
Acta Math. Hungar., 123 (3) (2009), 273�290.
DOI: 10.1007/s10474-009-8111-4

First published online January 27, 2009

ARE THE DEGREES OF BEST (CO)CONVEX
AND UNCONSTRAINED POLYNOMIAL

APPROXIMATION THE SAME?∗
K. KOPOTUN1, D. LEVIATAN2 AND I. A. SHEVCHUK3

1 Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
e-mail: kopotunk@cc.umanitoba.ca

2 Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv,
69978, Israel

e-mail: leviatan@post.tau.ac.il
3 Faculty of Mechanics and Mathematics, National Taras Shevchenko University of Kyiv,

01033 Kyiv, Ukraine
e-mail: shevchuk@univ.kiev.ua

Dedicated to Jóska Szabados on his 70th birthday

(Received June 16, 2008; revised October 7, 2008; accepted October 7, 2008)

Abstract. Let C[−1, 1] be the space of continuous functions on [−1, 1], and
denote by ∆2 the set of convex functions f ∈ C[−1,1]. Also, let En(f) and E

(2)
n (f)

denote the degrees of best unconstrained and convex approximation of f ∈ ∆2 by
algebraic polynomials of degree < n, respectively. Clearly, En(f) 5 E

(2)
n (f), and

Lorentz and Zeller proved that the inverse inequality E
(2)
n (f) 5 cEn(f) is invalid

even with the constant c = c(f) which depends on the function f ∈ ∆2.
In this paper we prove, for every α > 0 and function f ∈ ∆2, that

sup
{

nαE(2)
n (f) : n ∈ N}

5 c(α) sup
{

nαEn(f) : n ∈ N}
,

where c(α) is a constant depending only on α. Validity of similar results for the
class of piecewise convex functions having s convexity changes inside (−1, 1) is
also investigated. It turns out that there are substantial di�erences between the
cases s 5 1 and s = 2.

∗The �rst author was supported by NSERC of Canada, the third author by Grant �Dnipro�.
Key words and phrases: (co)convex approximation by polynomials, degree of approximation.
2000 Mathematics Subject Classi�cation: 41A10, 41A25, 41A29.

0236�5294/$ 20.00 c© 2009 Akadémiai Kiadó, Budapest



274 K. KOPOTUN, D. LEVIATAN AND I. A. SHEVCHUK

1. Introduction and main results

Let C[−1,1] be the space of continuous functions on [−1,1] equipped with
the uniform norm ‖ · ‖, and denote by ∆2 the set of all convex functions
f ∈ C[−1, 1]. If Pn is the space of algebraic polynomials of degree < n, then

En(f) = inf
{‖f − Pn‖ : Pn ∈ Pn

}

and
E(2)

n (f) = inf
{‖f − Pn‖ : Pn ∈ Pn ∩∆2

}
,

denote the degrees of best unconstrained and convex approximation of a func-
tion f by polynomials from Pn, respectively.

Clearly, En(f) 5 E
(2)
n (f), and Lorentz and Zeller [8] proved that the in-

verse inequality E
(2)
n (f) 5 cEn(f) is not true in general even with the constant

c = c(f) which depends on the function f ∈ ∆2.
Despite all this, the following result is valid.
Theorem 1.1. For every α > 0 and f ∈ ∆2 we have

(1.1) sup{nαE(2)
n (f) : n ∈ N} 5 c(α) sup

{
nαEn(f) : n ∈ N}

,

where c(α) is a constant that depends only on α.
Clearly (1.1) is meaningful only when the right-hand side is < ∞.
A natural question now is whether similar results are valid for piecewise

convex functions, i.e., functions which change their convexity s < ∞ times in
the interval (−1, 1). Surprisingly, we discovered that the situations are rather
di�erent in the cases s 5 1 and s = 2.

In order to give precise statements we need some additional de�nitions.
Let Ys, s ∈ N, be the set of all collections Ys := {yi}s

i=1 of points yi, such that
−1 < ys < · · · < y1 < 1. For Ys ∈ Ys denote by ∆2(Ys) the set of all piecewise
convex functions f ∈ C[−1, 1], that change convexity at the points Ys, and
are convex on [y1, 1]. In other words, a continuous function f is in ∆2(Ys)
if and only if it is convex (concave) on [yi+1, yi], for all even (odd) indices
0 5 i 5 s, where y0 := 1 and ys+1 := −1. Note that if f is twice continuously
di�erentiable in (−1, 1), then f ∈ ∆2(Ys) if and only if

f ′′(x)Π(x;Ys) = 0, x ∈ (−1, 1), where Π(x; Ys) :=
s∏

i=1

(x− yi).

Denote by

E(2)
n (f, Ys) = inf

{‖f − Pn‖ : Pn ∈ Pn ∩∆2(Ys)
}

,
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BEST (CO)CONVEX AND UNCONSTRAINED POLYNOMIAL APPROXIMATION 275

the degree of best coconvex approximation of a function f ∈ ∆2(Ys). For the
sake of uniformity, we also write Y0 := {∅}, ∆2(Y0) := ∆2, E

(2)
n (f,Y0) :=

E
(2)
n (f), etc.
Throughout this paper, we denote by c absolute positive constants which

may vary from one occurrence to another even when they appear in the same
line. Similarly, c(. . . ) and N(. . . ) denote positive real constants and natural
numbers, respectively, which depend only on the parameters/sets/functions
in the parentheses. For example, N(α, Ys) denotes a natural number which
depends only on α and Ys and does not depend on anything else.

In the case s = 1 (i.e., when the function changes convexity only once),
we have

Theorem 1.2. For every α > 0, α 6= 4, Y1 ∈ Y1 and f ∈ ∆2(Y1), we have

(1.2) sup{nαE(2)
n (f, Y1) : n ∈ N} 5 c(α) sup

{
nαEn(f) : n ∈ N}

.

The case s = 1, α = 4, turns out to be completely di�erent and resembles
what is happening for s = 2 (see below). For this case, on the positive side,
we have

Theorem 1.3. There is an absolute constant c, such that for every
Y1 ∈ Y1 and a function f ∈ ∆2(Y1) the inequality

(1.3) sup{n4E(2)
n (f, Y1) : n > (1− y2

1)
−1/2} 5 c sup

{
n4En(f) : n ∈ N}

,

holds.
Let

ϕ(x) :=
√

1− x2.

Since constant functions are in ∆2(Y1) for every Y1 ∈ Y1, we have

n4E(2)
n (f, Y1) 5 n4E

(2)
1 (f, Y1) = n4E1(f) 5 ϕ(y1)

−4 sup
{

n4En(f) : n ∈ N}
,

for all 1 5 n 5 ϕ(y1)
−1. Therefore, the following statement immediately fol-

lows from Theorem 1.3.
Corollary 1.4. For every Y1 ∈ Y1 and a function f ∈ ∆2(Y1) the in-

equality

sup{n4E(2)
n (f, Y1) : n ∈ N} 5 c(Y1) sup

{
n4En(f) : n ∈ N}

,

holds.
Theorem 1.3 and Corollary 1.4 cannot be improved since, on the negative

side, we have
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276 K. KOPOTUN, D. LEVIATAN AND I. A. SHEVCHUK

Theorem 1.5. For every Y1 ∈ Y1 there exists a function f ∈ ∆2(Y1),
satisfying

sup
{

n4En(f) : n ∈ N}
= 1,

such that for each m ∈ N, we have

(1.4) m4E(2)
m (f, Y1) =

(
c ln

m

1 + m2ϕ(y1)
− 1

)
,

and

(1.5) sup{n4E(2)
n (f, Y1) : n ∈ N} = c

∣∣ ln ϕ(y1)
∣∣ .

As we have already indicated above, the situation when s = 2 is quite
di�erent than the general case for s = 1.

Theorem 1.6. Let s = 2. For every α > 0 and each Ys ∈ Ys there exists
N(α, Ys) with the property that if f ∈ ∆2(Ys), then

(1.6) sup{nαE(2)
n (f, Ys) : n = N(α,Ys)} 5 c(α, s) sup

{
nαEn(f) : n ∈ N}

.

A negative result related to Theorem 1.6 (i.e., the fact that, for no α > 0
and s = 2, can N in (1.6) be made independent of Ys) is an immediate con-
sequence of the following theorem.

Theorem 1.7. Let s = 2. Then for every α > 0 and m ∈ N, there exist
a collection Ys ∈ Ys and a function f ∈ ∆2(Ys), such that

(1.7) mαE(2)
m (f, Ys) = c(α, s)mα∗ sup

{
nαEn(f) : n ∈ N}

,

where α∗ = α + 1− dαe and dαe is the smallest integer not smaller than α.

2. Auxiliary results

2.1. Ditzian�Totik weighted moduli of smoothness and related
function classes. Recall that ϕ(x) =

√
1− x2, and let Br, r ∈ N, be the

space of all functions f ∈ C[−1,1] with locally absolutely continuous (r−1)st
derivative in (−1, 1) such that ‖ϕrf (r)‖∞ < ∞, where for g ∈ L∞(−1, 1), we
write ‖g‖∞ := ess supx∈[−1,1]

∣∣g(x)
∣∣ . It is well known, that if f ∈ Br, then

(2.1) nrEn(f) 5 c(r)‖ϕrf (r)‖∞, n = r.
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BEST (CO)CONVEX AND UNCONSTRAINED POLYNOMIAL APPROXIMATION 277

Also let Cr
ϕ, be the space of functions f ∈ Cr(−1, 1) ∩C[−1, 1] such that

lim
x→±1

ϕ(x)rf (r)(x) = 0,

and C0
ϕ := C[−1, 1]. Then the weighted Ditzian�Totik modulus of smooth-

ness of rth derivative of a function f ∈ Cr
ϕ, is de�ned by

ωϕ
k,r(f

(r), t) := sup
0<h5t

sup
x

ϕ(x)r/2(ϕ(x)− kh
(
1 + |x|)/2)

r/2|∆k
hϕ(x)(f

(r), x)|,

where the inner supremum is taken over all x, such that ϕ(x) > kh
(
1+ |x|)/2,

and

∆k
δ (g, x) :=

k∑

i=0

(
k

i

)
(−1)k−ig(x− kδ/2 + iδ)

is the kth symmetric di�erence of a function g with a step δ.
If r = 0, then

ωϕ
k (f, t) := ωϕ

k,0(f, t)

is the (usual) Ditzian�Totik modulus of smoothness. Finally, we denote by
‖f‖C[a,b] the sup-norm of f ∈ C[a, b] (note that ‖f‖C[−1,1] = ‖f‖). Recall that
the ordinary kth modulus of smoothness of f ∈ C[a, b] is

ωk

(
f, t, [a, b]

)
:= sup

0<h5t

∥∥∆k
h(f, ·)∥∥C[a+kh/2,b−kh/2]

,

and denote ωk(f, t) := ωk

(
f, t, [−1, 1]

)
.

Clearly
(2.2) Cr

ϕ ⊂ Br,

while it is known (see, e.g., [2, Ch. 3.10]) that if f ∈ Br, then f ∈ Cl
ϕ for all

0 5 l < r, and

(2.3) ωϕ
r−l,l(f

(l), t) 5 ctr−l‖ϕrf (r)‖∞, t > 0.

Note that if f ∈ Cr
ϕ, then the following inequality holds for all 0 5 l 5 r

and k = 1 (see [2, Ch. 3.10]):

(2.4) ωϕ
k+r−l,l(f

(l), t) 5 c tr−lωϕ
k,r(f

(r), t), t > 0.

2.2. Auxiliary lemmas. The following results are so-called inverse theo-
rems. They characterize the smoothness (i.e., describe the class) of functions
that have the order of polynomial approximation n−α.
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278 K. KOPOTUN, D. LEVIATAN AND I. A. SHEVCHUK

Theorem 2.1 [2, Ch. 7.2]. Let r ∈ N0, k ∈ N and α > 0, be such that
r < α < k + r, and let f ∈ C[−1, 1]. If

nαEn(f) 5 1, for all n = k + r,

then f ∈ Cr
ϕ and

ωϕ
k,r(f

(r), t) 5 c(α, k, r)tα−r.

Theorem 2.2. Let 2r < α < 2k + 2r, and f ∈ C[−1, 1]. If
nαEn(f) 5 1, n = k + r,

then f ∈ Cr[−1, 1] and

(2.5) ωk(f (r), t) 5 c(α, k, r)
)
tα/2−r.

Proof. Set ρn(x) := max
{

n−2, n−1ϕ(x)
}
. Since n−2 5 ρn(x), there is

a sequence of polynomials Pn ∈ Pn, such that
∣∣f(x)− Pn(x)

∣∣ 5 cρα/2
n (x)

for all x ∈ [−1,1] and n = k + r. By the classical inverse theorem [2, Theorem
7.1.2] this implies that f ∈ Cr[−1, 1] and (2.5) is satis�ed. ¤

Let xj := cos (jπ/n), 0 5 j 5 n, be the Chebyshev knots, and denote
Ij := [xj , xj−1] and |Ij | := xj−1 − xj , 1 5 j 5 n. Denote by Σk,n the collec-
tion of all continuous piecewise polynomials of degree < k, on the Chebyshev
partition {xj}n

j=0. Also, denote by Σk,n(Ys) the subset of Σk,n consisting of
those continuous piecewise polynomials S that do not have any knots �too
close� to the points yi ∈ Ys of convexity change. More precisely, if Ys ∈ Ys and
ji, 1 5 i 5 s, are chosen so that yi ∈ [xji , xji−1), then S is in Σk,n(Ys) if and
only if S ∈ Σk,n and, for every 1 5 i 5 s, the restriction of S to (xji+1, xji−2)
is a polynomial, where xn+l := −1, x−l := 1, l ∈ N.

We will need the following well known relation for f ∈ Cr
ϕ (see, e.g., [4],

(3.4)),

|Ij |rωk(f (r), |Ij |, Ij) 5 c(k, r)n−rωk,r(f (r), 1/n), 2 5 j 5 n− 1.

Then Besov's inequality (see, e.g., [2, (3.5.2)]) implies
Lemma 2.3. For each k, r and f ∈ Cr

ϕ,

|Ij |r‖f (r)‖
C(Ij)

5 c(k, r)(‖f‖C(Ij)
+ n−rωϕ

k,r(f
(r), 1/n)), 2 5 j 5 n− 1.

(2.6)

The following lemma allows us to reduce the proofs of the direct estimates
of (co)convex polynomial approximation to those for spline approximation
which are usually much simpler.
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BEST (CO)CONVEX AND UNCONSTRAINED POLYNOMIAL APPROXIMATION 279

Lemma 2.4 [7, Theorem 3]. For every m = 1 and s = 0 there are
constants c = c(m, s) and c∗ = c∗(m, s), such that if n = 1, Ys ∈ Ys, and
S ∈ Σm,n(Ys) ∩∆2(Ys), then

(2.7) E(2)
c∗n(S, Ys) 5 cωϕ

m(S, 1/n).

The following two lemmas immediately follow from [6, Proof of Theorem
2.5].

Lemma 2.5. For every f ∈ ∆2∩C2
ϕ, k ∈ N and n = 5, there is S ∈ Σk+2,n

∩∆2, such that

‖f − S‖C[xn−2,x2] 5 c(k)n−2ωϕ
k,2(f

′′, 1/n).

Lemma 2.6. Given Ys ∈ Ys, s = 1, and k ∈ N, there exists N = N(k, Ys)
such that, for every f ∈ ∆2(Ys) ∩ C3

ϕ and n = N , there is S ∈ Σk+3,n(Ys) ∩
∆2(Ys), such that

‖f − S‖C[xn−2,x2] 5 c(k, s)n−3ωϕ
k,3(f

(3), 1/n).

Moreover, if s = 1, then N(k, Y1) = 5.
The following lemma is a consequence of [6, Proof of Theorem 2.7 and

2.8].
Lemma 2.7. Given Y1 = {y1} ∈ Y1, for every f ∈ ∆2(Y1)∩C2

ϕ and n = 5,
there is S ∈ Σ5,n(Y1) ∩∆2(Y1), such that

‖f − S‖C[xn−2,x2] 5 cn−2ωϕ
3,2(f

′′, 1/n).

The next auxiliary lemma is needed for the proof of the positive results.
Lemma 2.8. I. Let f ∈ ∆2. Then, for f ∈ C2

ϕ ∩ C1[−1, 1], we have

(2.8) E(2)
n (f) 5 c(k)n−2ωϕ

k,2(f
′′, 1/n) + c(k)n−2ω2(f ′, 1/n2), n = 3.

Moreover, if f ∈ C2
ϕ ∩ C2[−1, 1], and k, l ∈ N, then, for n = l + 2, we have

(2.9) E(2)
n (f) 5 c(k, l)n−2ωϕ

k,2(f
′′, 1/n) + c(k, l)n−4ωl(f ′′, 1/n2).

II. Let f ∈ ∆2(Y1). Then

(2.10) E(2)
n (f, Y1) 5 cωϕ

3 (f, 1/n) + cω2(f, 1/n2), n = 2.
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If, in addition, f ∈ C2
ϕ ∩ C1[−1, 1], then

(2.11) E(2)
n (f, Y1) 5 cn−2ωϕ

3,2(f
′′, 1/n) + cn−2ω1(f ′, 1/n2), n = 2,

and

(2.12) E(2)
n (f, Y1) 5 cn−2ωϕ

3,2(f
′′, 1/n) + cn−2ω2(f ′, 1/n2), nϕ(y1) > 1.

Moreover, if we actually have f ∈ C3
ϕ ∩ C2[−1, 1], then for any k ∈ N,

(2.13) E(2)
n (f, Y1) 5 c(k)n−3ωϕ

k,3(f
(3),1/n)+ c(k)n−4ω2(f ′′,1/n2), n = 4.

III. If f ∈ ∆2(Ys)∩C3
ϕ ∩C2[−1, 1], s ∈ N, and k, l ∈ N, then there exists

N(Ys, k, l) such that, for all n = N(Ys, k, l),

(2.14) E(2)
n (f, Ys) 5 c(k, l, s)n−3ωϕ

k,3(f
(3), 1/n) + c(k, l, s)n−4ωl(f ′′, 1/n2).

Proof. Suppose that we have proved (2.8)�(2.14) for the approximation
by piecewise polynomials instead of by polynomials. More precisely, suppose
that (2.8)�(2.14) are valid if we replace E

(2)
n (f, Ys) on the left-hand sides of

these inequalities by

σ
(2)
k1,n(f, Ys) := inf

{‖f − S‖ : S ∈ Σk1,n(Ys) ∩∆2(Ys)
}

with su�ciently large k1. Observing that (2.7) implies

(2.15) E(2)
n (S, Ys) 5 cωϕ

k1
(S, 1/n), n = c∗,

and taking S ∈ Σk1,n(Ys) ∩∆2(Ys) so that ‖f − S‖ 5 2σ
(2)
k1,n(f, Ys), we con-

clude that

E(2)
n (f, Ys) 5 E(2)

n (S, Ys) + 2σ
(2)
k1,n(f, Ys) 5 cωϕ

k1
(f, 1/n) + cσ

(2)
k1,n(f, Ys),

for all n = c∗. Since, by (2.4), ωϕ
k1

(f, 1/n) 5 cn−rωϕ
k1−r,r(f

(r), 1/n), if k1 is
chosen to be su�ciently large (k1 = k + 4 will do), then this implies (2.8)�
(2.14) with an additional restriction that n = c∗. This veri�es (2.14). For
n < c∗, all other inequalities follow from the Whitney-type estimates with n
equal to the corresponding lower bounds. Namely, for f ∈ ∆2, inequalities
(2.8) and (2.9) follow, respectively, from

(2.16) E
(2)
3 (f) 5 cω2(f ′, 1), if f ∈ C1[−1, 1],
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BEST (CO)CONVEX AND UNCONSTRAINED POLYNOMIAL APPROXIMATION 281

and

(2.17) E
(2)
l+2(f) 5 cωl(f ′′, 1), if f ∈ C2[−1, 1].

For f ∈ ∆2(Y1), (2.10) and (2.11) are consequences of

(2.18) E
(2)
2 (f, Y1) 5 cω2(f, 1).

Taking into account that, if 1/ϕ(y1) < n < c∗, then ϕ(y1) ∼ c, inequality
(2.12) follows from

(2.19) E
(2)
2 (f, Y1) 5 4ϕ(y1)

−2ω2(f ′, 1), if f ∈ C1[−1, 1].

(We would like to emphasize that the fact that E
(2)
2 and not E

(2)
3 appears on

the left-hand side of (2.19) is not a misprint.) Finally, if f ∈ C2[−1, 1], then

(2.20) E
(2)
4 (f, Y1) 5 cω2(f ′′, 1)

yields (2.13). Inequalities (2.16)�(2.20) are simple corollaries of the Whitney
inequality, and we omit details of their proofs.

Therefore, it is su�cient to verify (2.8)�(2.14) for the approximation by
piecewise polynomials instead of by polynomials. Except for the proof of
(2.10), one may take for the interval [xn−2, x2], the piecewise polynomials S,
guaranteed by Lemmas 2.5-2.7. Thus, we only need to de�ne approximating
piecewise polynomials near the endpoints of [−1, 1] so that the shape is pre-
served and appropriate estimates hold. The proof of (2.10) will be slightly
di�erent since we do not have a reference for a direct analogue of Lemmas 2.5-
2.7 suitable for its proof (see below).

Due to symmetry, we only consider the right endpoint. By doubling or
quadrupling n if necessary we may assume that there are no points yi in
[x3, 1] in the case s = 2 (and, of course, if s = 0), and that either y1 < x3 or
y1 ∈ [x1, 1] in the case s = 1. Hence, it is su�cient to construct polynomials
p of small degrees such that

p(x2) = f(x2), p′(x2) = f ′(x2),(2.21)

p′′(x) = 0, x ∈ [x2, 1],(2.22)

if s 6= 1, or s = 1 and y1 6∈ [x3, 1], and

(2.23) (x− y1)p′′(x) = 0, x ∈ [x2, 1],
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282 K. KOPOTUN, D. LEVIATAN AND I. A. SHEVCHUK

if s = 1 and y1 ∈ [x1, 1], and appropriate estimates for ‖f − p‖C[x2,1] hold.
We then extend S (which is close to f on [xn−2, x2]) to (x2, 1] by de�ning

S|(x2,1](x) := p(x) + S(x2) + S′(x2−)(x− x2)− f(x2)− f ′(x2)(x− x2),

x ∈ (x2, 1]. It is clear by the de�nition that S satis�es the required cocon-
vexity, and (2.6) implies, for x ∈ [x2, 1] and r = 2 or 3 (depending on which
of the inequalities (2.8)�(2.14) we are proving),

∣∣S′(x2−)− f ′(x2)
∣∣ |x− x2| 5 ‖S′ − f ′‖C(I3)|x− x2|

5 c(k1)|I3|−1|x− x2|(‖S − f‖C(I3) + n−1ωϕ
k1−1,1(f

′, 1/n))

5 c(k1)‖S − f‖C[xn−2,x2] + c(k1)n−rωϕ
k1−r,r(f

(r), 1/n),

so that we may conclude that ‖f − S‖C[x2,1] is appropriately small.
Thus, our aim is the construction of p(x). To this end, if f ∈ C2[−1, 1],

then let p∗ ∈ Pl be the polynomial of best approximation of f ′′ on [x2, 1], and
de�ne

p(x) := f(x2) + (x− x2)f ′(x2)

+
1
2
(x− x2)

2‖f ′′ − p∗‖C[x2,1] +
∫ x

x2

(x− t)p∗(t) dt.

If f ′′ is non-negative on [x2, 1], then (2.21)�(2.22) are satis�ed and, by Whit-
ney's inequality,

(2.24) ‖f − p‖C[x2,1] 5 c(1− x2)
2‖f ′′ − p∗‖C[x2,1] 5 c(l)n−4ωl(f ′′, 1/n2),

which completes the proof of (2.9) and (2.14).
If s = 1 and y1 ∈ [x1, 1], then we de�ne

p(x) := f(x2) + (x− x2)f ′(x2) +
∫ x

x2

(x− t)L(t; f ′′, x2, y1) dt,

where L(x; g, a, b) denotes the linear polynomial interpolating g at the points
a and b.

Then p satis�es (2.21) and (2.23), and

(2.25) ‖f − p‖C[x2,1] 5 cn−4ω2(f ′′, 1/n2),
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which completes the proof of (2.13).
If f ∈ C1[−1, 1] and f is convex on [x2, 1], then we de�ne

p(x) := f(x2) +
∫ x

x2

L(t; f ′, x2, 1) dt,

which veri�es (2.8) and (2.12) (the estimates of the rate of approximation
are obtained using Whitney's inequality similarly to (2.24) and (2.25)). Ad-
ditionally, in the case s = 1, if y1 ∈ [x1, 1], then we choose p(x) := f(x2)
+ (x− x2)f ′(x2) which completes the proof of (2.11).

Finally, for the proof of (2.10) we note that, in the case xn−3 < y1

< x3, it was proved in [4] that E
(2)
n (f, Y1) 5 cωϕ

3 (f, 1/n) which implies (2.10).
In the case y1 ∈ [x1, 1], denoting by Q(x; g, a, b, c) the quadratic polynomial
interpolating g at the points a, b and c, we de�ne

S(x) :=





Q(x; f, xn, xn−1, xn−2), x ∈ [−1, xn−1),

min
{

Q(x; f, xj+1, xj , xj−1), Q(x; f, xj , xj−1, xj−2)
}

,

x ∈ [xj , xj−1), 3 5 j 5 n− 1,

L(x; f, x2, x1), x ∈ [x2, 1].

It is not di�cult to check that S ∈ Σ3,n(Y1) ∩∆2(Y1) and

‖f − S‖ 5 cωϕ
3 (f, 1/n) + cω2(f, 1/n2).

This completes the proof of (2.10) and, hence, of the lemma. ¤

3. Proofs of the negative results

Proof of Theorem 1.5. Noting that (1.4) is trivial if |y1| < 3/4 (the
right-hand side of the inequality is negative) and using symmetry, without
loss of generality we may assume that y1 5 −3/4. Put ε := 1 + y1 and de�ne

F (x) :=





1
x + 1

− 1
2
√

ε
, if − 1 < x < −1 + 4

√
ε,

− 1
x + 1

, if − 1 + 4
√

ε 5 x 5 1,

and set
f(x) :=

1
2

∫ x

−1+ε
(x− t)2F (t) dt, −1 5 x 5 1.
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Since f (3) = F , it follows that f ′′ is increasing on
( − 1,−1 + 2

√
ε
)

and
decreasing on

(− 1 + 2
√

ε, 1
)
. Also f ′′(y1) = 0 and f ′′(1) =

∫ 1
−1+ε F (t) dt

= 3 ln 2− 2 +
√

ε/2 > 0. Thus, we conclude that f ′′(x) < 0 for −1 < x < y1,
and f ′′(x) > 0 for y1 < x 5 1, which establishes that f ∈ ∆2(Y1).

Note that |f (4)(x)| = ∣∣F ′(x)
∣∣ = (1 + x)−2, x 6= −1. Hence ‖ϕ4f (4)‖ = 4,

so that for n = 4, (2.1) yields

(3.1) n4En(f) 5 c1,

for some absolute constant c1. The cases 1 5 n < 4 in (3.1) follow immedi-
ately from the case n = 1 (i.e., approximation by a constant function), per-
haps at the expense of somewhat increasing c1. Indeed, since f ′(y1) = 0, the
fact that f ∈ ∆2(Y1) implies that f is nondecreasing on [−1, 1], and taking
into account that

∣∣F (x)
∣∣ 5 (1 + x)−1, −1 < x 5 1, we have

E1(f) =
1
2
(
f(1)− f(−1)

)
=

1
4

∫ 1

y1

(1− t)2F (t) dt +
1
4

∫ y1

−1
(1 + t)2F (t) dt

=
1
4

∫ 1

−1
(1 + t)2F (t) dt−

∫ 1

y1

(1 + t)F (t) dt +
∫ 1

y1

F (t) dt

5 1
4

∫ 1

−1
(1 + t) dt +

∫ 1

y1

dt + 3 ln 2− 2 +
√

ε

2
5 3.

Hence, (3.1) is valid for 1 5 n 5 3 if we assume that c1 = 35. This completes
the proof of (3.1) for all n ∈ N.

Now, let

Tm(x) :=
1
2

∫ −1+m−2

−1+ε
(x− t)2F (t) dt

(note that Tm is a quadratic polynomial), and set g(x) := f(x)− Tm(x).
Then,

T ′′m ≡
{
− ln (m2ε)− 1/

(
2m2√ε

)
+
√

ε/2, if m−2 < 4
√

ε,

2 ln m + 4 ln 2− 2 +
√

ε/2, if m−2 = 4
√

ε,

which in turn implies

T ′′m = ln
m2

1 + m4ε
− 2, for all m ∈ N.
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Since g(x) = 1
2

∫ x
−1+m−2 (x− t)2F (t)dt, recalling that

∣∣F (x)
∣∣ 5 (1 + x)−1, we

obtain for −1 5 x < −1 + m−2,

∣∣g(x)
∣∣ 5 1

2

∫ −1+m−2

x

(t− x)2

1 + t
dt 5 1

2

∫ −1+m−2

−1

(t + 1)2

1 + t
dt =

1
4m4

,

while for −1 + m−2 5 x 5 1, we have

∣∣g(x)
∣∣ 5 1

2

∫ x

−1+m−2

(x− t)2

1 + t
dt 5 m2(x + 1)2

2

∫ x

−1+m−2

dt 5 m2(x + 1)3/2.

Hence,
∣∣g(x)

∣∣ 5 1 + m6(x + 1)3

m4
, −1 5 x 5 1.

Now, let Pm ∈ ∆2(Y1) be an arbitrary polynomial of degree < m. Since
P ′′

m(−1) 5 0, it follows that

(3.2) T ′′m(−1)− P ′′
m(−1) = T ′′m(−1) = ln

m2

1 + m4ε
− 2.

On the other hand, it follows from the well known Dzyadyk type inequality
(see, e.g., [5, Lemma 5.2]) that for any polynomial Qm ∈ Pm,

∣∣Q′′
m(−1)

∣∣ 5 c2m
4

∥∥∥∥
Qm

1 + m6(1 + ·)3
∥∥∥∥ ,

where c2 = 1 is an absolute constant. In particular,

(3.3)
∣∣T ′′(−1)− P ′′

m(−1)
∣∣ 5 c2m

4

∥∥∥∥
Pm − T

1 + m6(1 + ·)3
∥∥∥∥ .

Now, denoting Am := m4‖f − Pm‖ we have
∣∣Tm(x)− Pm(x)

∣∣ 5 ‖f − Pm‖+
∣∣g(x)

∣∣ 5 m−4Am + m−4
(
1 + m6(x + 1)3

)

5 (Am + 1)m−4
(
1 + m6(x + 1)3

)
,

and (3.3) implies that
∣∣T ′′m(−1)− P ′′

m(−1)
∣∣ 5 c2(Am + 1).
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Therefore, by (3.2)

Am + 1 = 1
c2

(
T ′′m(−1)− P ′′

m(−1)
)

= 1
c2

(
ln

m2

1 + m4ε
− 2

)
= 1

c2
ln

m2

1 + m4ε
− 2,

whence

m4Em(f, Y1)
sup

{
n4En(f) : n ∈ N} = 1

c1c2
ln

m2

1 + m4ε
− 3

c1

= 1
c1c2

ln
m2

1 + m4(1− y2
1)
− 1,

which implies (1.4).
Finally, for small values of 1− y2

1, (1.5) follows from (1.4) and, for values
bounded away from 0, (1.5) is a consequence of an obvious inequality

sup{n4E(2)
n (f, Y1) : n ∈ N} = sup

{
n4En(f) : n ∈ N}

.

The proof of Theorem 1.5 is now complete. ¤
Proof of Theorem 1.7. Given α and m, denote r := dαe and h :=

(6m)−1. For Ys = {yi}s
i=1 such that −1 < ys < · · · < y3 5 −1/2, y2 := −h

and y1 := h, let

fm(x) :=
∫ x

0
(x− t)f ′′m(t) dt,

where

f ′′m(t) :=

{
−(h2 − t2)r

, if |t| 5 h,

0, otherwise.

Clearly, fm ∈ Cr ∩∆2(Ys), and by the proof of Theorem 2.2 in [6],

mrE(2)
m (fm, Ys) = c(r)m‖f (r)

m ‖.

Hence the function f(x) := ‖f
(r)
m ‖−1

fm(x) satis�es

(3.4) mαE(2)
m (f, Ys) = c(r)mα+1−r = c(r)mα∗ .
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On the other hand, since ‖f (r)‖ = 1, Jackson's inequality implies

(3.5) nrEn(f) 5 c(r),

for all n = r, while straightforward computations yield ‖f ′‖ 5 c(r)hr−1, so
that

‖f‖ 5 c(r)hr−1 5 c(r),

which implies (3.5) for n < r. Hence

(3.6) nαEn(f) 5 nrEn(f) 5 c(r), n ∈ N.

Theorem 1.7 follows by combining (3.4) and (3.6). ¤

4. Proofs of the positive results

For α > 0, it is convenient to denote

r∗ := r∗(α) := dαe − 1 and k∗ := k∗(α) :=

{
1, if α 6∈ N,

2, if α ∈ N.

Note that r∗ < α < k∗ + r∗, and so by Theorem 2.1, nαEn(f) 5 1, n =
k∗ + r∗, implies that f ∈ Cr∗

ϕ and

(4.1) ωϕ
k∗,r∗(f

(r∗), t) 5 c(α)tα−r∗ .

4.1. The case s = 0: proof of Theorem 1.1. If the right-hand side
of (1.1) is in�nite, then there is nothing to prove. Thus, without loss of
generality, we may assume that

(4.2) sup
{

nαEn(f) : n ∈ N}
5 1.

Since constant functions are in ∆2, it is su�cient to prove inequality (1.1)
for n = N , where N is an absolute constant. Indeed, for 1 5 n < N , we have

E(2)
n (f) 5 E

(2)
1 (f) = E1(f) 5 1 5 Nαn−α.

For α 6∈ [3, 5], Theorem 1.1 immediately follows from (4.1) and the fol-
lowing lemma (see [3, Theorem 2] and [5, lines 2�5 in the table on p. 5]).
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Lemma 4.1. Let k = 1, 2 and r ∈ N0 be such that

(k, r) 6∈ {
(1, 3), (1, 4), (2, 2), (2, 3), (2, 4)

}
.

If f ∈ Cr
ϕ ∩∆2, then

E(2)
n (f) 5 c(r)n−rωϕ

k,r(f
(r), 1/n), n = k + r.

For α ∈ (4, 5], Theorem 1.1 follows from (4.1) and [3, Theorem 6] (a proof
similar to the one in the case α ∈ [3, 4] below, works as well).

Now, if inequality (4.2) is satis�ed for α ∈ [3, 4], then Theorem 2.1 (with
r = 2 and k = 3) and Theorem 2.2 (with r = 1 and k = 2) imply that f ∈ C2

ϕ

∩ C1[−1, 1],

ωϕ
3,2(f

′′, t) 5 c(α)tα−2 and ω2(f ′, t) 5 c(α)tα/2−1.

Hence, (2.8) (with k = 3) yields E
(2)
n (f) 5 c(α)n−α for n = 3 as needed.

4.2. The case s = 1 and α 6= 4: proof of Theorem 1.2. As in the case
s = 0, we may assume that (4.2) holds, and since constant functions are in
∆2(Y1) it is su�cient to prove inequality (1.2) for n = N , where N = N(α).

For α > 7 and α < 2, Theorem 1.2 readily follows from (4.1) and the
following theorem (see [6, Corollaries 2.10 and 2.12]).

Theorem 4.2. Let s = 1 and Y1 ∈ Y1. If k = 1, 2 and r = 7, or (k, r)
∈ {

(1, 1), (1, 0), (2, 0)
}
, and f ∈ Cr

ϕ ∩∆2(Y1), then

E(2)
n (f, Y1) 5 c(r)n−rωϕ

k,r(f
(r), 1/n), n = k + r.

If 4 < α 5 7, then Theorem 2.1 (with r = 3 and k = 5) and Theorem 2.2
(with r = 2 and k = 2) imply that f ∈ C3

ϕ ∩ C2[−1, 1],

ωϕ
5,3(f

(3), t) 5 c(α)tα−3 and ω2(f ′′, t) 5 c(α)tα/2−2.

Hence, (2.13) (with k = 5) immediately yields E
(2)
n (f,Y1) 5 c(α)n−α for n = 4

which completes the proof of Theorem 1.2 for 4 < α 5 7.
If 2 < α < 4, then Theorem 2.1 (with r = 2 and k = 3) and Theorem 2.2

(with r = 1 and k = 1) imply that f ∈ C2
ϕ ∩ C1[−1, 1],

ωϕ
3,2(f

′′, t) 5 c(α)tα−2 and ω1(f ′, t) 5 c(α)tα/2−1,

and (2.11) completes the proof for this range of α.

Acta Mathematica Hungarica 123, 2009



BEST (CO)CONVEX AND UNCONSTRAINED POLYNOMIAL APPROXIMATION 289

Finally, if α = 2, then Theorem 2.1 (with r = 0 and k = 3) and Theo-
rem 2.2 (with r = 0 and k = 2) imply that

ωϕ
3 (f, t) 5 c(α)t2 and ω2(f, t) 5 ct,

and estimate (2.10) now completes the proof Theorem 1.2.
4.3. The case s = 1 and α = 4: proof of Theorem 1.3. The inequal-

ity sup
{

n4En(f) : n ∈ N}
5 1, Theorem 2.1 (with r = 2 and k = 3) and

Theorem 2.2 (with r = 1 and k = 2) imply that f ∈ C2
ϕ ∩ C1[−1, 1],

ωϕ
3,2(f

′′, t) 5 ct2 and ω2(f ′, t) 5 ct.

Thus, it follows from (2.12) that E
(2)
n (f, Y1) 5 cn−4, for nϕ(y1) > 1, and the

proof of Theorem 1.3 is complete.
4.4. The case s = 2: proof of Theorem 1.6. Once again we may as-

sume that (4.2) is satis�ed. For α 6= 5, Theorem 1.6 immediately follows from
(4.1) and the following result (see [6, Corollary 2.9]).

Theorem 4.3. Let s = 2, k = 1, 2 and r ∈ N0 be such that (k, r) 6= (2, 4),
and Ys ∈ Ys. If f ∈ Cr

ϕ ∩∆2(Ys), then

E(2)
n (f, Ys) 5 c(r, s)n−rωϕ

k,r(f
(r), 1/n), n = N(r, Ys).

In the case α = 5, Theorem 2.1 (with r = 3 and k = 3) and Theorem 2.2
(with r = 2 and k = 1) imply that f ∈ C3

ϕ ∩ C2[−1, 1],

ωϕ
3,3(f

(3), t) 5 ct2 and ω1(f ′′, t) 5 ct1/2.

It follows from (2.14) (with k = 3 and m = 1) that E
(2)
n (f, Ys) 5 cn−5, for

n > N(Ys), which completes the proof of Theorem 1.6.
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