizing the notation (A.9) and Corollary A.5).

For any n ∈ N and a fixed (generating) polynomial Pn(x) =
n

k=0 ak xk , Gavrea’s operator
Hn+2 : C[0, 1] → Πn+2 is defined as

Hn+2(Pn; f, x) :=

n
k=0

ak

k + 1
Uk+2( f, x). (2.15)

Clearly, these operators are linear. It turns out that they are also positive and, moreover, preserve
monotonicity of high orders if a generating polynomial P satisfies certain properties (see
Lemma 2.12).

By (2.13) we immediately get

Hn+2(Pn; e0, x) =

n
k=0

ak

k + 1
=

 1

0
Pn(t)dt,

Hn+2(Pn; e1, x) =

n
k=0

ak

k + 1
x = x

 1

0
Pn(t)dt
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and

Hn+2(Pn; e2, x) =

n
k=0

ak

k + 1


x2

+
2x(1 − x)

k + 3


.

Hence,

Hn+2(Pn; e2, x)− x2
 1

0
Pn(t)dt = x(1 − x)

n
k=0


ak

k + 1
−

ak

k + 3



= x(1 − x)

 1

0
Pn(t)dt −

 1

0
t2Pn(t)dt


.

It was shown in [9, Lemma 3] that, for all 0 < x < 1 and n ≥ 2,

Un( f, x) = f (0)(1 − x)n + f (1)xn

+ (n − 1)(1 − x)n
 x

0

Dn−2( f, y)

(1 − y)n
dy + (n − 1)xn

 1

x

Dn−2( f, y)

yn dy, (2.16)

where

Dn( f, x) := (n + 1)
n

k=0

pn,k(x)
 1

0
pn,k(t) f (t)dt (2.17)

is the (usual) Bernstein–Durrmeyer operator (see also Remark A.2).
Note that (2.16) follows from the identity

1
n − 1

pn,k+1(x) =

 x

0


1 − x

1 − y

n

pn−2,k(y)dy +

 1

x


x

y

n

pn−2,k(y)dy,

which is valid for 0 ≤ k ≤ n − 2 and is easily verified directly.
Now, Corollary A.5 yields

Hn+2(Pn; f, x) = f (0)
n

k=0

ak

k + 1
(1 − x)k+2

+ f (1)
n

k=0

ak

k + 1
xk+2

+

 x

0


1 − x

1 − y

2 n
k=0

ak


1 − x

1 − y

k

Dk( f, y)dy

+

 1

x


x

y

2 n
k=0

ak


x

y

k

Dk( f, y)dy

= f (0)(1 − x)
 1−x

0
Pn(y)dy + f (1)x

 x

0
Pn(y)dy

+

 x

0


1 − x

1 − y

2 
L⟨0⟩

n


Pn,

1 − x

1 − (·)
, 1, 0, [0, x]; f, y


+ L⟨0⟩

n


Pn,

1 − x

1 − (·)
, 0, 0, [0, x]; f, y


dy
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+

 1

x


x

y

2 
L⟨0⟩

n


Pn,

x

(·)
, 1, 0, [x, 1]; f, y


+ L⟨0⟩

n


Pn,

x

(·)
, 0, 0, [x, 1]; f, y


dy,

which implies that the operator Hn+2 is positive provided Pn(x) ≥ 0 and P′
n(x) ≥ 0 for all

x ∈ [0, 1].

Now, using the fact that d
dx Un+1( f, x) = Dn( f ′, x) for any n ∈ N0 (the proof of this is

straightforward or see [4, Theorem 12]) by virtue of Lemma A.6 (see also Remark A.2) we
conclude that, for any ν ∈ N, f ∈ Cν

[0, 1] and k ≥ ν − 2,

dν

dxν
Uk+2( f, x) =

dν−1

dxν−1 D⟨0⟩

k+1( f ′, x) =
(k + 1)!

(k − ν + 2)!(k + 3)ν−1
D⟨ν−1⟩

k−ν+2


f (ν), x


.

Recalling that Uk+2( f, ·) ∈ Πk+2, this implies, for ν ≥ 2,

dν

dxν
Hn+2(Pn; f, x) =

n
k=ν−2

ak

k + 1
·

(k + 1)!
(k − ν + 2)!(k + 3)ν−1

D⟨ν−1⟩

k−ν+2


f (ν), x


=

n−ν+2
k=0

(k + ν − 2)!
k!(k + ν + 1)ν−1

ak+ν−2 D⟨ν−1⟩

k


f (ν), x


=

1
(ν)ν

n−ν+2
k=0

(ν)k(k + 1)ν−2

(2ν)k
(k + ν) ak+ν−2 D⟨ν−1⟩

k


f (ν), x


.

Since (k + ν)(k + 1)ν−2 = (k)ν−1 + ν(k + 1)ν−2, using Corollary A.5 we write

dν

dxν
Hn+2(Pn; f, x) =

1
(ν)ν


νL⟨ν−1⟩

n (Pn, 1, ν − 2, ν − 2, [0, 1]; f (ν), x)

+ L⟨ν−1⟩
n (Pn, 1, ν − 1, ν − 2, [0, 1]; f (ν), x)


,

and conclude that dν
dxν Hn+2(Pn; f, x) ≥ 0 provided f (ν)(x) ≥ 0, P

(ν−1)
n (x) ≥ 0 and

P
(ν−2)
n (x) ≥ 0 on [0, 1].

In the case ν = 1, we have

d

dx
Hn+2(Pn; f, x) =

n
k=0

ak

k + 1
D⟨0⟩

k+1


f ′, x


=

n+1
k=1

ak−1

k
D⟨0⟩

k


f ′, x


=

n+1
k=0

bk

k + 1
D⟨0⟩

k


f ′, x


= L⟨0⟩

n+1(
Pn+1, 1, 0, 0, [0, 1]; f ′, x),

where b0 := 0 and bk := (k + 1)ak−1/k, 1 ≤ k ≤ n + 1, and

Pn+1(x) :=

n+1
k=0

bk xk
= xPn(x)+

 x

0
Pn(y)dy.
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Corollary A.5 now implies that d
dx Hn+2(Pn; f, x) ≥ 0 provided f ′(x) ≥ 0 andPn+1(x) ≥ 0 on

[0, 1] (and nonnegativity of Pn on [0, 1] is clearly sufficient for the latter inequality).
We summarize the above discussions in this section in the following lemma.

Lemma 2.12 ([9, Theorem 2] and [4, Theorem 14]). Let r, n ∈ N and suppose that a generating
polynomial Pn ∈ Πn is such that

(i) for all 0 ≤ ν ≤ r , P
(ν)
n (x) ≥ 0, x ∈ [0, 1],

(ii)
 1

0 Pn(t)dt = 1.

Then the operator Hn+2 : C[0, 1] → Πn+2 defined in (2.15) has the following properties

(i) Hn+2 is a positive linear operator preserving linear functions, i.e., Hn+2(Pn; g, ·) = g for
any g ∈ Π1,

(ii) Hn+2(Pn; e2, x) = x2
+ x(1 − x)


1 −

 1
0 t2Pn(t)dt


,

(iii) For every 0 ≤ k ≤ r + 1, Hn+2 is k-monotonicity preserving. In other words, if f ∈ ∆(k),
then Hn+2(Pn; f, ·) ∈ ∆(k).

2.4. A particular generating polynomial

Let Tm(x) := cos m arccos x , x ∈ [−1, 1], be the Chebyshev polynomial of degree m,
x̃ = cos(π/2m) be its rightmost zero, x1 = cos(π/m) be its rightmost local minimum,
I1 := [x1, 1] (its length |I1| = 1 − x1 = 2 sin2(π/2m)). Then

τm(x) :=
Tm(x)

x − x̃
|I1|,

is a polynomial of degree m −1. It is well known (see, e.g., [14, Appendix A]) and is not difficult
to check, that

4
3
< τm(x) < 4, x ∈ I1. (2.18)

Also note that since |I1| < 2(x̃ − x1), we have

|τm(x)| ≤
|I1|

x̃ − x
<

2|I1|

1 − x
, x ∈ [−1, 1] \ I1. (2.19)

Lemma 2.13. For each r ∈ N and n ∈ N0, there exists a polynomial Pn of degree ≤ n such that,
for every 0 ≤ ν ≤ r ,

P(ν)n (x) ≥ 0, x ∈ [0, 1], (2.20) 1

0
Pn(x)dx = 1, (2.21)

and

1 −

 1

0
xµPn(x)dx ≤

c

n2 , µ ∈ N, (2.22)

where c is a constant that depends only on r and µ.
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We remark that the estimate (2.22) cannot be improved. An indirect proof of this fact is that
if we could improve it for µ = 2 and some polynomial Pn satisfying (2.20) and (2.21), then a
well known Korovkin’s result on approximation by positive linear operators would be violated
by Hn+2(Pn; f, ·) (since we would have Hn+2(Pn; ei , x) = o(n−2) for i = 0, 1, 2). One can
also easily prove this fact directly. Indeed, let Pn be an arbitrary polynomial for Πn such that
Pn(x) ≥ 0, x ∈ [0, 1], and (2.21) is satisfied. Then, for any µ ≥ 1,

1 −

 1

0
xµPn(x)dx =

 1

0
(1 − xµ)Pn(x)dx ≥

 1

0
(1 − x)Pn(x)dx

≥

 1−n−2

0
(1 − x)Pn(x)dx ≥ n−2

 1−n−2

0
Pn(x)dx

≥ cn−2
 1

0
Pn(x)dx = cn−2,

where the last inequality follows from a well known Remez inequality for algebraic polynomials
in L1 (see, e.g., [1, Theorem A.4.10]).

Proof of Lemma 2.13. Clearly, it is enough to prove this lemma for n > 8r . Let Qn−r be a
nonnegative (on [0, 1]) polynomial of degree ≤ n − r , and define

Pn(x) := λn

 x

0
(x − t)r−1 Qn−r (t)dt.

The polynomial Pn satisfies (2.20) and since 1

0
Pn(x)dx = λn

 1

0

 x

0
(x − t)r−1 Qn−r (t)dtdx =

λn

r

 1

0
(1 − t)r Qn−r (t)dt, (2.23)

in order for (2.21) to hold, we need to take

λn := r

 1

0
(1 − t)r Qn−r (t)dt

−1

. (2.24)

Now,  1

0
xµPn(x)dx = λn

 1

0
xµ
 x

0
(x − t)r−1 Qn−r (t)dtdx

= λn

 1

0
Qn−r (t)

 1

t
xµ(x − t)r−1dxdt.

Since  1

t
xµ(x − t)r−1dx =

 1

t

µ
i=0

µ
i


(x − t)i+r−1tµ−i dx

= (1 − t)r
µ

i=0

µ
i

 1
i + r

tµ−i (1 − t)i ,

it follows that 1

0
xµPn(x)dx =

λn

r

 1

0
Qn−r (t)(1 − t)r


µ

i=0

µ
i

 r

i + r
tµ−i (1 − t)i


dt.
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Combining this with (2.23) we have

1 −

 1

0
xµPn(x)dx =

 1

0
Pn(x)dx −

 1

0
xµPn(x)dx

=
λn

r

 1

0
Qn−r (t)(1 − t)r


1 −

µ
i=0

µ
i

 r

i + r
tµ−i (1 − t)i


dt

=
λn

r

 1

0
Qn−r (t)(1 − t)r


µ

i=0

µ
i

 i

i + r
tµ−i (1 − t)i


dt

=
λn

r

 1

0
Qn−r (t)(1 − t)r+1


µ

i=1

µ
i

 i

i + r
tµ−i (1 − t)i−1


dt

≤ cλn

 1

0
Qn−r (t)(1 − t)r+1dt. (2.25)

We now let

m :=

 n

8r


and Qn−r (x) := τ 4r

m (x).

Then, Qn−r is a nonnegative polynomial and its degree ≤ 4r(m − 1) ≤ n − r . Using (2.18) and
(2.19) we have

1 −

 1

0
xµPn(x)dx ≤ cλn

 x1

0
+


I1


Qn−r (t)(1 − t)r+1dt

≤ cλn|I1|
4r
 x1

−∞

(1 − t)1−3r dt + cλn


I1

(1 − t)r+1dt

≤ cλn|I1|
r+2.

Finally, recalling (2.24) we write

1 −

 1

0
xµPn(x)dx ≤ c|I1|

r+2

 1

0
(1 − t)r Qn−r (t)dt

−1

≤ c|I1|
r+2


I1

(1 − t)r Qn−r (t)dt

−1

≤ c|I1|
r+2


I1

(1 − t)r dt

−1

≤ c|I1| ≤
c

n2 ,

and the proof of (2.22) is complete. �
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2.5. Proof of Theorem 1.1

Suppose that q ∈ N0 and let Pn−2 := Pn−2 where Pn is the polynomial from the statement of
Lemma 2.13 with r := max{q − 1, 1}. In particular, (2.22) with µ := 2 implies that

1 −

 1

0
x2Pn−2(x)dx ≤

c1

n2 , n ≥ 3,

with the constant c1 depending only on q. Also, let n0 := 2


c1/2
1


∈ N.

For 1 ≤ n < n0, we can define Mn( f, x) := (1 − x) f (0)+ x f (1). Clearly, Mn : C[0, 1] →

Π1 ⊂ Πn is a positive linear polynomial operator preserving linear functions as well as
k-monotonicity for all k. Since Mn(e2, x) = x = x2

+ ϕ2(x), Corollary 2.5 (with αn = 1)
implies that

| f (x)− Mn( f, x)| ≤ c


1 +

ϕ2−λ(x)

h2(ϕ(x)+ 1/4)λ


ω
ϕλ

2 ( f, h),

and the statement of Theorem 1.1 follows.
Suppose now that n ≥ n0 is fixed, and define Mn( f, ·) := Hn(Pn−2; f, ·). It follows from

Lemmas 2.12 and 2.13 that Mn : C[0, 1] → Πn is a positive linear operator preserving linear
functions as well as k-monotonicity for all 0 ≤ k ≤ q, and Mn(e2, x)− x2

= αnϕ
2(x) with

αn = 1 −

 1

0
t2Pn−2(t)dt ≤

c1

n2 ≤
1
4
.

Therefore, taking into account that the function Λ(t) := t

ϕ(x)+

√
t
−λ

is increasing for
t ∈ [0,∞) if 0 ≤ λ < 2, Corollary 2.5 yields, for 0 < h ≤ c0,

| f (x)− Mn( f, x)| ≤ c


1 +

αnϕ
2−λ(x)

h2

ϕ(x)+

√
αn
λ

ω
ϕλ

2 ( f, h)

≤ c

1 +
c1ϕ

2−λ(x)

h2n2

ϕ(x)+


c1/n2

λ
ωϕλ2 ( f, h),

which implies (1.3).
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Appendix. Bernstein–Durrmeyer–Lupaş polynomials with ultraspherical weights

The main results in this paper (as well as all results from [4,9] that we need) greatly depend
on (in our opinion, a rather interesting) paper by A. Lupaş [15] which does not seem to be
readily available. Hence, in this section, we state and provide alternative elementary proofs for
all theorems from [15] that we use.
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For α > −1, let

φ(α)n (x) :=
(−1)n

(α + 1)n
x−α(1 − x)−α

dn

dxn


xn+α(1 − x)n+α


(A.1)

be the (shifted) ultraspherical polynomials on [0, 1] (normalized so that φ(α)n (1) = 1). Note that

φ(α)n (x) =
P(α+1/2)

n (2x − 1)

P(α+1/2)
n (1)

,

where P(λ)n is the classical ultraspherical (Gegenbauer) polynomial (see [17, Chapter IV]). Recall
that

P(λ)n (1) =


n + 2λ− 1

n


=
(2λ)n

n!
.

Remark A.1. With φ(α)0 (x) = 1 and φ(α)1 (x) = 2x − 1, the following recurrence equation is
valid (see [17, (4.7.17)]):

(n + 2α)φ(α)n (x) = (2n + 2α − 1)(2x − 1)φ(α)n−1(x)− (n − 1)φ(α)n−2(x), n ≥ 2. (A.2)

In particular, this implies that, if φ(α)n (x) = λ
(α)
n xn

+ pn−1(x) with pn−1 ∈ Πn−1, then

λ(α)n :=
4n(α + 1/2)n
(2α + 1)n

=
(2α + n + 1)n
(α + 1)n

(A.3)

(see also [17, (4.7.9)]).

Bernstein–Durrmeyer–Lupaş polynomials with ultraspherical weights are defined as

D⟨α⟩
n ( f, x) :=

n
k=0

pn,k(x)
⟨pn,k, f ⟩

⟨pn,k, 1⟩
, (A.4)

where

⟨ f, g⟩ :=

 1

0
f (t)g(t)dw(t, α), dw(t, α) :=

tα(1 − t)α

B(α + 1, α + 1)
dt,

and B(x, y) :=
 1

0 t x−1(1 − t)y−1dt is the beta function. Note that

⟨pn,k, 1⟩ =
1

B(α + 1, α + 1)


n

k

 1

0
tα+k(1 − t)α+n−kdt

=
B(α + k + 1, α + n − k + 1)

B(α + 1, α + 1)


n

k


=


n

k


(α + 1)k(α + 1)n−k

(2α + 2)n
,

where we used the fact that B(x, y) = Γ (x)Γ (y)/Γ (x + y), where Γ (x) :=


∞

0 t x−1e−t dt is
the gamma function, and Γ (x + 1) = xΓ (x), x > 0.

Remark A.2. If α = 0, then D⟨0⟩( f, x) = Dn( f, x), where Dn is the (usual) Bernstein–
Durrmeyer operator defined in (2.17).
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Lemma A.3 ([15, (1.3) and (3.2)]). For any α > −1,

φ(α)n (x) = (α + 1)n
n

k=0

(−1)n−k

(α + 1)k(α + 1)n−k
pn,k (x) (A.5)

and, for t ≠ 1 − x,

(x + t − 1)nφ(α)n


xt

x + t − 1


= (α + 1)n

n
k=0

pn,k(x)pn,k(t)n
k


(α + 1)k(α + 1)n−k

. (A.6)

Note that (A.6) corrects a misprint in [15, (3.2)]. Also, we remark that taking the limit in (A.6)
as t → 1 − x we get the identity

λ(α)n = (α + 1)n
n

k=0


n

k


1

(α + 1)k(α + 1)n−k
.

Proof. First of all,

dn

dxn


xn+α(1 − x)n+α


=

n
k=0


n

k


dn−k

dxn−k xn+α dk

dxk (1 − x)n+α

=

n
k=0


n

k


(α + 1)n
(α + 1)k

xα+k (α + 1)n
(α + 1)n−k

(−1)k(1 − x)n+α−k

= [(α + 1)n]
2xα(1 − x)α

n
k=0

(−1)k

(α + 1)k(α + 1)n−k
pn,k (x) ,

which together with (A.1) implies (A.5).
Now, since

pn,k(x)pn,k(t) = (−1)n−k


n

k


(x + t − 1)n pn,k


xt

x + t − 1


,

using (A.5) we have
n

k=0

pn,k(x)pn,k(t)n
k


(α + 1)k(α + 1)n−k

= (x + t − 1)n
n

k=0

(−1)n−k

(α + 1)k(α + 1)n−k
pn,k


xt

x + t − 1


=

1
(α + 1)n

(x + t − 1)nφ(α)n


xt

x + t − 1


,

which is (A.6). �

Theorem A.4 ([15, Theorem 4.1]). For any α > −1/2, f ∈ C[0, 1] and x ∈ [0, 1],

D⟨α⟩
n ( f, x) =

(2α + 2)n
(α + 1)n

 1

0
f (t)

 1

0
[Θ(x, t, u)]n dw(u, α − 1/2) dw(t, α),

where Θ(x, t, u) := (1 − u)a(x, t)+ ub(x, t) with

a(x, t) :=

√
xt −


(1 − x)(1 − t)

2
and b(x, t) :=

√
xt +


(1 − x)(1 − t)

2
.
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Proof. Using the definition (A.4) we have, for any α > −1,

D⟨α⟩
n ( f, x) =

 1

0
f (t)


n

k=0

pn,k(x)pn,k(t)/⟨pn,k, 1⟩


dw(t, α)

= (2α + 2)n

 1

0
f (t)


n

k=0

pn,k(x)pn,k(t)n
k


(α + 1)k(α + 1)n−k


dw(t, α)

=
(2α + 2)n
(α + 1)n

 1

0
f (t)


(x + t − 1)nφ(α)n


xt

x + t − 1


dw(t, α), (A.7)

and it remains to prove that, for α > −1/2,

(x + t − 1)nφ(α)n


xt

x + t − 1


=

 1

0
[Θ(x, t, u)]n dw(u, α − 1/2). (A.8)

This identity immediately follows from Gegenbauer’s formula (see, e.g., [16, (2)] or
[17, (4.10.3)]): for λ > 0 and all real x ,

P(λ)n (x)

P(λ)n (1)
=

Γ (λ+ 1/2)
√
π Γ (λ)

 π

0


x +


x2 − 1 cos t

n
sin2λ−1 t dt,

recalling that φ(α)n (x) = P(α+1/2)
n (2x − 1)/P(α+1/2)

n (1) and changing variables cos t = 2u − 1.
Alternatively, (A.8) can be proved by induction using the recurrence equation (A.2). Yet another
way to prove (A.8) is to use several results from the theory of hypergeometric functions as was
originally done by Lupaş in [15]. �

Since Θ(x, t, u) ∈ [0, 1], for all x, t, u ∈ [0, 1], one can immediately get a result on
positive summation of a sequence of operators D⟨α⟩

n as a corollary of Theorem A.4 (see
[15, Theorem 5.2(2)]). We state this corollary in a slightly more general form which is useful
for applications.

Corollary A.5. Let α > −1/2 and n, r, ϱ ∈ N0 with 0 ≤ ϱ ≤ r ≤ n, and let a (generating)
polynomial Pn(x) =

n
k=0 ak xk be such that

P(r)n (x) ≥ 0, for all x ∈ [0, 1].

Then, for any function σ such that 0 ≤ σ(x) ≤ 1, x ∈ [a, b] ⊂ [0, 1],

L⟨α⟩
n (Pn, σ (·), r, ϱ, [a, b]; f, x)

:=

n−ϱ
k=r−ϱ

(α + 1)k(k − r + ϱ + 1)r
(2α + 2)k

ak+ϱ [σ(x)]k D⟨α⟩

k ( f, x) (A.9)

is a positive linear operator on C[a, b].
In particular, if r = ϱ = 0 and σ(x) = 1, x ∈ [0, 1], then

L⟨α⟩
n (Pn, 1, 0, 0, [0, 1]; f, x) =

n
k=0

(α + 1)k
(2α + 2)k

ak D⟨α⟩

k ( f, x)

is a positive linear operator mapping C[0, 1] to Πn .
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Proof. Since

Qn−ϱ(x) := xr−ϱP(r)n (x) =

n
k=r

(k − r + 1)r ak xk−ϱ
=

n−ϱ
k=r−ϱ

(k − r + ϱ + 1)r ak+ϱ xk

we have

L⟨α⟩
n (Pn, σ, r, ϱ; f, x)

=

n−ϱ
k=r−ϱ

(k − r + ϱ + 1)r ak+ϱ [σ(x)]k
 1

0
f (t)

×

 1

0
[Θ(x, t, u)]k dw(u, α − 1/2) dw(t, α)

=

 1

0
f (t)

 1

0

n−ϱ
k=r−ϱ

(k − r + ϱ + 1)r ak+ϱ

× [σ(x)Θ(x, t, u)]k dw(u, α − 1/2) dw(t, α)

=

 1

0
f (t)

 1

0
Qn−ϱ [σ(x)Θ(x, t, u)] dw(u, α − 1/2) dw(t, α).

In view of the fact that 0 ≤ σ(x)Θ(x, t, u) ≤ 1, for all x, t, u ∈ [a, b], and that Qn−ϱ is

nonnegative on [0, 1], we conclude that the operator L⟨α⟩
n is positive. �

Lemma A.6 ([15, Lemma 4.2]). For α > −1, n, ν ∈ N and f ∈ Cν
[0, 1],

dν

dxν
D⟨α⟩

n ( f, x) =
n!

(n − ν)!(n + 2α + 2)ν
D⟨α+ν⟩

n−ν


f (ν), x


. (A.10)

Proof. It is sufficient to prove (A.10) for ν = 1 since the general case immediately follows by
induction.

It follows from (A.7) that, for α > −1,

D⟨α⟩
n ( f, x) =

(2α + 2)n
(α + 1)n

 1

0
f (t)K ⟨α⟩

n (x, t)dw(t, α),

where

K ⟨α⟩
n (x, t) := (x + t − 1)nφ(α)n


xt

x + t − 1


,

and (A.10) with ν = 1 follows using integration by parts and the following identity:

∂

∂x
K ⟨α⟩

n (x, t) = n(2t − 1)K ⟨α+1⟩

n−1 (x, t)−
nt (1 − t)

α + 1
∂

∂t
K ⟨α+1⟩

n−1 (x, t). (A.11)

Using

d

dz
φ(α)n (z) =

n(2α + n + 1)
α + 1

φ
(α+1)
n−1 (z) (A.12)

(see, e.g., [17, (4.7.14)]) identity (A.11) can be rewritten as

φ(α)n (z) = (2z − 1)φ(α+1)
n−1 (z)−

(n − 1)(2α + n + 2)
(α + 1)(α + 2)

z(1 − z)φ(α+2)
n−2 (z). (A.13)
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Finally, (A.13) can be proved using the “reduction of α” formula

z(1 − z)φ(α+1)
n−1 (z) =

α + 1
2n


(2z − 1)φ(α)n (z)− φ

(α)
n+1(z)


(see, e.g., [17, (4.7.27)]) and the recurrence equation (A.2). Alternatively, one can use the
formula for the νth derivative of φ(α)n that follows from (A.12)

dν

dzν
φ(α)n (z) =

(n − ν + 1)ν(2α + n + 1)ν
(α + 1)ν

φ
(α+ν)
n−ν (z), 1 ≤ ν ≤ n,

and the fact that both sides of (A.13) are polynomials of degree n whose νth derivatives are the
same at z = 1 for all 0 ≤ ν ≤ n. �

Lemma A.6 can be used to recursively calculate D⟨α⟩
n (ei , x), i ∈ N0, taking into account that

D⟨α⟩
n (ei , 0) =

⟨pn,0, ei ⟩

⟨pn,0, 1⟩
=

B(α + i + 1, α + n + 1)
B(α + 1, α + n + 1)

=
(α + 1)i

(n + 2α + 2)i
.

For example,

D⟨α⟩
n (e0, x) = 1, D⟨α⟩

n (e1, x) =
nx + α + 1
n + 2α + 2

and

D⟨α⟩
n (e2, x) =

n(n − 1)x2
+ 2n(α + 2)x + (α + 1)(α + 2)

(n + 2α + 2)(n + 2α + 3)
.
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