
Canad. J. Math. Vol. 57 (6), 2005 pp. 1224–1248

Convex Polynomial Approximation
in the Uniform Norm: Conclusion

K. A. Kopotun, D. Leviatan and I. A. Shevchuk

Abstract. Estimating the degree of approximation in the uniform norm, of a convex function on a

finite interval, by convex algebraic polynomials, has received wide attention over the last twenty years.

However, while much progress has been made especially in recent years by, among others, the authors

of this article, separately and jointly, there have been left some interesting open questions. In this

paper we give final answers to all those open problems. We are able to say, for each r-th differentiable

convex function, whether or not its degree of convex polynomial approximation in the uniform norm

may be estimated by a Jackson-type estimate involving the weighted Ditzian–Totik kth modulus of

smoothness, and how the constants in this estimate behave. It turns out that for some pairs (k, r) we

have such estimate with constants depending only on these parameters. For other pairs the estimate is

valid, but only with constants that depend on the function being approximated, while there are pairs

for which the Jackson-type estimate is, in general, invalid.

1 Introduction

Let C[a, b] denote the space of continuous functions f on [a, b], equipped with the
uniform norm

‖ f ‖[a,b] := max
x∈[a,b]

| f (x)|.

For I := [−1, 1], we omit the interval from this notation and write ‖ · ‖ := ‖ · ‖I .
Also, let Pn be the space of all algebraic polynomials of degree ≤ n − 1, and denote
by

En( f ) := inf
pn∈Pn

‖ f − pn‖,

the degree of best uniform polynomial approximation of f .

Finally, we denote by ∆
2, the set of convex functions on I, and let

E(2)
n ( f ) := inf

pn∈Pn∩∆2

‖ f − pn‖

denote the degree of best uniform convex polynomial approximation of f ∈ ∆
2 ∩

C[−1, 1].

Throughout this paper we will have parameters k, l, m, r all of which will denote
nonnegative integers, with k + r > 0.
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With ϕ(x) :=
√

1 − x2, we denote by B
r, r ≥ 1, the space of all functions f ∈

C[−1, 1] with locally absolutely continuous (r − 1)-st derivative in (−1, 1) such that

‖ϕr f (r)‖ < ∞, where for g ∈ L∞[−1, 1], we denote

‖g‖ := ess supx∈[−1,1]|g(x)|.

We use the same notation for the L∞ norm on I, as there can be no confusion.

The following estimates of the degree of convex polynomial approximation of

functions f ∈ B
r ∩ ∆

2 were proved by Leviatan [11] (r = 1 and 2) and by Kopotun
[6] (r = 3 and r ≥ 5):

(1.1) E(2)
n ( f ) ≤ c(r)

nr
‖ϕr f (r)‖, n ≥ r.

Moreover, Kopotun [6] showed that, in general, (1.1) is invalid for r = 4. Namely,
for every A > 0 and n ≥ 1, there exists a function f = fn,A ∈ B

4 ∩ ∆
2, for which

E(2)
n ( f ) > A‖ϕ4 f (4)‖.

Nevertheless, Leviatan and Shevchuk [14] have recently proved that, for f ∈ B
4∩∆

2,

E(2)
n ( f ) ≤ c

n4

(

‖ϕ4 f (4)‖ +
1

n2
‖ f ‖

)

, n ≥ 1,

with an absolute constant c, which implies (1.1) for n ≥ N( f ) instead of n ≥ r.

In fact, Leviatan [11] and Kopotun [8] have obtained estimates refining those
in (1.1) and involving, respectively, the Ditzian–Totik (D-T) moduli [3], and the
weighted D-T moduli of smoothness (see [16]), defined later in this section. In par-
ticular, the following result gives a complete answer, in the case of convex approxi-

mation, to a central question in approximation theory, namely, to characterize those
(convex) functions with prescribed degree of (convex) polynomial approximation. It
follows from [6–8, 10, 11, 14], and finally this paper (the case α = 4) that,

Theorem 1.1 For f ∈ ∆
2 and any α > 0, we have

En( f ) = O(n−α), n → ∞ ⇐⇒ E(2)
n ( f ) = O(n−α), n → ∞.

Let

ϕδ(x) :=

√

(

1 − x − δϕ(x)/2
) (

1 + x − δϕ(x)/2
)

=

√

(

1 − δϕ(x)/2
)2 − x2,

provided the expression under the square-root sign is nonnegative. The weighted
D-T modulus of smoothness of a function f ∈ C(−1, 1), is defined by

ωϕ
k,r( f , t) := sup

0<h≤t

∥

∥ϕr
kh( · )∆k

hϕ( · )( f , · )
∥

∥ ,
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where

∆
k
h( f , x) :=

{

∑k
i=0

(

k
i

)

(−1)k−i f (x − kh/2 + ih), if |x ± kh/2| < 1,

0, otherwise,

is the k-th symmetric difference.

If r = 0 and f ∈ C[−1, 1], then

ωϕ
k ( f , t) := ωϕ

k,0( f , t) = sup
0<h≤t

‖∆k
hϕ( · )( f , · )‖

is the (usual) D-T modulus. Also, if ϕ( · ) in the above definition is replaced by 1,
then we get the ordinary k-th modulus of smoothness:

ωk( f , t) := sup
0<h≤t

‖∆k
h( f , · )‖ .

Since ϕδ(x) ≤ ϕ(x) ≤ 1, it is clear from the above definitions that, if f ∈
C[−1, 1], then

(1.2) ωϕ
k,r( f , t) ≤ ωϕ

k ( f , t) ≤ ωk( f , t).

Also, for f ∈ C(−1, 1) and k ≥ 1, it follows immediately from [3, Thm. 4.1.3], that

(1.3) ωϕ
k+1,r( f , t) ≤ cωϕ

k,r( f , t),

and

(1.4) ωϕ
k,r( f , t) ≤ c‖ϕr f ‖.

Here and in the sequel, we write c for a constant which may depend only on k and r.
Moreover, it immediately follows from the definition that, for any [a, b] ⊂ (−1, 1),

(1.5) ωk( f , t, [a, b]) ≤ Cωϕ
k,r( f , t),

where C depends on k, r, and dist{[a, b],±1} > 0, and ωk( f , t, [a, b]) is the k-th
usual modulus of smoothness on [a, b], i.e.,

ωk( f , t, [a, b]) := sup
0<h≤t

‖∆k
h( f , · )‖[a+kh/2,b−kh/2].

The modulus ωϕ
k,r has many of the properties of the usual and D-T moduli of

smoothness. In particular (see [16, (18.14)]), for any k ∈ N, r ≥ 0, and f ∈ C(−1, 1),

ωϕ
k,r( f , λt) ≤ c(λ + 1)kωϕ

k,r( f , t), λ > 0.

This, in turn, implies that if a function f is not a polynomial of degree ≤ k− 1, then,
for some C = C( f ) > 0,

(1.6) ωϕ
k,r( f , t) ≥ Ctk, for all 0 < t ≤ 1.
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For arbitrary f ∈ C(−1, 1), the function ωϕ
k,r( f , t) may be unbounded. However,

it was shown in [12, 16] that a necessary and sufficient condition for ωϕ
k,r( f , t) to be

bounded for all t > 0 is that ϕr f ∈ L∞(−1, 1). Moreover, if r ≥ 1, then ωϕ
k,r( f , t) →

0, as t → 0, if and only if limx→±1 ϕr(x) f (x) = 0. Therefore, we denote C
0
ϕ :=

C[−1, 1] and, for r ≥ 1,

(1.7) C
r
ϕ := { f ∈ C

r(−1, 1) ∩ C[−1, 1] | lim
x→±1

ϕr(x) f (r)(x) = 0}.

Clearly C
r
ϕ ⊂ B

r. If f ∈ B
r, then f ∈ C

l
ϕ for all 0 ≤ l < r, and

(1.8) ωϕ
r−l,l( f (l), t) ≤ c t r−l

∥

∥ϕr f (r)
∥

∥ , t > 0.

Note that for f ∈ C
r
ϕ, and any 0 ≤ l ≤ r and k ≥ 1, the following inequalities hold

(see [16, Lemma 18.4, (18.19)], and [8, (1.1)]).

(1.9) ωϕ
k+r−l,l( f (l), t) ≤ ct r−lωϕ

k,r( f (r), t), t > 0,

in particular, if l = 0, then

(1.10) ωϕ
k+r( f , t) ≤ ct rωϕ

k,r( f (r), t), t > 0.

Finally, for 0 ≤ l < r/2,

(1.11) C
r
ϕ ⊂ B

r ⊂ C
l[−1, 1],

and (see [16, (18.18)])

(1.12) ωϕ
k+r−l( f (l), t) ≤ c t r−2l ωϕ

k,r( f (r), t), t > 0, 0 ≤ l < r/2.

In this paper, we are interested in determining for which values of parameters k

and r, the statement

if f ∈ ∆
2 ∩ C

r
ϕ, then

(1.13) E
(2)
n ( f ) ≤

C

nr
ωϕ

k,r

(

f
(r), 1/n

)

, n ≥ N ,

where C = const > 0 and N = const > 0,

is valid, and for which it is invalid. Here and later in this paper, for clarity of exposi-
tion, we denote ω0,r( f , t) := ‖ϕr f ‖. Hence, in the case k = 0, (1.13) becomes:

E(2)
n ( f ) ≤ C

nr
‖ϕr f (r)‖ , n ≥ N ,

for f ∈ ∆
2 ∩ B

r , which is the inequality (1.1).
It turns out that the validity of the above statement depends not only on our choice

of k and r but also on whether or not we allow constants appearing in (1.13) to de-
pend on the function f .

For the reader’s convenience we describe our results using an array in Figure 1.
There, the symbols “−”, “⊖”, and “+”, have the following meaning.
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Figure 1: Convex approximation: validity of E
(2)
n ( f ) ≤ Cn

−rωϕ
k,r

(

f
(r), 1/n

)

, n ≥ N

• The symbol “−” in the position (k, r) means that there is a function f ∈ ∆
2 ∩C

r
ϕ,

such that

lim sup
n→∞

nrE(2)
n ( f )

ωϕ
k,r( f (r), 1/n)

= ∞.

In other words, the estimate (1.13) is invalid even if we allow constants C and N

to depend on the function f .
• The symbol “+” in the position (k, r) means that (1.13) (or (1.1) if k = 0) is valid

with C depending only on k and r, and N = k + r.
• The symbol “⊖” in the position (k, r) means that (1.13) is valid with C depending

only on k and r, and N depending on the function f ; and there are no constants C

and N independent of f , such that (1.13) holds for every function f ∈ ∆
2 ∩ C

r
ϕ.

These results are obtained in (or can be derived from) the papers listed in Table 1.

The structure of our paper is as follows. In Section 2, we state our main re-
sults, which allow us to complete the above figure and table. In Section 3, we col-

lect some auxiliary results, some unexpected properties of the weighted D-T moduli,
Lemma 3.3 and Lemma 3.4, which enable us to apply [13, Lemma 4.1] in order to
prove Theorem 2.1 in Section 4, hence, filling the gap for α = 4 in Theorem 1.1. The
negative results are proved in Section 5, by constructing a counterexample which is

an essential development of ideas of [2, 6]. Finally, Appendix A is devoted to a short
proof of auxiliary inequalities involving Chebyshev polynomials.

2 Main Results

Theorem 2.1 If f ∈ C
2
ϕ ∩ ∆

2, then

(2.1) E(2)
n ( f ) ≤ c

(

n−2ωϕ
3,2( f ′ ′, 1/n) + n−6‖ f ′ ′‖[−1/2,1/2]

)

, n ≥ N,
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Positive results: “+” in position (k, r)

1986 (2, 0), hence, {(k, r) | k + r ≤ 2} Leviatan [11, Thm. 1]

1994 (3, 0), hence, {(k, r) | k + r ≤ 3} Kopotun [7, Thm. 2] (see also Hu,

Leviatan and Yu [5, Thm. 1])

1992 {(0, r) | r ≥ 5} Kopotun [6, Thm. 1]

1995 {(k, r) | r ≥ 5, k ≥ 1} Kopotun [8, Thm. 2]

Positive results: “⊖” in position (k, r)

2003 (4, 0), hence, {(k, r) | k + r = 4} Leviatan and Shevchuk [14, Cor. 3.2]

—– (3, 2), hence (2, 3) and (1, 4) This paper (see Corollary 2.2)

Negative results: “+” CANNOT be in position (k, r)

1981 (4, 0), hence, {(k, 0) | k ≥ 4} Shvedov [17, Thm. 3]

1991 (3, 1), hence, {(k, r) | 4 − k ≤ r ≤ 1} Mania (see [16, Theorem 16.1])

1992 (0, 4), hence, {(k, r) | 4 − k ≤ r ≤ 4} Kopotun [6, Thm. 2]

Negative results: “⊖” CANNOT be in position (k, r)

1992 (5, 0), hence, {(k, 0) | k ≥ 5} Wu and Zhou [18, Thm., p. 206]

2002 (4, 1), hence, {(k, r) | 5 − k ≤ r ≤ 1} Nissim and Yushchenko [15, Thm. 2]

—– (2, 4), hence, {(k, r) | 6 − k ≤ r ≤ 4} This paper (see Corollary 2.4)

Table 1

where c and N are absolute constants. Hence,

(2.2) E(2)
n ( f ) ≤ cn−2ωϕ

3,2( f ′ ′, 1/n), n ≥ N( f ).

By virtue of (1.9), an immediate consequence is

Corollary 2.2 Let 2 ≤ r ≤ 4, 1 ≤ k ≤ 5 − r. If f ∈ C
r
ϕ ∩ ∆

2, then

(2.3) E(2)
n ( f ) ≤ c

nr
ωϕ

k,r( f (r), 1/n), n ≥ N( f ).

On the other hand, we have the following negative result.

Theorem 2.3 There is a function f ∈ C
4
ϕ ∩ ∆

2, such that

(2.4) lim sup
n→∞

n4E(2)
n ( f )

ωϕ
2,4( f (4), 1/n)

= ∞.

Corollary 2.4 Let 0 ≤ r ≤ 4 and k ≥ 6 − r. Then there is a function f ∈ C
r
ϕ ∩ ∆

2,

such that

lim sup
n→∞

nrE(2)
n ( f )

ωϕ
k,r( f (r), 1/n)

= ∞.
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3 Auxiliary Results

The following notion of the length of an interval J := [a, b] ⊆ I, relative to its
position in I, was introduced in [12]:

/ J/ :=
| J|

ϕ
(

a+b
2

) ,

where | J| := b−a is the length of J. The following was proved in [12, (2.20)–(2.22)]:

If J1 ⊆ J, then / J1/ ≤ / J/.(3.1)

ωk( f , | J|, J) ≤ ωϕ
k ( f , / J/).(3.2)

ωk( f , | J|, J) ≤ 1

w
r(a, b)

ωϕ
k,r( f , / J/), where w(a, b) :=

√

(1 + a)(1 − b).(3.3)

Let x j := cos( jπ/n), 0 ≤ j ≤ n, be the Chebyshev knots, and denote I j :=

[x j , x j−1], 1 ≤ j ≤ n. Then, |I j | ∼ ϕ(x j )

n
+ 1

n2 (see (5.6) for exact constants in this
equivalence, and see [12, (3.1)])

2

n
≤ /I j/ ≤ π

n
,

for all 1 ≤ j ≤ n.

Also, for 1 < j < n we have

|I j | ≤ cw(x j , x j−1)n−1 .

Therefore, for 1 < j < n and 0 ≤ l ≤ r,

(3.4) |I j |lωk+r−l( f (l), |I j |, I j) ≤ c|I j |rωk( f (r), |I j |, I j)

≤ c
|I j |r

w
r(x j , x j−1)

ωϕ
k,r

(

f (r), /I j/
)

≤ cn−rωϕ
k,r

(

f (r), n−1
)

.

In the cases j = 1 and j = n, we cannot use the same sequence of estimates since
w(x j , x j−1) = 0. However, we have

ωk( f , t2) ≤ 2ωϕ
k ( f , t), t > 0, k ≥ 1,

[12, (2.25)] or [3, Corollary 3.1.3]. Hence, since |I1|, |In| ∼ n−2, we conclude by

(1.12) that, for all 0 ≤ l < r/2 and j = 1 or n,

(3.5) |I j |lωk+r−l( f (l), |I j |, I j) ≤ cn−2lωϕ
k+r−l( f (l), 1/n)

≤ cn−rωϕ
k,r

(

f (r), 1/n
)

.
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Let Lm−1(g ; z0, z1, . . . , zm−1) denote the polynomial of degree ≤ m − 1 which
interpolates a function g at the points z0, z1, . . . , zm−1. We remind the reader that

[z0, . . . , zm ; g] stands for the m-th divided difference of a function g at the knots
z0, . . . , zm defined by

(3.6) [z0, z1, . . . , zm ; g] :=
g(zm) − Lm−1(g ; z0, z1, . . . , zm−1)(zm)

(zm − z0)(zm − z1) . . . (zm − zm−1)
.

The following Newton formula for interpolating polynomials is well known:

(3.7) Lm−1(g; z0, z2, . . . , zm−1)(x) =

m−1
∑

i=0

(x − z0) · · · (x − zi−1)[z0, . . . , zi ; g].

Also, assuming that z0, z1, . . . , zm form either a non-increasing or a non-decreasing
sequence such that min0≤i≤m−1 |zi+1−zi | ∼ max0≤i≤m−1 |zi+1−zi |, and using Whit-

ney’s inequality we have the following estimate:

(3.8) |[z0, z1, . . . , zm ; g]|

≤ C|zm − z0|−mωm

(

g, |zm − z0|, [min{z0, zm}, max{z0, zm}]
)

,

where C depends on m and the ratio

min
0≤i≤m−1

|zi+1 − zi |/ max
0≤i≤m−1

|zi+1 − zi |.

Lemma 3.1 Let f ∈ C
r
ϕ, n ≥ k + 1, and let a polynomial pk+r of degree ≤ k +

r − 1 be such that p(i)
k+r(x1) = f (i)(x1) for all i = 0, 1, . . . , r − 1 and p(r)

k+r(x) =

Lk−1( f (r) ; x1, x2, . . . , xk)(x). Then,

(3.9) ‖ f − pk+r‖I1
≤ c

nr
ωϕ

k,r( f (r), 1/n).

We remark that a similar estimate holds for the interval In and a polynomial pk+r

defined analogously on In.

Proof First, we denote Lk−1 := Lk−1( f (r) ; x1, x2, . . . , xk) and note that it follows by
Whitney’s theorem and (3.3), that for any β ∈ [x1, 1) and the interval J := [xk, β]

we have

‖Lk−1 − f (r)‖ J ≤ c ωk( f (r), | J|; J)

≤ c

(1 − β)r/2
ωϕ

k,r( f (r), / J/) ≤ c

(1 − β)r/2
ωϕ

k,r( f (r), 1/n)

and, in particular,

(3.10) |Lk−1(β) − f (r)(β)| ≤ c

(1 − β)r/2
ωϕ

k,r( f (r), 1/n).
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Now, since for any g ∈ C
r[a, b] and x ∈ [a, b],

g(x) =

r−1
∑

i=0

g(i)(a)

i!
(x − a)i +

1

(r − 1)!

∫ x

a

(x − u)r−1g(r)(u) du,

using (3.10), we conclude that, for any x1 ≤ x < 1, the following holds:

| f (x) − pk+r(x)| =
1

(r − 1)!

∣

∣

∣

∣

∫ x

x1

(x − u)r−1
(

f (r)(u) − p(r)

k+r(u)
)

du

∣

∣

∣

∣

≤ c

∫ x

x1

(x − u)r−1
∣

∣ f (r)(u) − Lk−1(u)
∣

∣ du

≤ cωϕ
k,r( f (r), 1/n)

∫ x

x1

(x − u)r−1

(1 − u)r/2
du

≤ cωϕ
k,r( f (r), 1/n)

∫ 1

x1

(1 − u)r/2−1 du

≤ c(1 − x1)r/2ωϕ
k,r( f (r), 1/n)

≤ cn−rωϕ
k,r( f (r), 1/n).

Note that since f − pk+r is continuous, the above inequality is also valid for x = 1.
The proof of the lemma is now complete.

Lemma 3.2 Let α, β ∈ R be such that α + β > 1, and let 1 ≤ ν ≤ ⌊ n
2
⌋. Then,

(3.11)

⌊ n
2
⌋

∑

i=ν

|Ii |−αϕ−β(xi) ∼ n2α+β

⌊ n
2
⌋

∑

i=ν

i−α−β ≤ Cn2α+βν1−α−β ,

where C and the constants in the equivalence relation depend only on α and β, and are

independent of ν and n. Furthermore,

(3.12)

n−1
∑

i=1

|Ii |−αϕ−β(xi) ≤ Cn2α+β .

Proof Taking into account that, for any 1 ≤ i ≤ ⌊ n
2
⌋,

|Ii | ∼
ϕ(xi)

n
and ϕ(xi) =

√

1 − x2
i = sin(iπ/n) ∼ i

n
,

we have

⌊ n
2
⌋

∑

i=ν

|Ii|−αϕ−β(xi) ∼
⌊ n

2
⌋

∑

i=ν

nαϕ−α−β(xi) ∼ n2α+β

⌊ n
2
⌋

∑

i=ν

i−α−β ≤ C
n2α+β

να+β−1
.

Inequality (3.12) immediately follows from (3.11) with ν = 1 taking into account
that ϕ(xi) = ϕ(xn−i) and |In−i| = |Ii+1| ∼ |Ii |.
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Lemma 3.3 Let k ≥ 2, r ∈ N, 1 ≤ m ≤ k − 1, n ≥ 3m, and let j ∈ N be such that

[x j+m, x j] ⊂ [−1/2, 1/2] (which is equivalent to n/3 ≤ j ≤ 2n/3−m). Then, for any

f ∈ C(−1, 1),

(3.13)
∣

∣[x j , x j+1, . . . , x j+m ; f ]
∣

∣ ≤ c
(

nkωϕ
k,r( f , 1/n) + ‖ f ‖[−1/2,1/2]

)

,

where c depends only on k and r.

Note that Lemma 3.3 is valid if m = 0 and m = k as well. However, since (3.13)
becomes quite weak in these cases, they are excluded from the statement.

Proof First, recall the Marchaud inequality for a function f ∈ C[a, b] and

1 ≤ m < k:

ωm( f , t, [a, b]) ≤ ctm

{

∫ b−a

t

ωk( f , s, [a, b]) ds

sm+1
+ (b − a)−m‖ f ‖[a,b]

}

.

Now, taking [a, b] = [−1/2, 1/2] in the above estimate, using (3.8), and taking into

account that |x j − x j+m| ∼ 1/n for all j such that x j ∈ [−1/2, 1/2], we have

∣

∣[x j , x j+1, . . . , x j+m ; f ]
∣

∣ ≤ c(x j − x j+m)−mωm( f , x j − x j+m, [x j+m, x j])

≤ cnmωm( f , 1/n, [−1/2, 1/2])

≤
∫ 1

1/n

ωk( f , s, [−1/2, 1/2])

sm+1
ds + c‖ f ‖[−1/2,1/2]

= c

∫ 1

1/n

ωk( f , s, [−1/2, 1/2])

sk
· sk−1−m ds

+ c‖ f ‖[−1/2,1/2]

≤ cnkωk( f , 1/n, [−1/2, 1/2])

∫ 1

1/n

sk−1−m ds

+ c‖ f ‖[−1/2,1/2]

≤ cnkωk( f , 1/n, [−1/2, 1/2]) + c‖ f ‖[−1/2,1/2]

≤ cnkωϕ
k,r( f , 1/n) + c‖ f ‖[−1/2,1/2],

where the last inequality follows from (1.5).

The following lemma generalizes Lemma 3.3 to the cases when x j can be close to
the endpoints of [−1, 1]. Note that the condition r > k − 2m in its statement is

essential. In fact, this is the main reason why (2.2) is no longer valid with ωϕ
k,2, k ≥ 4,

instead of ωϕ
3,2.
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Lemma 3.4 Let k ≥ 2, n ≥ 3k, 1 ≤ m ≤ k − 1, and let r ∈ N0, r > k − 2m. Then,

for f ∈ C(−1, 1) and for every 1 ≤ j ≤ n − m − 1,

(3.14) |[x j , x j+1, . . . , x j+m ; f ]|

≤ cnk
( n

min{ j, n − j}
) r+2m−k

ωϕ
k,r( f , 1/n) + c‖ f ‖[−1/2,1/2].

Proof It is sufficient to prove this lemma for 1 ≤ j ≤ ⌊ n
2
⌋, the other case being

symmetric. Also, recall that, for all 1 ≤ i ≤ ⌊ n
2
⌋, ϕ(xi) ∼ i/n and |Ii| ∼ i/n2.

Now, for all 1 ≤ j ≤ n − k − 1, the inequalities (3.8) and (3.3) imply

|[x j , x j+1, . . . , x j+k ; f ]| ≤ c|I j |−kωk( f , x j − x j+k, [x j+k, x j])

≤ c|I j |−k
w

−r(x j+k, x j)ω
ϕ
k,r( f , /[x j+k, x j]/)

≤ c|I j |−kϕ−r(x j)ω
ϕ
k,r( f , 1/n).

Therefore, if 1 ≤ j ≤ min
{

n − k − 1, ⌊ n
2
⌋
}

, then

|[x j , x j+1, . . . , x j+k ; f ]| ≤ cnk
( n

j

) k+r

ωϕ
k,r( f , 1/n),

which is stronger than (3.14) for m = k. We now use induction in m (the case m = k

being its base). Suppose that k and r are fixed, that m is such that 1 ≤ m ≤ k− 1 and
m > (k − r)/2, and that (3.14) is valid with m replaced by m + 1. We will now show

that it has to be valid for m as well, which will complete the proof of the lemma.
Let 1 ≤ µ ≤ ⌊ n

2
⌋ be an index such that [xµ+m, xµ] ⊂ [−1/2, 1/2]. Lemma 3.3

implies that

|[xµ, . . . , xµ+m ; f ]| ≤ c(nkωϕ
k,r( f , 1/n) + ‖ f ‖[−1/2,1/2]).

Also,

−[x j , x j+1, . . . , x j+m ; f ] =
(

[xµ, . . . , xµ+m ; f ] − [x j , . . . , x j+m ; f ]
)

− [xµ, . . . , xµ+m ; f ]

=

µ−1
∑

i= j

(xi+m+1 − xi)[xi , xi+1, . . . , xi+m+1 ; f ]

− [xµ, . . . , xµ+m ; f ].

Therefore,

∣

∣[x j , x j+1, . . . , x j+m ; f ]
∣

∣ ≤ c

⌊ n
2
⌋

∑

i= j

|Ii | |[xi , xi+1, . . . , xi+m+1 ; f ]|

+ cnkωϕ
k,r( f , 1/n) + c‖ f ‖[−1/2,1/2],
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and using our induction hypothesis we have

∣

∣[x j , x j+1, . . . , x j+m ; f ]
∣

∣

≤ c

⌊ n
2
⌋

∑

i= j

|Ii|
(

nk
( n

min{i, n − i}
) r+2(m+1)−k

ωϕ
k,r( f , 1/n) + ‖ f ‖[−1/2,1/2]

)

+ cnkωϕ
k,r( f , 1/n) + c‖ f ‖[−1/2,1/2]

≤ cnkωϕ
k,r( f , 1/n)

⌊ n
2
⌋

∑

i= j

|Ii|
( n

i

) r+2(m+1)−k

+ cnkωϕ
k,r( f , 1/n) + c‖ f ‖[−1/2,1/2]

≤ cnkωϕ
k,r( f , 1/n)

⌊ n
2
⌋

∑

i= j

nr+2m−k

ir+2m−k+1
+ cnkωϕ

k,r( f , 1/n) + c‖ f ‖[−1/2,1/2]

≤ cnkωϕ
k,r( f , 1/n)

( n

j

) r+2m−k

+ c‖ f ‖[−1/2,1/2],

and the proof is now complete.

We need the following special case of Lemma 3.4 for j = 1, k = 3, r = 2, and
m = 1 or 2.

Corollary 3.5 Let n ≥ 9, m = 1 or m = 2, and f ∈ C(−1, 1). Then,

(3.15) |[x1, x2, . . . , xm+1 ; f ]| ≤ cn2m+2 ωϕ
3,2( f , 1/n) + c‖ f ‖[−1/2,1/2].

4 Proofs of Positive Results

Let Σk,n be the collection of all continuous piecewise polynomials of degree k − 1 on
the Chebyshev partition {x j}n

j=0 = {cos( jπ/n)}n
j=0.

The following lemma is a corollary of (more general) [13, Theorem 3].

Lemma 4.1 For every k ∈ N there are constants c = c(k) and c∗ = c∗(k), such that

if n ∈ N and S ∈ Σk,n ∩ ∆
2, then there is a polynomial Pn ∈ ∆

2 of degree ≤ c∗n,

satisfying

(4.1) ‖S − Pn‖ ≤ cωϕ
k (S, 1/n).

Hence, in order to obtain direct estimates for polynomial approximation, we only
need to construct suitable piecewise polynomials S ∈ Σk,n ∩ ∆

2.

In order to construct such piecewise polynomials, we use the following result
which was proved in [14, Corollary 2.4].
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Lemma 4.2 Let k ∈ N, and let f ∈ C
2[a, a + h], h > 0, be convex. Then there exists

a convex polynomial P of degree ≤ k + 1 satisfying P(a) = f (a), P(a + h) = f (a + h),

P ′(a) ≥ f ′(a), and P ′(a + h) ≤ f ′(a + h), and such that

‖ f − P‖[a,a+h] ≤ c(k)h2ωk( f ′ ′, h, [a, a + h]).

Lemma 4.3 If f ∈ C
2
ϕ ∩ ∆

2, then for n ≥ 9, there is a continuous piecewise quartic

polynomial sn ∈ Σ5,n ∩ ∆
2, such that

(4.2) ‖ f − sn‖[xn−1,x1] ≤
c

n2
ωϕ

3,2( f ′′, 1/n)

and, for j = 1 and j = n,

(4.3) ‖ f − sn‖I j
≤ cn−2 ωϕ

3,2( f ′ ′, 1/n) + cn−6‖ f ′ ′‖[−1/2,1/2].

Proof First, we apply Lemma 4.2 on each interval I j , j = 2, . . . , n − 1 (i.e., set

a := x j and h := |I j | = x j−1 − x j), with k = 3, and define sn |I j
:= P.

On the intervals I1 and In, we define sn as follows

s(i)
n (x1+) = f (i)(x1), i = 0, 1 and s ′ ′n (x) = f ′ ′(x1), x ∈ I1,

and

s(i)
n (xn−1−) = f (i)(xn−1), i = 0, 1 and s ′ ′n (x) = f ′ ′(xn−1), x ∈ In.

Then, sn is a continuous piecewise quartic polynomial on [−1, 1] which is convex

(since s ′n is non-decreasing for all x ∈ [−1, 1]) and such that, for every j = 2, . . . ,
n − 1,

‖ f − sn‖I j
≤ c|I j |2ω3( f ′ ′, |I j |, I j).

Now, we use the estimate (3.4) with l = r = 2 and k = 3 to conclude

(4.4) ‖ f − sn‖I j
≤ c

n2
ωϕ

3,2( f ′ ′, 1/n)

for j = 2, . . . , n−1. Hence, (4.2) is proved, and it remains to estimate ‖ f − sn‖I1
and

‖ f − sn‖In
. We only estimate the former since the latter can be dealt with analogously.

First, Lemma 3.1 with k = 3 and r = 2 implies that

(4.5) ‖ f − l1‖I1
≤ c

n2
ωϕ

3,2( f ′ ′, 1/n),

where the polynomial l1 of degree ≤ 4 is such that l(i)
1 (x1) = f (i)(x1), i = 0, 1, and

l ′ ′1 (x) := L2( f ′ ′ ; x1, x2, x3)(x) = f ′ ′(x1) + (x − x1)[x1, x2 ; f ′ ′]

+ (x − x1)(x − x2)[x1, x2, x3 ; f ′ ′].
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Now, using Corollary 3.5, we have for every x ∈ I1

|l ′ ′1 (x) − s ′ ′n (x)| = |l ′ ′1 (x) − f ′′(x1)|

=
∣

∣ (x − x1)[x1, x2 ; f ′ ′] + (x − x1)(x − x2)[x1, x2, x3 ; f ′ ′]
∣

∣

≤ n−2
∣

∣ [x1, x2 ; f ′ ′]
∣

∣ + n−4
∣

∣ [x1, x2, x3 ; f ′ ′]
∣

∣

≤ cn−2
(

n4ωϕ
3,2( f ′ ′, 1/n) + ‖ f ′ ′‖[−1/2,1/2]

)

+ cn−4
(

n6ωϕ
3,2( f ′ ′, 1/n) + ‖ f ′ ′‖[−1/2,1/2]

)

≤ cn2ωϕ
3,2( f ′ ′, 1/n) + cn−2‖ f ′ ′‖[−1/2,1/2],

and, therefore,

|l1(x) − sn(x)| =

∣

∣

∣

∣

∫ x

x1

(x − u)
(

l ′ ′1 (u) − s ′ ′n (u)
)

du

∣

∣

∣

∣

≤ cn−4‖l ′ ′1 − s ′′n ‖I1

≤ cn−2ωϕ
3,2( f ′ ′, 1/n) + cn−6‖ f ′ ′‖[−1/2,1/2].

Combining this with (4.5) and using the triangle inequality we get (4.3).

Proof of Theorem 2.1 By virtue of Lemma 4.1, the inequality

‖ f − sn‖ ≤ cn−2ωϕ
3,2( f ′ ′, 1/n) + cn−6‖ f ′ ′‖[−1/2,1/2],

which follows from Lemma 4.3, and the estimate

ωϕ
5 (sn, 1/n) ≤ c‖ f − sn‖ + cωϕ

5 ( f , 1/n) ≤ c‖ f − sn‖ + cn−2ωϕ
3,2( f ′ ′, 1/n)

(see (1.10)), we conclude that there exists a polynomial Pn ∈ ∆
2 of degree ≤ cn such

that

‖ f − Pn‖ ≤ ‖ f − sn‖ + ‖sn − Pn‖
≤ ‖ f − sn‖ + cωϕ

5 (sn, 1/n)

≤ cn−2ωϕ
3,2( f ′ ′, 1/n) + cn−6‖ f ′ ′‖[−1/2,1/2].

This completes the proof of the estimate (2.1).
In order to prove (2.2) note that (1.6) implies that

n3ωϕ
3,2( f ′ ′, 1/n) ≥ C( f ), for all n ∈ N.

Hence, for n ≥ ‖ f ′ ′‖[−1/2,1/2]/C( f ) =: N( f ),

1

n
‖ f ′ ′‖[−1/2,1/2] ≤ C( f ) ≤ n3ωϕ

3,2( f ′ ′, 1/n).

Therefore,

‖ f − Pn‖ ≤ cn−2ωϕ
3,2( f ′ ′, 1/n), n ≥ N( f ),

which completes the proof of the theorem.
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5 Proofs of Negative Results

In order to prove Theorem 2.3, let b ∈ (0, 1) and, for x ∈ [−1, 1], set

gb(x) := ln
b

1 + x + b
and Gb(x) :=

∫ x

−1

(x − u)gb(u) du.

Clearly, Gb is in C
∞[−1, 1] (note also that Gb is concave on [−1, 1]).

First, we prove

Lemma 5.1 The following estimates hold:

(5.1) ωϕ
2,4(G(4)

b , t) ≤ c

and

(5.2) b ln
1

b
|gb(x)| ≤ (1 + x) ln

3e2

1 + x
.

Proof First, taking into account that G(4)

b = g ′ ′
b (x) = (1 + x + b)−2 we have

ωϕ
2,4(G(4)

b , t) = ωϕ
2,4(g ′ ′

b , t) ≤ c‖ϕ4g ′ ′
b ‖ ≤ c .

To prove (5.2) we have to check the inequality

b ln
1

b
ln

1 + x + b

b
≤ (1 + x) ln

3e2

1 + x
.

Indeed, this inequality holds for x = −1. At the same time, for the derivatives of

both sides we have

d

dx

(

b ln
1

b
ln

1 + x + b

b

)

=
b ln 1/b

1 + x + b
≤ ln

3e

1 + x + b

≤ ln
3e

1 + x
=

d

dx

(

(1 + x) ln
3e2

1 + x

)

,

which completes the proof.

Denote by P
∗
n the set of polynomials pn of degree ≤ n − 1, such that

p ′′
n (−1) ≥ 0.

Clearly, every polynomial pn from Pn ∩ ∆
2 is also in P

∗
n .

In the proof of Lemma 5.3 below we need the following Dzyadyk type inequality
(see [16, Lemma 14.1 and (14.9)]) which is a generalization of the classical Dzyadyk
inequality [4].
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Lemma 5.2 (Dzyadyk type inequality) Let m ∈ N0, n ∈ N, and y be any point in

[−1, 1]. Then, for any ν ∈ N0, and any polynomial Pn of degree ≤ n − 1,

(5.3) |P(ν)
n (y)| ≤ C(m, ν)ρm−ν

n (y)

∥

∥

∥

∥

Pn( · )
[

| · − y| + ρn(y)
]m

∥

∥

∥

∥

,

where ρn(x) :=
√

1−x2

n
+ 1

n2 .

Since the references [4, 16] may not be readily accessible, for the sake of complete-

ness we give a short proof of Lemma 5.2 here.

Proof Everywhere in this proof, C denotes constants that may depend only on m

and ν. Now, we recall that x j = cos( jπ/n), 0 ≤ j ≤ n, I j = [x j , x j−1], and

let x̃ j := cos
(

j − 1
2

)

π
n

, 1 ≤ j ≤ n, be the zeros of the Chebyshev polynomial
Tn(x) := cos(n arccos x) of degree n.

For any 1 ≤ j ≤ n and x ∈ I j ,

(5.4)
4

3
|x − x̃ j | ≤ |Tn(x)||I j | ≤ 4|x − x̃ j |,

(5.5) |I j | ≤ 4 min
{

|x j−1 − x̃ j |, ||x j − x̃ j |
}

,

and

(5.6) ρn(x) ≤ |I j | ≤
π2

2
ρn(x).

We note that all constants in (5.4)–(5.6) are exact. Estimates (5.5)–(5.6) are simple
trigonometric inequalities and so we omit their proofs. Inequalities (5.4) can also

be verified using standard calculus techniques, and are certainly known (perhaps not
with the exact constant). For reader’s convenience, we give a short proof in the ap-
pendix.

The right inequality in (5.4), (5.5), and the observation ‖Tn‖ = 1 imply that, for

any x ∈ [−1, 1] and 1 ≤ j ≤ n,

(5.7) |Tn(x)|(|I j | + |x − x̃ j |) ≤ 5|x − x̃ j | .

Now, let y ∈ [−1, 1] be fixed and denote by µ the index such that y ∈ Iµ, 1 ≤
µ ≤ n. Without loss of generality, we assume that y 6= x̃µ and

∥

∥

∥

∥

Pn( · )
[

| · − y| + ρn(y)
]m

∥

∥

∥

∥

= ρ−m
n (y).

Hence, we need to show that, for every ν ∈ N0,

(5.8) |P(ν)
n (y)| ≤ Cρ−ν

n (y).
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Now,

qn(x) :=
y − x̃µ

x − x̃µ

Tn(x)

Tn(y)

is a polynomial of degree n − 1 such that qn(y) = 1, and inequalities (5.4) and (5.7)
imply

|qn(x)| =

∣

∣

∣

∣

y − x̃µ

Tn(y)

∣

∣

∣

∣

·
∣

∣

∣

∣

Tn(x)

x − x̃µ

∣

∣

∣

∣

≤ 3|Iµ|
4

· 5

|x − x̃µ| + |Iµ|
=

15

4
· |Iµ|
|x − x̃µ| + |Iµ|

for all x ∈ [−1, 1]. Using (5.6) we get

|x − y| + ρn(y)

ρn(y)
≤ |x − x̃µ|

ρn(y)
+
|x̃µ − y|
ρn(y)

+ 1 ≤ π2

2

|x − x̃µ|
|Iµ|

+
π2

2
+ 1

≤ 6 · |x − x̃µ| + |Iµ|
|Iµ|

and, therefore,

|qn(x)| ≤ 23ρn(y)

|x − y| + ρn(y)
, x ∈ [−1, 1].

Hence, Qn(x) := (qn(x))m is a polynomial of degree m(n − 1), and the following
inequalities are satisfied:

‖PnQn‖ ≤ 23mρm
n (y)

∥

∥

∥

∥

Pn( · )
[

| · − y| + ρn(y)
]m

∥

∥

∥

∥

= C

and

‖Qn‖ ≤ C.

We now use the well-known Markov-Bernstein inequality

‖ρν
n p(ν)

n ‖ ≤ C‖pn‖

which is satisfied for every polynomial pn of degree ≤ n − 1, to conclude that

|[Pn(y)Qn(y)](ν)| ≤ Cρ−ν
n+m(n−1)

(y) ≤ Cρ−ν
n (y)

and

|Q(ν)
n (y)| ≤ Cρ−ν

m(n−1)+1(y) ≤ Cρ−ν
n (y)

for ν ∈ N0. We will now use strong induction in ν to prove (5.8). If ν = 0, (5.8) is
obvious. Suppose now that (5.8) is proved for all 0 ≤ l ≤ µ − 1. Using the Leibniz

identity for derivatives

[ f (x)g(x)](ν)
=

ν
∑

l=0

(

ν

l

)

f (l)(x)g(ν−l)(x),
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the fact that Qn(y) = 1, and the induction hypothesis we have

|P(ν)
n (y)| = |P(ν)

n (y)Qn(y)| ≤
∣

∣[Pn(y)Qn(y)](ν)
∣

∣ +

ν−1
∑

l=0

(

ν

l

)

|P(l)
n (y)| |Q(ν−l)

n (y)|

≤ Cρ−ν
n (y) + C

ν−1
∑

l=0

(

ν

l

)

ρ−l
n (y)ρ−ν+l

n (y) = Cρ−ν
n (y),

and so (5.8) is verified for l = ν as well. This completes the proof of the lemma.

Lemma 5.3 For each b ∈ (0, n−2), and every polynomial pn ∈ P
∗
n , we have

‖Gb − pn‖ ≥ c

n4
ln

1

n2b
− 1

n4
.

Proof Put

g∗b (x) := − ln (n2(1 + x + b)), l(x) := gb(x) − g∗b (x) = ln n2b,

so that l(x) is a constant. Let

G∗
b (x) :=

∫ x

−1

(x − u)g∗b (u) du and L(x) :=

∫ x

−1

(x − u)l(u) du =
1

2
(x + 1)2 ln n2b.

Then we have

G∗
b (x) + L(x) = Gb(x).

Also, for every pn ∈ P
∗
n ,

(5.9) p ′′
n (−1) − L ′′(−1) ≥ −l(−1) = ln 1/n2b.

Straightforward computations yield

∫ x

−1

|g∗b (u)| du ≤ c/n2 + cn2(1 + x)2, −1 ≤ x ≤ 1,

whence

|G∗
b (x)| ≤ (x + 1)

∫ x

−1

|g∗b (u)| du ≤ c(1 + x)/n2 + cn2(1 + x)3 ≤ c

n4
(1 + n2(1 + x))3.

Hence,

|pn(x) − L(x)| ≤ ‖pn − Gb‖ + |G∗
b (x)| ≤ cn6

(

‖pn − Gb‖ +
1

n4

)

(1/n2 + (1 + x))3.

We now apply (5.3) with y = −1, k = 2, and m = 3:

|p ′′
n (−1) − L ′ ′(−1)| ≤ cn−2

∥

∥

∥

pn(x) − L(x)

(x + 1 + n−2)3

∥

∥

∥
≤ cn4

(

‖pn − Gb‖ +
1

n4

)

.

This combined with (5.9), in turn completes the proof of the lemma.
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We are now ready to prove Theorem 2.3 by constructing a counterexample.

Proof of Theorem 2.3 Let bn ∈ (0, 1/e), n ≥ 2, be such that

bn ln
1

bn

=
1

n2
,

and set

fn(x) := c
1

n2
Gbn

(x),

where c < 1 (which is independent of n) is taken so small that (5.12) and (5.13)

below are fulfilled. We summarize the properties of fn as follows from Lemma 5.1.
Namely, for every n ≥ 2,

fn ∈ C
∞[−1, 1],

| f ′ ′
n (x)| ≤ (1 + x) ln

3e2

1 + x
,(5.10)

fn(−1) = f ′
n (−1) = f ′ ′

n (−1) = 0,(5.11)

‖ f ( j)
n ‖ < 1, j = 0, 1, 2, and ‖ϕ2 j−4 f ( j)

n ‖ < 1, j = 3, 4,(5.12)

and

(5.13) ωϕ
2,4( f (4)

n , 1/n) ≤ n−2.

The definition of bn yields

ln ln n ≤ ln ln n2 ≤ ln ln 1/bn = ln
1

n2bn
.

Hence, by virtue of Lemma 5.3, there exists n1 ≥ 2 such that, for all n ≥ n1 and
pn ∈ P

∗
n ,

(5.14) ‖ fn − pn‖ ≥ c∗
ln ln n

n6
,

for some suitable constant c∗ > 0, where we used the fact that qn := cn2 pn ∈ P
∗
n .

Now, we put D0 := 1 and

Dσ :=
Dσ−1

n6
σ

=
1

n6
1

· · · 1

n6
σ

,

where nσ is defined by induction as follows. Suppose that n1, . . . , nσ−1, σ > 1, have
been selected. We write

Fσ−1(x) :=

σ−1
∑

j=1

D j−1 fn j
(x)
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and select nσ > nσ−1 to be so large that the following inequalities are satisfied:

max{σ, ‖F(6)
σ−1‖} < Dσ−1 ln ln ln nσ,(5.15)

‖F(9)
σ−1‖ < Dσ−1nσ.(5.16)

Note that (5.16) implies

(5.17) Enσ−2(F ′ ′
σ−1) ≤ c

n7
σ

‖F(9)
σ−1‖ < c

Dσ−1nσ

n7
σ

= cDσ.

Now, let

Φσ(x) :=

∞
∑

j=σ

D j−1 fn j
(x),

where the uniform convergence of the series as well as its four times term-by-term
differentiation for x ∈ (−1, 1), is justified by (5.12). In fact, since

(5.18)

∞
∑

j=σ

D j−1 = Dσ−1

∞
∑

j=σ

1

n6
σ · · · n6

j−1

< Dσ−1

∞
∑

j=σ

( 1

n6
σ

) j−σ

=
Dσ−1n6

σ

n6
σ − 1

< 2Dσ−1,

the inequalities (5.12) imply that

(5.19) ‖Φσ‖ < 2Dσ−1 and ‖ϕ4
Φ

(4)
σ ‖ < 2Dσ−1.

Setting

f1(x) := Φ1(x),

and using properties of the ωϕ
2,4 modulus, we have by (5.13), (5.15) and (5.19):

(5.20) ωϕ
2,4

(

f
(4)
1 ,

1

nσ

)

≤ ωϕ
2,4

(

F(4)
σ−1,

1

nσ

)

+ ωϕ
2,4

(

Dσ−1 f (4)
nσ

,
1

nσ

)

+ ωϕ
2,4

(

Φ
(4)
σ+1,

1

nσ

)

≤ 1

n2
σ

‖F(6)
σ−1‖ +

Dσ−1

n2
σ

+ cDσ

≤ Dσ−1

n2
σ

(ln ln ln nσ + c) ≤ 2
Dσ−1

n2
σ

ln ln ln nσ

for sufficiently large σ.
On the other hand, by virtue of (5.11) and (5.17) there exists a polynomial qnσ

of

degree nσ − 3, such that

qnσ
(−1) = F ′ ′

σ−1(−1) = 0,
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and
‖F ′ ′

σ−1 − qnσ
‖ ≤ 2cDσ.

Hence, for

Qnσ
(x) :=

∫ x

−1

(x − u)qnσ
(u) du,

we have

Q ′′
nσ

(−1) = qnσ
(−1) = 0,

and

(5.21) ‖Fσ−1 − Qnσ
‖ ≤ 4cDσ,

where we have used the relations

Fσ−1(−1) = F ′
σ−1(−1) = 0.

Now, if pnσ
∈ P∗

nσ
, then

f1 − pnσ
= (Fσ−1 − Qnσ

) + Dσ−1( fnσ
− Rnσ

) + Φσ+1,

where we observe that Rnσ
:= 1

Dσ−1

(pnσ
− Qnσ

) ∈ P∗
nσ

. Therefore, by virtue of (5.14),

(5.19) and (5.21),

(5.22) ‖f1 − pnσ
‖ ≥ Dσ−1‖ fnσ

− Rnσ
‖ − ‖Fσ−1 − Qnσ

‖ − ‖Φσ+1‖

≥ Dσ−1

c∗
n6

σ

ln ln nσ − (4c + 2)Dσ = Dσ(c∗ ln ln nσ − (4c + 2))

≥ 1

2
Dσc∗ ln ln nσ,

where the last inequality holds for all sufficiently large σ.
The inequalities (5.10) and (5.18) imply that

|f ′′1 (x)| ≤ 2(1 + x) ln
3e2

1 + x
,

so that if we put

f ′′2 (x) := 2(1 + x) ln
3e2

1 + x

and

f2(x) :=

∫ x

−1

(x − u)f ′ ′2 (u) du,

and if we denote
f(x) := f1(x) + f2(x),

then f is a convex function on [−1, 1].
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Note also that f2 is twice continuously differentiable in [−1, 1], and it is in B
6. We

will show that there exists a polynomial Qn ∈ Pn such that Q ′′
n (−1) = 0 and

(5.23) ‖f2 − Qn‖ ≤ c

n6
.

It follows from [9, Theorem 1] that there exists a polynomial Rn such that

‖f2 − Rn‖ ≤ cωϕ
6 (f2, 1/n)

and
‖f ′′2 − R ′ ′

n ‖ ≤ cωϕ
4 (f ′ ′2 , 1/n).

Therefore, since (see (1.8))

ωϕ
6 (f2, 1/n) ≤ cn−6‖ϕ6f

(6)
2 ‖ ≤ cn−6

and (see (1.9))

ωϕ
4 (f ′′2 , 1/n) ≤ cn−2ωϕ

2,2(f
(4)
2 , 1/n) ≤ cn−2‖ϕ2f

(4)
2 ‖ ≤ cn−2,

we conclude that Rn satisfies the inequalities ‖f2−Rn‖ ≤ cn−6 and ‖f ′ ′2 −R ′ ′
n ‖ ≤ cn−2.

In particular, since f ′′2 (−1) = 0, the estimate |R ′ ′
n (−1)| ≤ cn−2 holds.

Now, it follows from [6, Lemma 8] (or see [8, Lemma 14c]) that there exists a

polynomial Mn ∈ Pn such that ‖Mn‖ ≤ cn−4 and M ′′
n (−1) ≥ 2−10.

We now define Qn as follows:

Qn(x) := Rn(x) − R ′ ′
n (−1)

M ′′
n (−1)

Mn(x).

Clearly, Q ′ ′
n (−1) = 0, and

‖f2 − Qn‖ ≤ ‖f2 − Rn‖ +
∣

∣

∣

R ′′
n (−1)

M ′ ′
n (−1)

∣

∣

∣
‖Mn‖ ≤ ‖f2 − Rn‖ + cn−2‖Mn‖ ≤ cn−6,

which proves (5.23).
Now, (1.8) implies that

ωϕ
2,4

(

f
(4)
2 ,

1

n

)

≤ cn−2‖ϕ6f
(6)
2 ‖ ≤ cn−2,

and hence, using (5.20) and (5.15), we have

ωϕ
2,4

(

f(4),
1

nσ

)

≤ ωϕ
2,4

(

f
(4)
1 ,

1

nσ

)

+ ωϕ
2,4

(

f
(4)
2 ,

1

nσ

)

≤ 2

n2
σ

(

Dσ−1 ln ln ln nσ + c
)

≤ 3Dσ−1

n2
σ

ln ln ln nσ,
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for sufficiently large σ.

On the other hand, (5.22) and (5.23) imply that, if Pnσ
∈ P

∗
nσ

, then

‖f − Pnσ
‖ ≥ ‖f1 − (Pnσ

− Qnσ
)‖ − ‖f2 − QQnσ

‖

≥ c∗
2

Dσ−1

n6
σ

ln ln nσ − C

n6
σ

≥ c∗
4

Dσ−1

n6
σ

ln ln nσ

for sufficiently large σ, where we used the fact that Pnσ
− Qnσ

∈ P
∗
nσ

.

Thus, taking into account that E(2)
n ( f ) ≥ infpn∈P∗

n
‖ f − pn‖ we have

n4
σE(2)

nσ
(f)

ωϕ
2,4(f(4), 1/nσ)

≥ c∗
12

· ln ln nσ

ln ln ln nσ
→ ∞ as σ → ∞.

This concludes the proof of Theorem 2.3.

A Appendix

Lemma A.1 Let n ∈ N and 1 ≤ j ≤ n. Denote

t j(x) :=
Tn(x)

x − x̃ j

|I j |, x 6= x̃ j , and t j(x̃ j) := T ′
n(x̃ j)|I j |,

where Tn(x) := cos n arccos x is the Chebyshev polynomial of degree n, and x̃ j :=
cos( j − 1/2) π

n
is the zero of Tn lying in I j . Then, for every x ∈ I j , we have

(A.1)
4

3
< |t j(x)| < 4.

Moreover, the constants in (A.1) are exact and cannot be improved.

Proof First, we observe that |tn− j+1(−x)| = |t j(x)| and {−x | x ∈ In− j+1} = I j .
Hence, without loss of generality, one can assume that j ≤ ⌊(n + 1)/2⌋. Note that t j

is a polynomial of degree n−1 having exactly n−1 real zeros x̃i , 1 ≤ i ≤ n and i 6= j.

Therefore, by Rolle’s theorem, t ′j has exactly n − 2 distinct zeros. In particular, t ′j has
a unique zero in [x̃ j+1, x̃ j−1] ⊃ I j if j ≥ 2, and so |t j(x)| ≥ min{|t j(x j )|, |t j(x j−1)|}
for x ∈ I j and j ≥ 1. Hence, for x ∈ I j ,

|t j(x)| ≥ |t j(x j)| =
|I j |

x̃ j − x j

≥ |I1|
x̃1 − x1

=
4 cos2(π/4n)

4 cos2(π/4n) − 1
>

4

3
,

which is the lower estimate in (A.1).

To prove the upper estimate, we use

(i) sin(αθ) ≤ α sin θ, for all α ≥ 1 and 0 ≤ θ ≤ π/α, and
(ii) | sin θ| ≤ |θ|, for all θ ∈ R.
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Denoting τ := arccos x (and hence x ∈ I j implies that ( j − 1)π/n ≤ τ ≤ jπ/n)
and τ j := ( j − 1/2) π

n
we have, for x ∈ I j ,

∣

∣t j(x)
∣

∣ = |I j |
∣

∣

∣

∣

sin n(τ − τ j)/2

sin(τ − τ j)/2

sin n(τ + τ j)/2

sin(τ + τ j)/2

∣

∣

∣

∣

≤ n|I j |
sin(τ + τ j)/2

≤ n|I j |
sin(( j − 1) π

n
+ τ j)/2

=
2n sin π

2n
sin( j − 1/2) π

n

sin( j − 3/4) π
n

≤ π
j − 1/2

j − 3/4
.

Therefore, if j 6= 1, then ‖t j‖I j
≤ 6π/5 < 4.

Finally, if j = 1, since t1 is positive and strictly increasing on [x̃2, 1], we have

0 < t1(x) ≤ t1(1) =
|I1|

1 − x̃1

= 4 cos2
( π

4n

)

< 4, x ∈ I1 .

The inequalities (A.1) are now verified. The constants in (A.1) are exact since
t1(1) = 4 cos2

(

π
4n

)

→ 4 and t1(x1) = 4 cos2
(

π
4n

)

/(4 cos2
(

π
4n

)

− 1) → 4/3 as
n → ∞.

References
[1] R. A. DeVore and G. G. Lorentz, Constructive approximation, Grundlehren der Mathematischen Wis-

senschaften [Fundamental Principles of Mathematical Sciences] 303. Springer-Verlag, Berlin, 1993.

[2] R. A. DeVore, D. Leviatan, and I. A. Shevchuk, Approximation of monotone functions: a counter ex-
ample. In: Curves and surfaces with applications in CAGD (Chamonix–Mont-Blanc, 1996), 1997,
pp. 95–102.

[3] Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational Mathematics 9.
Springer-Verlag, New York, 1987.

[4] V. K. Dzyadyk, Constructive characterization of functions satisfying the condition Lip α(0 < α < 1) on
a finite segment of the real axis. Izv. Akad. Nauk SSSR. Ser. Mat. 20(1956), 623–642 (Russian).

[5] Y. Hu, D. Leviatan, and X.M. Yu, Convex polynomial and spline approximation in C[−1, 1]. Constr.
Approx. 10(1994), 31–64.

[6] K. A. Kopotun, Uniform estimates for coconvex approximation of functions by polynomials. Mat. Za-
metki 51(1992), 35–46 (Russian; translation in Math. Notes 51 (1992), 245–254).

[7] , Pointwise and uniform estimates for convex approximation of functions by algebraic polyno-
mials. Constr. Approx. 10(1994), 153–178.

[8] , Uniform estimates of monotone and convex approximation of smooth functions. J. Approx.
Theory 80(1995), 76–107.

[9] , Simultaneous approximation by algebraic polynomials. Constr. Approx. 12(1996), 67–94.

[10] K. A. Kopotun and V. V. Listopad, Remarks on monotone and convex approximation by algebraic poly-
nomials. Ukraı̈n. Mat. Zh. 46(1994), 1266–1270 (English, with English and Ukrainian summaries).

[11] D. Leviatan, Pointwise estimates for convex polynomial approximation. Proc. Amer. Math. Soc.
98(1986), 471–474.

[12] D. Leviatan and I. A. Shevchuk, Some positive results and counterexamples in comonotone approxima-
tion. II. J. Approx. Theory 100(1999), 113–143.

[13] , Coconvex approximation. J. Approx. Theory 118(2002), 20–65.

[14] , Coconvex polynomial approximation. J. Approx. Theory 121(2003), 100–118.



1248 K. A. Kopotun, D. Leviatan and I. A. Shevchuk

[15] R. Nissim and L. P. Yushchenko, Negative result for nearly q-convex approximation. East J. Approx.
9(2003), 209–213.

[16] I. A. Shevchuk, Approximation by Polynomials and Traces of the Functions Continuous on an Interval.
Naukova Dumka, Kyiv, 1992.
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