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Abstract We discuss some properties of the moduli of smoothness with Jacobi
weights that we have recently introduced and that are defined as

ω
ϕ
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where ϕ(x) = √
1− x2, �k

h(f, x) is the kth symmetric difference of f on [−1, 1],

Wξ,ζ
δ (x) := (1− x − δϕ(x)/2)ξ (1+ x − δϕ(x)/2)ζ ,

and α, β > −1/p if 0 < p < ∞, and α, β ≥ 0 if p = ∞.
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We show, among other things, that for all m,n ∈ N, 0 < p ≤ ∞, polynomials
Pn of degree < n and sufficiently small t ,

ω
ϕ
m,0(Pn, t)α,β,p ∼ tω

ϕ
m−1,1(P

′
n, t)α,β,p ∼ · · · ∼ tm−1ω

ϕ
1,m−1(P

(m−1)
n , t)α,β,p

∼ tm
∥∥∥wα,βϕ

mP (m)
n

∥∥∥
p
,

where wα,β(x) = (1− x)α(1+ x)β is the usual Jacobi weight.
In the spirit of Yingkang Hu’s work, we apply this to characterize the behavior of

the polynomials of best approximation of a function in a Jacobi weighted Lp space,
0 < p ≤ ∞. Finally we discuss sharp Marchaud and Jackson type inequalities in
the case 1 < p < ∞.

AMS Classification 41A10, 41A17, 41A25

1 Introduction

Recall that the Jacobi weights are defined as wα,β(x) := (1 − x)α(1 + x)β , where
parameters α and β are usually assumed to be such that wα,β ∈ Lp[−1, 1], i.e.,

α, β ∈ Jp :=
{
(−1/p,∞), if 0 < p < ∞,

[0,∞), if p = ∞.

We denote by Pn the set of all algebraic polynomials of degree ≤ n − 1, and

L
α,β
p (I) :=

{
f | ∥∥wα,βf

∥∥
Lp(I )

< ∞
}

, where I ⊆ [−1, 1]. For convenience, if

I = [−1, 1], then we omit I from the notation. For example, ‖·‖p := ‖·‖Lp[−1,1],
L

α,β
p := L

α,β
p [−1, 1], etc.

Following [5] we denote B0
p(wα,β) := L

α,β
p , and

B
r
p(wα,β) :=

{
f | f (r−1) ∈ ACloc and ϕrf (r) ∈ Lα,β

p

}
, r ≥ 1,

where ACloc denotes the set of functions which are locally absolutely continuous in
(−1, 1), and ϕ(x) := √

1− x2. Also (see [5]), for k, r ∈ N and f ∈ B
r
p(wα,β), let

ω
ϕ
k,r(f

(r), t)α,β,p := sup
0≤h≤t

∥∥∥Wr/2+α,r/2+β
kh (·)�k

hϕ(·)(f
(r), ·)

∥∥∥
p

(1.1)

= sup
0<h≤t

∥∥∥Wr/2+α,r/2+β
kh (·)�k

hϕ(·)(f
(r), ·)

∥∥∥
Lp(Dkh)

,
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where

�k
h(f, x; S) :=

{∑k
i=0

(
k
i

)
(−1)k−if (x − kh

2 + ih), if [x − kh
2 , x + kh

2 ] ⊆ S ,

0, otherwise

is the kth symmetric difference, �k
h(f, x) := �k

h(f, x; [−1, 1]),

Wξ,ζ
δ (x) := (1− x − δϕ(x)/2)ξ (1+ x − δϕ(x)/2)ζ ,

and

Dδ := [−1+ μ(δ), 1− μ(δ)], μ(δ) := 2δ2/(4+ δ2)

(note that �k
hϕ(x)(f, x) = 0 if x ∈ Dkh).

We define the main part weighted modulus of smoothness as

�
ϕ
k,r(f

(r), A, t)α,β,p := sup
0≤h≤t

∥∥∥wα,β(·)ϕr (·)�k
hϕ(·)(f

(r), ·; IA,h)

∥∥∥
Lp(IA,h)

,

(1.2)

where IA,h := [−1+ Ah2, 1 − Ah2] and A > 0.
We also denote

�
ϕ
k,r(f

(r), t)α,β,p := sup
0≤h≤t

∥∥∥wα,β(·)ϕr (·)�k
hϕ(·)(f

(r), ·)
∥∥∥
p
, (1.3)

i.e., �
ϕ
k,r is “the main part modulus �

ϕ
k,r with A = 0.” However, we want to

emphasize that while �
ϕ
k,r(f

(r), A, t)α,β,p with A > 0 and ω
ϕ
k,r(f

(r), t)α,β,p are

bounded for all f ∈ B
r
p(wα,β) (see [5, Lemma 2.4]), the modulus �ϕ

k,r(f
(r), t)α,β,p

may be infinite for such functions (for example, this is the case for f such that
f (r)(x) = (1− x)−γ with 1/p ≤ γ < α + r/2+ 1/p).

Remark 1.1 We note that the main part modulus is sometimes defined with the
difference inside the norm not restricted to IA,h, i.e.,

�̃
ϕ
k,r (f

(r), A, t)α,β,p := sup
0≤h≤t

∥∥∥wα,β(·)ϕr(·)�k
hϕ(·)(f

(r), ·)
∥∥∥
Lp(IA,h)

. (1.4)

Clearly, �ϕ
k,r(f

(r), A, t)α,β,p ≤ �̃
ϕ
k,r (f

(r), A, t)α,β,p. Moreover, we have an esti-
mate in the opposite direction as well if we replace A with a larger constant A′. For
example, �̃ϕ

k,r (f
(r), A′, t)α,β,p ≤ �

ϕ
k,r(f

(r), A, t)α,β,p, where A′ = 2 max{A, k2}
(see (2.9)). At the same time, if A is so small that Dkh ⊂ IA,h (for example, if
A ≤ k2/4), then �̃

ϕ
k,r (f

(r), A, t)α,β,p = �
ϕ
k,r(f

(r), t)α,β,p. Hence, all our results
in this paper are valid with the modulus (1.2) replaced by (1.4) with an additional
assumption that A is sufficiently large (assuming that A ≥ 2k2 will do).
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Throughout this paper, we use the notation

q := min{1, p},

and � stands for some sufficiently small positive constant depending only on α, β,
k, and q , and independent of n, to be prescribed in the proof of Theorem 2.1.

2 The Main Result

The following theorem is our main result.

Theorem 2.1 Let k, n ∈ N, r ∈ N0, A > 0, 0 < p ≤ ∞, α + r/2, β + r/2 ∈ Jp,
and let 0 < t ≤ �n−1, where � is some positive constant that depends only on α, β,
k, and q . Then, for any Pn ∈ Pn,

ω
ϕ
k,r (P

(r)
n , t)α,β,p ∼ �

ϕ
k,r(P

(r)
n , t)α,β,p ∼ �

ϕ
k,r(P

(r)
n , A, t)α,β,p (2.1)

∼ tk
∥∥∥wα,βϕ

k+rP (k+r)
n

∥∥∥
p
,

where the equivalence constants depend only on k, r , α, β, A, and q .

The following is an immediate corollary of Theorem 2.1 by virtue of the fact that
if α, β ∈ Jp, then α + r/2, β + r/2 ∈ Jp for all r ≥ 0.

Corollary 2.2 Let m,n ∈ N, A > 0, 0 < p ≤ ∞, α, β ∈ Jp, and let 0 < t ≤
�n−1. Then, for any Pn ∈ Pn, and any k ∈ N and r ∈ N0 such that k + r = m,

t−kω
ϕ
k,r (P

(r)
n , t)α,β,p ∼ t−k�

ϕ
k,r(P

(r)
n , t)α,β,p ∼ t−k�

ϕ
k,r(P

(r)
n , A, t)α,β,p

∼
∥∥∥wα,βϕ

mP (m)
n

∥∥∥
p
,

where the equivalence constants depend only on m, α, β, A, and q .

It was shown in [5, Corollary 1.9] that, for k ∈ N, r ∈ N0, r/2 + α ≥ 0,
r/2+ β ≥ 0, 1 ≤ p ≤ ∞, f ∈ B

r
p(wα,β), λ ≥ 1, and all t > 0,

ω
ϕ
k,r (f

(r), λt)α,β,p ≤ cλkω
ϕ
k,r (f

(r), t)α,β,p.

Hence, in the case 1 ≤ p ≤ ∞, we can strengthen Corollary 2.2 for the moduli
ω

ϕ
k,r . Namely, the following result is valid.

Corollary 2.3 Let m,n ∈ N, 1 ≤ p ≤ ∞, α, β ∈ Jp, � > 0, and let 0 < t ≤
�n−1. Then, for any Pn ∈ Pn, and any k ∈ N and r ∈ N0 such that k + r = m,

t−kω
ϕ
k,r (P

(r)
n , t)α,β,p ∼

∥∥∥wα,βϕ
mP (m)

n

∥∥∥
p
,
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where the equivalence constants depend only on m, α, β, and �.

Remark 2.4 In the case 1 ≤ p ≤ ∞, several equivalences in Theorem 2.1 and
Corollary 2.2 follow from [4, Theorems 4 and 5], since, as was shown in [5, (1.8)],
for 1 ≤ p ≤ ∞,

ω
ϕ
k,r (f

(r), t)α,β,p ∼ ωk
ϕ(f

(r), t)wα,β ϕr ,p, 0 < t ≤ t0, (2.2)

where ωk
ϕ(g, t)w,p is the three-part weighted Ditzian–Totik modulus of smoothness

(see, e.g., [5, (5.1)] for its definition).
Note that it is still an open problem if (2.2) is valid if 0 < p < 1.

Proof of T heorem 2.1 The main idea of the proof is not much different from that
of [4, Theorems 3–5].

First, we note that it suffices to prove Theorem 2.1 in the case r = 0. Indeed,
suppose we proved that, for k, n ∈ N, A > 0, 0 < t ≤ �n−1, 0 < p ≤ ∞,
α, β ∈ Jp, and any polynomial Qn ∈ Pn,

ω
ϕ
k,0(Qn, t)α,β,p ∼ �

ϕ
k,0(Qn, t)α,β,p ∼ �

ϕ
k,0(Qn,A, t)α,β,p (2.3)

∼ tk
∥∥∥wα,βϕ

kQ(k)
n

∥∥∥
p
.

Then, if Pn is an arbitrary polynomial from Pn, and r is an arbitrary natural number,
assuming that n > r (otherwise, P

(r)
n ≡ 0 and there is nothing to prove) and

denoting Q := P
(r)
n ∈ Pn−r , we have

ω
ϕ
k,r (P

(r)
n , t)α,β,p = ω

ϕ
k,0(Q, t)α+r/2,β+r/2,p,

�
ϕ
k,r(P

(r)
n , t)α,β,p = �

ϕ
k,0(Q, t)α+r/2,β+r/2,p,

�
ϕ
k,r(P

(r)
n , t)α,β,p = �

ϕ
k,0(Q,A, t)α+r/2,β+r/2,p,

and
∥∥∥wα,βϕ

k+rP (k+r)
n

∥∥∥
p
=
∥∥∥ωα+r/2,β+r/2ϕ

kQ(k)
∥∥∥
p
,

and so (2.1) follows from (2.3) with α and β replaced by α + r/2 and β + r/2,
respectively.

Now, note that it immediately follows from the definition that

ω
ϕ
k,0(g, t)α,β,p ≤ �

ϕ
k,0(g, t)α,β,p.
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Also, for A > 0,

�
ϕ
k,0(g,A, t)α,β,p ≤ cω

ϕ
k,0(g, t)α,β,p,

since wα,β(x) ≤ cWα,β

kh (x) for x such that x ± khϕ(x)/2 ∈ IA,h.
Hence, in order to prove (2.3), it suffices to show that

�
ϕ
k,0(Qn, t)α,β,p ≤ ctk

∥∥∥wα,βϕ
kQ(k)

n

∥∥∥
p

(2.4)

and

tk
∥∥∥wα,βϕ

kQ(k)
n

∥∥∥
p
≤ c�

ϕ
k,0(Qn,A, t)α,β,p. (2.5)

Recall the following Bernstein–Dzyadyk-type inequality that follows from [4,
(2.24)]: if 0 < p ≤ ∞, α, β ∈ Jp, and Pn ∈ Pn, then

∥∥wα,βϕ
sP ′

n

∥∥
p
≤ cns

∥∥∥wα,βϕ
s−1Pn

∥∥∥
p
, 1 ≤ s ≤ n− 1,

where c depends only on α, β and q , and is independent of n and s.
This implies that, for any Qn ∈ Pn and k, j ∈ N,

∥∥∥wα,βϕ
k+jQ

(k+j)
n

∥∥∥
p
≤ (c0n)

j (k + j)!
k!

∥∥∥wα,βϕ
kQ(k)

n

∥∥∥
p
, 1 ≤ k + j ≤ n− 1.

(2.6)

We now use the following identity (see [4, (2.4)]):

for any Qn ∈ Pn and k ∈ N, we have

�k
hϕ(x)(Qn, x) =

K∑
i=0

1

(2i)!ϕ
k+2i (x)Q(k+2i)

n (x)hk+2i ξ2i
k+2i , (2.7)

where K := �(n − 1− k)/2�, and ξj ∈ (−k/2, k/2) depends only on k and j .

Applying (2.6), we obtain, for 0 ≤ i ≤ K and 0 < h ≤ t ≤ �n−1,

∥∥∥∥
1

(2i)!wα,βϕ
k+2iQ(k+2i)

n

∥∥∥∥
p

h2i |ξk+2i |2i ≤ (c0�k/2)2i (k + 2i)!
(2i)!k!

∥∥∥wα,βϕ
kQ(k)

n

∥∥∥
p

≤ [c0�k(k + 1)/2]2i
∥∥∥wα,βϕ

kQ(k)
n

∥∥∥
p

≤ B2i
∥∥∥wα,βϕ

kQ(k)
n

∥∥∥
p
,
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where we used the estimate (k + 2i)!/((2i)!k!) ≤ (k + 1)2i , and where � is taken
so small that the last estimate holds with B := (1/3)1/(2q). Note that

∑∞
i=1 B2iq =

1/2.
Hence, it follows from (2.7) that

∥∥∥wα,β�
k
hϕ(Qn, ·)

∥∥∥
q

p
≤ hkq

K∑
i=0

∥∥∥∥
1

(2i)!wα,βϕ
k+2iQ(k+2i)

n

∥∥∥∥
q

p

h2iq |ξ |2iqk+2i

≤ hkq
∥∥∥wα,βϕ

kQ(k)
n

∥∥∥
q

p

(
1+

K∑
i=1

B2iq

)

≤ 3/2 · hkq
∥∥∥wα,βϕ

kQ(k)
n

∥∥∥
q

p
.

This immediately implies

�
ϕ
k,0(Qn, t)α,β,p ≤ (3/2)1/qtk

∥∥∥wα,βϕ
kQ(k)

n

∥∥∥
p
,

and so (2.4) is proved.
Recall now the following Remez-type inequality (see, e.g., [4, (2.22)]):

If 0 < p ≤ ∞, α, β ∈ Jp, a ≥ 0, n ∈ N is such that n >
√
a, and Pn ∈ Pn, then

∥∥wα,βPn

∥∥
p
≤ c

∥∥wα,βPn

∥∥
Lp[−1+an−2,1−an−2] , (2.8)

where c depends only on α, β, a, and q.

Note that

�
ϕ
k,0(Qn,A, t)α,β,p = sup

0≤h≤t

∥∥∥wα,β(·)�k
hϕ(·)(Qn, ·; IA,h)

∥∥∥
Lp(IA,h)

= sup
0≤h≤t

∥∥∥wα,β(·)�k
hϕ(·)(Qn, ·)

∥∥∥
Lp(Sk,A,h)

,

where the set Sk,A,h is an interval containing all x so that x ± khϕ(x)/2 ∈ IA,h.
Observe that

Sk,A,h ⊃ IA′,h,

where A′ := 2 max{A, k2}, and so

�
ϕ
k,0(Qn,A, t)α,β,p ≥ sup

0≤h≤t

∥∥∥wα,β(·)�k
hϕ(·)(Qn, ·)

∥∥∥
Lp(IA′,h)

. (2.9)



26 K. A. Kopotun et al.

Now it follows from (2.7) that �k
hϕ(x)(Qn, x) is a polynomial from Pn if k is even,

and it is a polynomial from Pn−1 multiplied by ϕ if k is odd.
Hence, (2.8) implies that, for h ≤ 1/(

√
2A′n),

∥∥∥wα,β�
k
hϕ(Qn, ·)

∥∥∥
Lp(IA′,h)

≥
∥∥∥wα,β�

k
hϕ(Qn, ·)

∥∥∥
Lp[−1+n−2/2,1−n−2/2] (2.10)

≥ c

∥∥∥wα,β�
k
hϕ(Qn, ·)

∥∥∥
p
.

It now follows from (2.7) that

�k
hϕ(x)(Qn, x)− ϕk(x)Q(k)

n (x)hk =
K∑
i=1

1

(2i)!ϕ
k+2i(x)Q(k+2i)

n (x)hk+2iξ2i
k+2i ,

and so, as above,

∥∥∥wα,β

(
�k

hϕ(Qn, ·)− ϕkQ(k)
n hk

)∥∥∥
q

p
≤ 1/2 · hkq

∥∥∥wα,βϕ
kQ(k)

n

∥∥∥
q

p
.

Therefore,

∥∥∥wα,β�
k
hϕ(Qn, ·)

∥∥∥
q

p
≥ 1/2 · hkq

∥∥∥wα,βϕ
kQ(k)

n

∥∥∥
q

p
,

which combined with (2.9) and (2.10) implies (2.5). ��

3 The Polynomials of Best Approximation

For f ∈ L
α,β
p , let P ∗

n = P ∗
n (f ) ∈ Pn and En(f )wα,β ,p be a polynomial and the

degree of its best weighted approximation, respectively, i.e.,

En(f )wα,β ,p := inf
pn∈Pn

‖wα,β(f − pn)‖p = ‖wα,β(f − P ∗
n )‖p.

Recall (see [5, Lemma 2.4] and [6, Theorem 1.4]) that if α ≥ 0 and β ≥ 0, then,
for any k ∈ N, 0 < p ≤ ∞ and f ∈ L

α,β
p ,

ω
ϕ
k,0(f, t)α,β,p ≤ c

∥∥wα,βf
∥∥
p
, t > 0, (3.1)

with c depending only on k, α, β, and q . Also, for any 0 < ϑ ≤ 1,

En(f )wα,β ,p ≤ cω
ϕ
k,0(f, ϑn−1)α,β,p, n ≥ k, (3.2)
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where c depends on ϑ as well as k, α, β, and q .

Theorem 3.1 Let k ∈ N, α, β ≥ 0, 0 < p ≤ ∞, and f ∈ L
α,β
p . Then, for any

n ∈ N,

n−k‖wα,βϕ
kP ∗(k)

n ‖p ≤ cω
ϕ
k,0(P

∗
n , t)α,β,p ≤ cω

ϕ
k,0(f, t)α,β,p, t ≥ �n−1,

(3.3)

where constants c depend only on k, α, β, and q .
Conversely, for 0 < t ≤ �/k and n := ��/t�,

ω
ϕ
k,0(f, t)α,β,p ≤ c

⎛
⎝

∞∑
j=0

ω
ϕ
k,0(P

∗
2j n

,�2−j n−1)
q
α,β,p

⎞
⎠

1/q

(3.4)

≤ c

⎛
⎝

∞∑
j=0

2−jkqn−kq‖wα,βϕ
kP

∗(k)
2j n

‖qp
⎞
⎠

1/q

,

where c depends only on k, α, β, and q .

Corollary 3.2 Let k ∈ N, α, β ≥ 0, 0 < p ≤ ∞, f ∈ L
α,β
p , and γ > 0. Then,

‖wα,βϕ
kP ∗(k)

n ‖p = O(nk−γ ) iff ω
ϕ
k,0(f, t)α,β,p = O(tγ ). (3.5)

Proof of T heorem 3.1 In order to prove (3.3), one may assume that n ≥ k. By
Theorem 2.1 we have

n−k‖wα,βϕ
kP ∗(k)

n ‖p ≤ c�−kω
ϕ
k,0(P

∗
n ,�n

−1)α,β,p ≤ cω
ϕ
k,0(P

∗
n , t)α,β,p.

At the same time, by (3.1) and (3.2) with ϑ = �,

ω
ϕ
k,0(P

∗
n , t)

q
α,β,p ≤ ω

ϕ
k,0(f − P ∗

n , t)
q
α,β,p + ω

ϕ
k,0(f, t)

q
α,β,p

≤ c‖wα,β(f − P ∗
n )‖qp + ω

ϕ
k,0(f, t)

q
α,β,p

≤ cω
ϕ
k,0(f,�n

−1)
q
α,β,p + ω

ϕ
k,0(f, t)

q
α,β,p

≤ cω
ϕ
k,0(f, t)

q
α,β,p,

and (3.3) follows.
In order to prove (3.4) we follow [4]. Assume that 0 < t ≤ �/k and note that

n = ��/t� ≥ k. Let P̂n ∈ Pn be a polynomial of best weighted approximation of
P ∗

2n, i.e.,

In :=
∥∥∥wα,β(P

∗
2n − P̂n)

∥∥∥
p
= En(P

∗
2n)wα,β ,p.
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Then, (3.2) with ϑ = �/2 implies that

In ≤ cω
ϕ
k,0(P

∗
2n,�(2n)

−1)α,β,p,

while

I
q
n ≥ ‖wα,β(f − P̂n)‖qp −

∥∥wα,β(f − P ∗
2n)
∥∥q
p
≥ En(f )

q
wα,β ,p − E2n(f )

q
wα,β ,p.

Combining the above inequalities we obtain

En(f )
q
wα,β ,p =

∞∑
j=0

(
E2j n(f )

q
wα,β ,p − E2j+1n(f )

q
wα,β ,p

) ≤
∞∑
j=0

I
q

2j n

≤ c

∞∑
j=1

ω
ϕ
k,0(P

∗
2j n

,�2−j n−1)
q
α,β,p.

Hence,

ω
ϕ
k,0(f, t)

q
α,β,p ≤ cω

ϕ
k,0(f − P ∗

n , t)
q
α,β,p + cω

ϕ
k,0(P

∗
n , t)

q
α,β,p

≤ cEn(f )
q
wα,β ,p + cω

ϕ
k,0(P

∗
n ,�n

−1)
q
α,β,p

≤ c

∞∑
j=0

ω
ϕ
k,0(P

∗
2j n

,�2−j n−1)
q
α,β,p

≤ c

∞∑
j=0

2−jkqn−kq‖wα,βϕ
kP

∗(k)
2j n

‖qp,

where, for the last inequality, we used Theorem 2.1. This completes the proof of
(3.4). ��

4 Further Properties of the Moduli

Following [5, Definition 1.4], for k ∈ N, r ∈ N0, and f ∈ B
r
p(wα,β), 1 ≤ p ≤ ∞,

we define the weighted K-functional as follows:

K
ϕ
k,r(f

(r), tk)α,β,p

:= inf
g∈Bk+r

p (wα,β )

{∥∥∥wα,βϕ
r(f (r) − g(r))

∥∥∥
p
+ tk

∥∥∥wα,βϕ
k+rg(k+r)

∥∥∥
p

}
.
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We note that

Kk,ϕ(f, t
k)wα,β ,p = K

ϕ
k,0(f, t

k)α,β,p,

where Kk,ϕ(f, t
k)w,p is the weighted K-functional that was defined in [3, p. 55

(6.1.1)] as

Kk,ϕ(f, t
k)w,p := inf

g∈Bk
p(w)

{‖w(f − g)‖p + tk‖wϕkg(k)‖p}.

The following lemma immediately follows from [5, Corollary 1.7].

Lemma 4.1 If k ∈ N, r ∈ N0, r/2 + α ≥ 0, r/2 + β ≥ 0, 1 ≤ p ≤ ∞, and
f ∈ B

r
p(wα,β), then, for all 0 < t ≤ 2/k,

K
ϕ
k,r(f

(r), tk)α,β,p ≤ cω
ϕ
k,r (f

(r), t)α,β,p ≤ cK
ϕ
k,r(f

(r), tk)α,β,p.

Hence,

ω
ϕ
k,r (f

(r), t)α,β,p ∼ K
ϕ
k,r(f

(r), tk)α,β,p = Kk,ϕ(f
(r), tk)wα+r/2,β+r/2 ,p, (4.1)

provided that all conditions in Lemma 4.1 are satisfied.
The following sharp Marchaud inequality was proved in [1] for f ∈ L

α,β
p , 1 <

p <∞.

Theorem 4.2 ([1, Theorem 7.5]) For m ∈ N, 1 < p < ∞, and α, β ∈ Jp, we
have

Km,ϕ(f, t
m)wα,β ,p ≤ Ctm

(∫ 1

t

Km+1,ϕ(f, u
m+1)

s∗
wα,β ,p

ums∗+1 du+ Em(f )s∗wα,β ,p

)1/s∗

and

Km,ϕ(f, t
m)wα,β ,p ≤ Ctm

⎛
⎝ ∑

n<1/t

ns∗m−1En(f )s∗wα,β ,p

⎞
⎠

1/s∗

,

where s∗ = min{2, p}.
In view of (4.1), the following result holds.



30 K. A. Kopotun et al.

Corollary 4.3 For 1 < p < ∞, r ∈ N0, m ∈ N, r/2 + α ≥ 0, r/2 + β ≥ 0, and
f ∈ B

r
p(wα,β), we have

ωϕ
m,r (f

(r), t)α,β,p ≤ Ctm

(∫ 1

t

ω
ϕ
m+1,r (f

(r), u)
s∗
α,β,p

ums∗+1 du+ Em(f (r))
s∗
wα,βϕ

r ,p

)1/s∗

and

ωϕ
m,r (f

(r), t)α,β,p ≤ Ctm

⎛
⎝ ∑

n<1/t

ns∗m−1En(f
(r))

s∗
wα,βϕr ,p

⎞
⎠

1/s∗

,

where s∗ = min{2, p}.
The following sharp Jackson inequality was proved in [2].

Theorem 4.4 ([2, Theorem 6.2]) For 1 < p < ∞, α, β ∈ Jp, and m ∈ N, we
have

2−nm

⎛
⎝

n∑
j=j0

2mjs∗E2j (f )s
∗

wα,β ,p

⎞
⎠

1/s∗

≤ CKm,ϕ(f, 2−nm)wα,β ,p

and

2−nm

⎛
⎝

n∑
j=j0

2mjs∗Km+1,ϕ(f, 2−j (m+1))s
∗

wα,β ,p

⎞
⎠

1/s∗

≤ CKm,ϕ(f, 2−nm)wα,β ,p,

where 2j0 ≥ m and s∗ = max{p, 2}.
Again, by virtue of (4.1), we have

Corollary 4.5 For 1 < p < ∞, r ∈ N0, m ∈ N, r/2 + α ≥ 0, r/2 + β ≥ 0, and
f ∈ B

r
p(wα,β), we have

2−nm

⎛
⎝

n∑
j=j0

2mjs∗E2j (f (r))s
∗

wα,βϕr ,p

⎞
⎠

1/s∗

≤ Cωϕ
m,r (f

(r), 2−n)α,β,p

and

2−nm

⎛
⎝

n∑
j=j0

2mjs∗ωϕ
m+1,r (f

(r), 2−j )s
∗

α,β,p

⎞
⎠

1/s∗

≤ Cωϕ
m,r (f

(r), 2−n)α,β,p,

where 2j0 ≥ m and s∗ = max{p, 2}.
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Corollary 4.6 For 1 < p < ∞, r ∈ N0, m ∈ N, r/2 + α ≥ 0, r/2 + β ≥ 0, and
f ∈ B

r
p(wα,β), we have

tm

(∫ 1/m

t

ω
ϕ
m+1,r (f

(r), u)s
∗

α,β,p

ums∗+1 du

)1/s∗

≤ Cωϕ
m,r (f

(r), t)α,β,p, 0 < t ≤ 1/m,

where s∗ = max{p, 2}.
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