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Abstract We discuss some properties of the moduli of smoothness with Jacobi
weights that we have recently introduced and that are defined as

2+a,r/2
wl(f,r(f(r)’ Da,p,p = Sup HWIZ +a,r/ +ﬁ(')A];z¢(~)(f(r)’ 5) H ,
0<h<t p

where ¢(x) = J1— x2, A];,(f, x) is the kth symmetric difference of f on[—1, 1],

WEE(x) == (1 — x — 8¢(x)/2)5 (1 + x — 8p(x)/2)°,

ando, > —1/pif0 < p <oo,and e, B > 0if p = o0.
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We show, among other things, that for all m,n € N, 0 < p < oo, polynomials
P, of degree < n and sufficiently small ¢,

(4 (% / -1 ¢ -1
wm,()(an t)a,ﬁ,p ~ twm—l,l(Pn’ t)a,ﬁ,p ~ e g™ wl’m_l(PyEm )7 t)a,ﬁ,p

],

where wgy g(x) = (1 —x)*(1 + x)P is the usual Jacobi weight.

In the spirit of Yingkang Hu’s work, we apply this to characterize the behavior of
the polynomials of best approximation of a function in a Jacobi weighted L, space,
0 < p < oo. Finally we discuss sharp Marchaud and Jackson type inequalities in
the case 1 < p < oo.

AMS Classification 41A10,41A17,41A25

1 Introduction

Recall that the Jacobi weights are defined as wy, g(x) := (1 —x)*(1 + x)P, where
parameters « and 8 are usually assumed to be such that we, g € Lp[—1, 1], ie.,

wpel, = {(—1/17, 00), %fO <p<o0,
[0, 00), if p = o0.
We denote by P, the set of all algebraic polynomials of degree < n — 1, and
L‘;‘;ﬁ(l) = {f | Hw‘xﬁﬂf”L,,(l) < oo], where I C [—1, 1]. For convenience, if
I = [~1,1], then we omit / from the notation. For example, |-, := lI-llz,(—1.1},
Ly’ = L5711, 1, ete.
Following [5] we denote ]B(I), (W, p) = L‘;‘,’ﬂ, and

B), (wq,p) :={f|f(r*”eACzoc and cp’f")eLi’ﬁ], r>1,

where ACj,. denotes the set of functions which are locally absolutely continuous in
(—=1,1), and ¢(x) := +/1 — x2. Also (see [5]), fork,r € Nand f € B, (wq,p), let

24a,r/2
w]‘f’r(f(r)’ Da.p.p = Sup WIZZ +a,r/ +ﬂ(')Ai<p(‘)(f(r)’ ) H (1.1)
0<h<t p
/2401 /2+p k
= sup [ WP PO AL (0| .

O<h<t
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where

N {Zi;o D e =K im, it k= x+ 1SS,

0, otherwise
is the kth symmetric difference, A% (£, x) := Ak (£, x; [-1,1]),
Wit (x) i= (1 —x = 8p(x)/2E (1 +x — 8p(x)/2)%,
and
D5 = [—1+u@).1— @1l p@) =28/4+8

(note that A’;“p(x)(f, x) =0ifx & D).
We define the main part weighted modulus of smoothness as

QL (f", A Dapp = sup

W, (V@ (VA (£ Tan)

0<h<t Lp(IA,h) ’
(12)
where Za j :=[—1+4 Ah?,1 — Ah?*] and A > 0.
We also denote
W (fD Dapp = sup [ wa s ()AL (FO, )H (13)
0<h<t
ie., lll;ﬁr is “the main part modulus Qf’r with A = 0. However, we want to

emphasize that while Qf .(f), A, 1)4.5., with A > 0 and o .(f"), 1)a.p.p are
bounded for all f € B/, (wa,p) (see [5, Lemma 2.4]), the modulus W/ ( F app
may be infinite for such functions (for example, this is the case for f such that
fOX)=0—x)"7withl/p<y <a+r/24+1/p).

Remark 1.1 We note that the main part modulus is sometimes defined with the
difference inside the norm not restricted to Zy4 5, i.e.,

Qf (f7 A Dapp = sup

0<h<t

Wa,p ()@ (VA () (1.4)

HLp(ZA,h) ’

Clearly, Qf’r(f(r), A, Dapp < ﬁf’r(f(r), A, t)a,p,p- Moreover, we have an esti-
mate in the opposite direction as well if we replace A with a larger constant A’. For
example, sz“’ (SO, A Dapp < Q(f7, A, 1)ap.p, where A = 2max{A, k?}
(see (2.9)). At the same time, if A is so small that ®y;, C Za p (for example, if
A < k?/4), then sz“”r (fO, A Dapp = Y ,(f, 1)ap.,p. Hence, all our results
in this paper are valid with the modulus (1.2) replaced by (1.4) with an additional
assumption that A is sufficiently large (assuming that A > 2k will do).
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Throughout this paper, we use the notation
g := min{l, p},

and g stands for some sufficiently small positive constant depending only on «, 8,
k, and g, and independent of n, to be prescribed in the proof of Theorem 2.1.

2 The Main Result

The following theorem is our main result.

Theorem 2.1 Letk,n e Nyr e No, A>0,0<p <oo,a+r/2,+71r/2 € Jp,
andlet 0 < t < on™', where g is some positive constant that depends only on o, f,
k, and q. Then, for any P, € Py,

of (P Dapp ~ VL (P Dapp~Qf (P, A Dapp 2.1)

k+r P(k+r)
n

k
o e

s

where the equivalence constants depend only onk, r, o, B, A, and q.

The following is an immediate corollary of Theorem 2.1 by virtue of the fact that
ifa,B e Jy, thena +7/2, B +7r/2 € Jyforallr > 0.

Corollary 2.2 Letm,n € N, A > 0,0 < p <00, o, € Jp,andlet0 <t <
Qnil. Then, for any P, € Py, and any k € N andr € Nq such thatk +r = m,

1 0l (P Dapp ~ 1 WL (P Dapp ~ 175 (P, A Dapp
~ Juwapem ]
p

where the equivalence constants depend only onm, «, B, A, and q.

It was shown in [5, Corollary 1.9] that, for k € N, r € No, r/2 +a > 0,
r/2+p>0,1<p<=<oo, feB(wgp) s>l andalr >0,

w](f’r(f(r)a )\t)a,ﬂ,p = C)\ka)f’r(f(r)a t)oz,ﬂ,p-

Hence, in the case 1 < p < oo, we can strengthen Corollary 2.2 for the moduli
w,‘f .- Namely, the following result is valid.

Corollary 2.3 Letm,n e N, 1 < p < oo, o, € Jp, A > 0, andlet0 <t <
An~L. Then, for any P, € P,, and any k € N and r € Ng such thatk +r = m,

o (B D ~ [ wape" B
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where the equivalence constants depend only on m, o, B, and A.

Remark 2.4 In the case 1 < p < oo, several equivalences in Theorem 2.1 and
Corollary 2.2 follow from [4, Theorems 4 and 5], since, as was shown in [5, (1.8)],
forl < p < o0,

of (f7 Dapp ~ O (fD Dugperpr 0<t <10, (2.2)

where a)f; (g, w, p 1s the three-part weighted Ditzian—Totik modulus of smoothness
(see, e.g., [5, (5.1)] for its definition).
Note that it is still an open problem if (2.2) is valid if 0 < p < 1.

Proof of Theorem 2.1 The main idea of the proof is not much different from that
of [4, Theorems 3-5].

First, we note that it suffices to prove Theorem 2.1 in the case r = 0. Indeed,
suppose we proved that, for k,n € Ny A > 0,0 < ¢ < Ql’l_l, 0 < p < oo
a, B € Jp, and any polynomial Q, € PP,

w](f’()(Qna t)oz,ﬂ,p ~ lIJ](f’()(Qna t)a,ﬂ,p ~ Qf’O(Qna A, t)oz,ﬂ,p (2.3)

vl

Then, if P, is an arbitrary polynomial from P, and r is an arbitrary natural number,
assuming that n > r (otherwise, P,,(r) = 0 and there is nothing to prove) and
denoting Q := P.”) € P,_,, we have

w,‘f’,(P,f’), Dap.p = w;(f,o(Q, Datr/2,+r/2.ps
‘I’;ﬁ,(P,fr), Da.p.p = ‘I’l(f,o(Q, Datr/2,p+r/2.ps

Qf,,(P,f”, Da,p.p = Qf,o(Q, A, Datr/2,p41/2.ps
and

k+r P(k+r)
n

=l
and so (2.1) follows from (2.3) with « and B replaced by « + r/2 and B + r/2,

respectively.
Now, note that it immediately follows from the definition that

H Wa, BP Datry2,pr29" QP Hp )

U)f’()(gs t)a,ﬁ,p < q’/(éo(gs t)a,ﬂ,p-
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Also, for A > 0,
Qf,o(g’ A’ t)a,ﬂ,P S wa,()(g’ t)()l,ﬂ,ps

since wy,g(x) < cW,ﬁZﬂ (x) for x such that x £ kho(x)/2 € Ty p.
Hence, in order to prove (2.3), it suffices to show that

q’](io(an t)a,ﬁ,p =< Ctk Hwa,ﬂka;(zk)

‘ 2.4)
p
and

tk H wa,ﬂ(pk Q;k) H[’ < CQ?()(Qna A, t)a,ﬂ,p- (2.5)

Recall the following Bernstein—Dzyadyk-type inequality that follows from [4,
224)]:if0 < p <o0,a,B € Jp, and P, € P, then

|wa.pe” Py, < ens Hwa,w‘*an RERETET RSt

where ¢ depends only on «, 8 and g, and is independent of n and s.
This implies that, for any 0, € P, andk, j € N,

. k)1 .
[wape V0| < eom’ T fuapetol] 1<k jsnt

(2.6)
We now use the following identity (see [4, (2.4)]):
for any Q, € P, and k € N, we have
K ) ) L
Al (@) = 3 ain? @ @R ey @.7)
i=0
where K := [(n — 1 —k)/2], and §; € (—k/2, k/2) depends only on k and ;.
Applying (2.6), we obtain, for0 <i < Kand0 < h <t < Qn_l,
1 k420 oy (k+2i) 2i 2i 2i (k +2i)! k (k)
H iy VoA il < ok wpet 0]
= leok(k+ 1)/217 [ pe 0|

SBZi wa,ﬂ(ka;k)

‘ 9
p
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where we used the estimate (k + 2i)!/((2i)k!) < (k + 1)2i, and where g is taken
so small that the last estimate holds with B := (1/ 3)1/(29)_ Note that Zﬁl B%4 =
1/2.

Hence, it follows from (2.7) that

q .
g

K
q 1 . .
Hwa,ﬂA]i{l(p(Qna ) HP < hky H (Zi),wa,,efﬂ"“’ QU+ ki
i=0 ’

p

< 14 [ 0

‘ q

K
i=1

‘ q
p

p

=3/2 1 [ g O

This immediately implies

W o(Qn Dapop = B2 V91 [we gt OF

,
and so (2.4) is proved.
Recall now the following Remez-type inequality (see, e.g., [4, (2.22)]):

If0<p<oo,apfelpa=>0,n¢eNissuchthatn > /a,and P, € P,, then

lwasPal, = e s e

|‘Lp[—l+an’2,l—an’2] ’
where ¢ depends only on «, 8, a, and q.

Note that

W p (VA (O3 Tan)|

Qf’O(Qna Aa t)oz,ﬂ,p = Sup

O<h<t Lp(Zan)
= sup [ wap ()AL, (Qn0)| ,
Ogh[;t P ho()R=r Lp(Sk,an)

where the set Sk 4, is an interval containing all x so that x £ khe(x)/2 € Za .
Observe that

Sk, an D Lo,

where A’ := 2 max{A, k?}, and so

2.9)

QY VALt > su Hw Y . .
£.0(Qns A Dap,p oshl; . p () Ay (O )Lp(IA/’h)
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Now it follows from (2.7) that A’;l o(x) (Qn, x) is a polynomial from P, if k is even,
and it is a polynomial from P,,_; multiplied by ¢ if k is odd.
Hence, (2.8) implies that, for 7 < 1/(«/2A’n),

| wep by (00, )|

wapAf, (On, )|

(2.10)

2 |
LpyZyp) — Lpl—14n=2/2,1-n=2/2]

>c

wa,ﬂAﬁlp(Qna ) Hp .

It now follows from (2.7) that

K

Al;l<ﬂ(x)(Q"’ x) — ¢k(x)Q,(1k)(x)hk = Z

i=1

(21), (pk+2i (x) Q’(1k+2i) (x)hk+2i%.k2i2i ,

and so, as above,
1 q
Jwas (84000 = 4 Q)| < 172 it 0.
Therefore,
k 1 kg k() |7
Wa,p Ay ()| 2 /20 Jwapgt 0,7

which combined with (2.9) and (2.10) implies (2.5). |

3 The Polynomials of Best Approximation

For f € L‘,x,’ﬁ, let Py = Py(f) € Py and E;(f)u,4.p be a polynomial and the
degree of its best weighted approximation, respectively, i.e.,

En(f)wa,,g,p = pirelg ”wa,ﬂ(f - pn)”p = ”wa,ﬂ(f - P:)”p

Recall (see [5, Lemma 2.4] and [6, Theorem 1.4]) that if « > 0 and 8 > 0, then,

foranykeN,0<pfooandfeL‘;’ﬁ,

a)l(f’o(f,t)a,,g,p 5c||wa,,gf||p, t>0, (3.1)
with ¢ depending only on k, @, B, and g. Also, forany 0 < & <1,

En(Nwgpp < cof o(fs 90 Dapp. 1=k, 3.2)
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where ¢ depends on ¢ as well as k, o, 8, and q.

Theorem 3.1 Letk € N, o, 8 > 0,0 < p < o0, and f € L‘;’ﬁ. Then, for any
neN,

—k k prk ~1
n " wg,ge Py Np < cw,‘f’o(P,:‘, Da,p,p = Cw/(f,o(fv Dapp, TZen ",

(3.3)
where constants ¢ depend only on k, «, B, and q.
Conversely, forO <t <o/k andn := |o/t],
. 1/q
of o(f: Dapp <c | D of (P32 n™ e 4 (3.4)
j=0
1/q

(o)

—jkq, —k pra
Y 27k lwy gt PIVNG
Jj=0

where ¢ depends only on k, a, B, and q.
Corollary 3.2 Letk e N, o, B> 0,0 < p < oo, f € L%, andy > 0. Then,

lwa,pe PrO N, = 06 iff of o(f. Dapp = O@7). (3.5)

Proof of Theorem 3.1 In order to prove (3.3), one may assume that n > k. By
Theorem 2.1 we have

" wa,p @ Py O < co™ ol o(Py.en™Dap.p < caff (P Dapp-
At the same time, by (3.1) and (3.2) with ¥ = o,

of o(PyiDa g, S0l o(f = P0G 5, + 0l o(f05 5,
< cllwa.p(f — PO} +wk o/, t)a,gp
<cofo(fran™ D g, + ol (084,
< cap o(fsDg 5.

and (3.3) follows.

In order to prove (3.4) we follow [4]. Assume that 0 < t < @/k and note that
n= I_Q/ t| > k. Let P, € P, be a polynomial of best weighted approximation of
P*

2n0 1

woz,ﬂ(Pz*n - ﬁn)

I, :=)

» = En(Pz*n)waﬂ,p-
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Then, (3.2) with ¥ = /2 implies that
Iy < cof o(P3,.02n) Dap.p,
while
5> Nlwap(f — POIb = |wap(f = P3| ) = Ea(F)bupp — E2n()bpop-

Combining the above inequalities we obtain

o0 o0
En(F)upp =Y (Erin(Flupp = Eaivin(Fbupp) < Y15
j=0 j=0

o0
@ * —j,,—1\4
Sczwk,O(PZJn’Qz n ey
j=1

Hence,

@ q @ * 4 ® N
g o(fi Dy p p S Cop o(f = Pri)g g, +cop o(Pr 1)y g,

=< CEn(f)qwa,/s,p + Cw](f,o(Pr;k’ Qnil)g,ﬂ,p

o0
@ * —j,—1\q
<cy o o(P,.e27n N,
—

o0
—jkq ., —k k pxk) 4
<Y 27 MR g gt PO,

Jj=0

where, for the last inequality, we used Theorem 2.1. This completes the proof of
(3.4). |

4 Further Properties of the Moduli

Following [5, Definition 1.4], for k € N, r € Ny, and f € IB%;,(wa,,g), 1<p<oo,
we define the weighted K -functional as follows:

K](ir(f(r)a tk)oz,ﬂ,p

- inf H wa’ﬂwr(f(r) _ g(r))H T H wa’ﬂ(pk+rg(k+r)
g€BET (we p) p

il
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We note that
k 2 k
Kio (s 1) wep.p = Ky o(f2 1) 8,

where Ky o(f, t")w, p is the weighted K-functional that was defined in [3, p. 55
(6.1.1)] as

Kio(fs ) p = inf {llw(f — @, + FllweFg®11,).
g€Bk (w)

The following lemma immediately follows from [5, Corollary 1.7].

Lemmad.l Ifk e NNr e No,r/24+a >0,r/24+8>0,1<p < oo, and
fe B;(wa,ﬁ), then, forall 0 <t < 2/k,

K/(ér(f(r)a tk)oz,ﬂ,p =< ca)f’r(f(r), t)a,ﬂ,p =< CK;zr(f(r), tk)a,ﬂ,p-

Hence,

of (f7 Dapp ~ KL OVapp = Kio P Vg pppirpps (G21)

provided that all conditions in Lemma 4.1 are satisfied.
The following sharp Marchaud inequality was proved in [1] for f € L‘;’ﬁ , 1 <
p < 00.

Theorem 4.2 ([1, Theorem 7.5]) Form e N, 1 < p < oo, and a, 8 € J), we
have

. 1/s4
U K1, (fou" )
s ) a,B5P S
Ko (fo t™ g gp < Ct™ (/, o d”"‘Em(f);;aﬂ,p
and
1/s4

Km,(p(fa tm)wavﬂ,p 5 Ctm Z ns*m_lEn(f)flja,ﬁ,P 5

n<l/t

where s, = min{2, p}.

In view of (4.1), the following result holds.



30 K. A. Kopotun et al.

Corollary 4.3 Forl < p <oco,re No,m e N, r/24+a >0,r/2+ 8 > 0, and
fe IB%; (wq,p), we have

K 1/sx
1 o? (f(r) u)™
+1, ’ P, S
w%,r(f(r)ﬂ t)a,ﬁ,p = Ctm (/; " rums*+1 “hr du + Em(f(r)):ﬂa.ﬁ‘/’rvp
and
1/sx
a);ﬁ’,(f(r), t)a,ﬂ,p < ct™ Z ns*milEn(f(r))f;a,ﬁ(pr’p P
n<l/t

where s, = min{2, p}.
The following sharp Jackson inequality was proved in [2].

Theorem 4.4 ([2, Theorem 6.2]) For 1 < p < oo, a, 8 € Jp, and m € N, we
have

n 1/s?
2N 2 By (Psn | S CRmg (27 i
J=Jo
and
n 1/s*
27 Y T2 K (£, 277 ] S CRun (27w

J=Jo
where 20 > m and s* = max{p, 2}.

Again, by virtue of (4.1), we have

Corollary 4.5 Forl < p <oo,r e No,m e N,r/24a >0,r/24+ 8 > 0, and
f e IB%;, (wq,p), we have

1/s*
n
27nm Z ZmJS*Ezj (f(r) gavﬁwr’p < Cw,‘i’,(f(r), 27")0{,/3,17
J=Jo
and
0 1/s*
2 [y 2 (F 027 < Cof  (f7. 27 ap.p.
J=Jo

where 270 > m and s* = max{p, 2}.



On Some Properties of Moduli of Smoothness with Jacobi Weights 31

Corollary 4.6 Forl < p <oco,r e No,m e N, r/24+a >0,r/2+ 8 > 0, and
fe IB%; (wq,p), we have

1/s*

= Cw;’;t,r(f(r)vt)a,ﬂ,pv 0<t < 1/m,

1/m f (r) s*
m // merl,r(f ’u)oz,ﬂ,P du
ms*+1
t u

where s* = max{p, 2}.
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