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THE DEGREE OF COCONVEX POLYNOMIAL
APPROXIMATION
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(Communicated by J. Marshall Ash)

Abstract. Let f ∈ C[−1, 1] change its convexity finitely many times in the
interval, say s times, at Ys : −1 < y1 < · · · < ys < 1. We estimate the degree of
approximation of f by polynomials of degree n, which change convexity exactly
at the points Ys. We show that provided n is sufficiently large, depending on
the location of the points Ys, the rate of approximation is estimated by the
third Ditzian–Totik modulus of smoothness of f multiplied by a constant C(s),
which depends only on s.

1. Introduction and main results

Let f ∈ C[−1, 1] change its convexity finitely many times, say s, at the points Ys :
−1 < y1 < · · · < ys < 1 in [−1, 1]. For later reference set y0 := −1 and ys+1 := 1.
Note that if f ∈ C2[−1, 1], then the above is equivalent to f ′′(x)

∏s
i=1(x− yi) ≥ 0,

in [−1, 1]. We wish to approximate f by means of polynomials which are coconvex
with f , that is, which change convexity exactly at the points Ys.

Questions of this nature first appeared in the work of D. J. Newman and his
students (see [NPR], [PR], [PRR]). They dealt not with a function f , chang-
ing convexity, but rather with f that changes monotonicity finitely many times in
[−1, 1] and they were able to obtain weaker Jackson type estimates on the degree of
approximation of that function by polynomials which were truly comonotone with
it as well as some proper Jackson estimates when the polynomials were comono-
tone with f except near the points where a change of monotonicity of f occurred.
Later Newman [N] obtained the proper Jackson estimate involving the modulus of
continuity of f for the approximation by polynomials that were truly comonotone
with f (see also Iliev [I] for some relevant work). Then Leviatan and Beatson [BL]
obtained the desired estimates under the assumption that f possesses a continuous
derivative in [−1, 1], applying a flipping technique and induction assumption on the
number of monotonicity changes of f . We will apply their technique in this paper.

Received by the editors May 9, 1996 and, in revised form, April 1, 1997.
1991 Mathematics Subject Classification. Primary 41A10, 41A17, 41A25, 41A29.
Key words and phrases. Coconvex polynomial approximation, Jackson estimates.
The first author acknowledges partial support by the Izaak Walton Killam Memorial Scholar-

ship.
The second author acknowledges partial support by ONR grant N00014-91-1076 and by DoD

grant N00014-94-1-1163.
The third author was partially supported by the State Fund for Fundamental Research of

Ukraine.

c©1999 American Mathematical Society

409



410 K. KOPOTUN, D. LEVIATAN, AND I. A. SHEVCHUK

The first Jackson estimate involving the Ditzian–Totik moduli of smoothness (de-
fined below) is due to Leviatan [L] whose estimates were later improved by Kopotun
[K]. As was pointed out to us by the referee, the degree of coconvex polynomial
approximation apparently was first discussed in the Ph.D. dissertation of Diane C.
Myers [M] where she obtained the Jackson estimate ω(f, 1/n) for “nearly” cocon-
vex approximation. For proper coconvex approximation there have been no results
except for a short remark in [BL] that the technique employed there would give an
estimate for the approximation of twice continuously differentiable functions with
a single change of convexity.

The first estimates on the degree of coconvex approximation for a twice contin-
uously differentiable function with an arbitrary finite number of convexity changes
have recently been obtained by Kopotun [K1] and the purpose of this note is to
improve those results in that we do not assume the existence everywhere, and
continuity of even the first derivative. We are going to make use of some spe-
cial polynomials related to the function f which were constructed in that article
[K1] based upon the polynomials introduced by Shevchuk [S]. We remark that in
the above mentioned paper, Kopotun was able to obtain estimates on the simul-
taneous approximation of the function and its derivatives by the polynomials and
their derivatives, thus obtaining, simultaneously, coconvex approximation to f and
comonotone approximation to its derivative. In order to state our main result we
recall the definition of the mth order Ditzian–Totik moduli of smoothness ωϕ

m(f, t).
For f ∈ C[−1, 1], we set

ωϕ
m(f, t) = sup

0<h≤t
‖∆m

hϕ(·)f(·)‖ ,

where the norm is the max-norm, ϕ(x) :=
√

1− x2, and

∆m
η f(x) :=

{∑m
i=0

(
m
i

)
(−1)m−if(x− m

2 η + iη), if x± m
2 η ∈ [−1, 1],

0, otherwise.

is the symmetric mth difference.
Our main result is the following.

Theorem. Let f ∈ C[−1, 1] have s changes of convexity at Ys : −1 < y1 < · · · <
ys < 1, and denote d(Ys) := min{1 + y1, y2 − y1, . . . , ys − ys−1, 1 − ys}. Then
there exists a constant A = A(s) which depends only on the number of convexity
changes – s, such that, for n > A(s)

d(Ys) , there is a polynomial pn of degree not exceeding
n, which is coconvex with f and satisfies

‖f − pn‖ ≤ C(s)ωϕ
3 (f, n−1) ,(1)

whence,

‖f − pn‖ ≤ C(s)ω3(f, 1/n) .(1′)

The constant C(s) is independent of f and n and of the location of the convexity
changes.

Remark. Estimate (1) is best possible in that one cannot replace ωϕ
3 (f, n−1) by

any higher modulus of smoothness, even not with the larger ordinary modulus of
smoothness. This is due to Shvedov [Sv] in case f is convex and to Zhou [Z] in case
f has convexity changes.

While it is obvious that the constants C(s) and A(s) depend on s, we have no
estimate as to how fast they grow with it. For instance, one readily observes that
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the proof below yields exponential growth of C(s) as a function of s (due to the
induction process), but we do not know that this is actually the case.

Even the following immediate consequences of the theorem are new:

Corollary. Let f be as in the theorem and let n > A(s)
d(Ys)

. If in addition f (r−1) ∈
AC[−1, 1], and f (r) ∈ L∞, r = 1, 2, 3, then the same polynomial pn satisfies

‖f − pn‖ ≤ C(s)
nr

‖f (r)‖∞ ,(1′′)

where the norm on the right is the L∞–norm. (The case r = 3 follows from [K1].)

In the sequel we will denote by C an absolute constant which may vary from one
occurrence to another even in the same line. Similarly C(·) will denote a constant
which depends on a specific parameter but may change from one occurrence to
another.

2. Proof of the theorem

If f has no change of convexity in [−1, 1], i.e., s = 0 and f is convex in [−1, 1],
then the theorem is valid and it was proved by Kopotun [K]; thus we will assume
that s ≥ 1. We first need to construct a smoother function at y1. The function f
is either concave or convex in [−1, y1], and each case will need a separate though
similar construction. We will detail the construction for the case where f is concave
in [−1, y1]. For the sake of simplicity in notation in the sequel we write α := y1.
Now let xj := xj,n := cos jπ

n , j = 0, . . . , n, be the Chebyshev nodes; and denote
Ij := [xj , xj−1], hj := hj,n := xj−1 − xj and

ψj(x) := ψj,n(x) :=
hj

|x− xj |+ hj
.(2)

It is well known that hj±1 < 3hj and that for x ∈ Ij ∆n(x) ≤ hj < 5∆n(x),
where, as always, ∆n(x) :=

√
1−x2

n + 1
n2 . We assume that α ∈ [xj0 , xj0−1). Then, if

n > Nα := max{ 50
y2−α ,

50
1+α}, we are assured that xj0+3 ≥ −1 and that xj0−4 ≤ y2.

Set h := c∆n(α) < 1
6hj0 , where c is chosen sufficiently small to guarantee the right

inequality. Note that this implies xj0+1 < α− 2h < α+ 2h < xj0−2.
We are going to replace f on the interval [α−h, α+h] in a way that will keep us

near the original function and at the same time the new function (see ĝ below) will
be smoother at α. As was mentioned above, we will apply a flipping technique and
induction on the number of convexity changes of f . The case s = 0 is known and
serves as the beginning of the induction process; it has been proved by Kopotun
[K]. When s = 0, then (1) holds for all n ≥ 2. Thus, we proceed by induction.

To this end we note that either ∆2
hf(α) ≥ 0, or ∆2

hf(α) < 0.
In the first case, let L1(x) denote the linear function interpolating f at α − h

and α. Then the function g := f − L1 satisfies

g(α− h) = g(α) = 0, g(α+ h) ≥ 0, and g(x) ≤ 0, −1 ≤ x < α− h.

Hence, for J0 := [xj0+1, xj0−2], we have,

0 ≤ g(α+ h) ≤ g(α+ h)− g(α− 2h)

= g(α+ h)− 3g(α) + 3g(α+ h)− g(α− 2h)

≤ ω3(g, h; J0) = ω3(f, h; J0) .
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Similarly, in the latter case, let L1(x) denote the linear function interpolating f at
α and α+ h. Then the function g := f − L1 satisfies

g(α+ h) = g(α) = 0, g(α− h) < 0, and g(x) ≥ 0, α+ h ≤ x < y2 .

Hence,

0 < −g(α− h) ≤ g(α+ 2h)− g(α− h)

= g(α+ 2h)− 3g(α+ h) + 3g(α)− g(α− h)

≤ ω3(g, h; J0) = ω3(f, h; J0) .

Thus, in both cases we have,

max{|g(α− h)|, |g(α)|, |g(α+ h)|} ≤ Cω3(f, h; J0) ,

which in turn implies that the quadratic polynomial L2(x), interpolating g at α−h,
α and α+ h, is bounded by the same on [α− h, α+ h]. Thus

|L2(x)| ≤ C
( |x− α|+ hj0

hj0

)2
ω3(f, h; J0), x ∈ [−1, 1] .(3)

At the same time applying Whitney’s Theorem we conclude that

|g(x)− L2(x)| ≤ Cω3(f, h; J0), x ∈ [α− h, α+ h] .

Now it follows by Lemma 4.2 of [S1] that

|g(x)− L2(x)| ≤ C
( |x− α|+ hj0

hj0

)3
ω3(f, h; J0), x ∈ [−1, 1] .(4)

Observing that

ω3(f, h; J0) ≤ Cωϕ
3 (f, n−1),

we obtain by (3) and (4),

|g(x)| ≤ Cψ−3
j0
ωϕ

3 (f, n−1), x ∈ [−1, 1] .(5)

Now let

g̃(x) =

{
−g(x), x ∈ [−1, α],
g(x), otherwise,

and finally,

ĝ(x) =

{
g̃(x), x /∈ [α− h, α+ h],
max{g̃(x), 0}, x ∈ [α− h, α+ h].

By virtue of (5) we immediately have

‖g̃ − ĝ‖ ≤ Cωϕ
3 (f, n−1) .(6)

Also
ωϕ

3 (ĝ, n−1) ≤ ωϕ
3 (g̃, n−1) + Cωϕ

3 (f, n−1)

≤ Cωϕ
3 (f, n−1),

(7)

where the first inequality follows from (6), while the second is due to the fact that
for x /∈ J0,

|∆2
ϕ(x)/ng̃(x)| = |∆2

ϕ(x)/ng(x)| = |∆2
ϕ(x)/nf(x)|,

and for x ∈ J0 we apply (5).
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It is readily seen that ĝ ∈ C[−1, 1], that it is convex in [−1, y2] and that it
changes convexity at Y ′s−1 := Ys \ {y1}. If, on the other hand, f was convex in
[−1, y1], then ĝ would be concave in [−1, y2] and change convexity at Y ′s−1. Thus
in any case ĝ has fewer convexity changes, so by induction, we may assume that
for n > A(s−1)

d(Y ′
s−1)

, there exists an nth degree polynomial qn which is coconvex with
ĝ, and which satisfies the analogue of (1). Namely (by (7)),

‖ĝ − qn‖ ≤ C(s− 1)ωϕ
3 (ĝ, n−1) ≤ C(s)ωϕ

3 (f, n−1).(8)

Thus, fixing n > max{ A(s−1)
d(Y ′

s−1)
, Nα} readily leads to the definition of A(s). Note

that since ĝ(α) = 0, we may assume that qn(α) = 0 doubling the constant in (8).
Kopotun [K1] has constructed for α and qn for each n as above, two polynomials

Vn and Wn of degrees at most 20n(s+ 1) =: 4nµ, with the properties that for all
x ∈ [−1, 1],

Vn(x)sgn (x− α) ≥ 0 ,

V ′n(x)q′′n(x)(q′n(x) − q′n(α))sgn (x− α) ≥ 0 ,

|Vn(x) − sgn (x− α)| ≤ C(s)ψµ
j0
,(9)

|Wn(x) − sgn (x− α)| ≤ C(s)ψµ
j0

;(10)

|V ′n(x)| ≤ C(s)ψµ
j0
h−1

j0
;(11)

and finally,

W ′
n(x)sgn q′n(α) ≤ 0, x ∈ [y2j , y2j+1], j = 0, . . . , [s/2],

and

W ′
n(x)sgn q′n(α) ≥ 0, x ∈ [y2j+1, y2j+2], j = 0, . . . , [(s− 1)/2].

We are ready to define the polynomial

pn(x) :=
∫ x

α

[(
q′n(u)− q′n(α)

)
Vn(u) + q′n(α)Wn(u)

]
du ,

of degree at most 5nµ, which evidently is coconvex with f . Note that Pn(x) :=
L1(x) + pn(x) is of the same degree and it too is coconvex with f . Hence, we
conclude the induction step by proving (1) for Pn.

We begin with

|f(x)− Pn(x)| = |g(x)− pn(x)| = |g̃(x)sgn (x− α)− pn(x)|
≤ ‖g̃ − ĝ‖+ |ĝ(x)sgn (x− α) − pn(x)|
≤ Cωϕ

3 (f, n−1) +
∣∣(ĝ(x) − qn(x)

)
sgn (x− α)

∣∣ +
∣∣qn(x)sgn (x − α)

−
∫ x

α

q′n(u)Vn(u) du
∣∣ +

∣∣q′n(α)
∫ x

α

(
Vn(u)−Wn(u)

)
du

∣∣
=: E1 + E2 + E3 + E4, say.

By virtue of (8),

E2 ≤ C(s)ωϕ
3 (f, n−1) .(12)
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Recalling that qn(α) = 0, integration by parts and (11) yield

E3 =
∣∣qn(x)

(
sgn (x − α)− Vn(x)

)
+

∫ x

α

qn(u)V ′n(u) du
∣∣

≤ C(s)
(|qn(x)|ψµ

j0
+

∫ x

α

|qn(u)|h−1
j0
ψµ

j0
(u) du

)
≤ C(s)ωϕ

3 (f, n−1) ,

(13)

where the last inequality in (13) follows from (applying (5), (6) and (7)),

|qn(x)| ≤ |g̃(x)|+ |g̃(x) − qn(x)|
≤ |g(x)|+ ‖g̃ − ĝ‖+ ‖ĝ − qn‖
≤ Cψ−3

j0
ωϕ

3 (f, n−1) ,

and the easy inequality ∫ x

α

ψν
j0(u) du ≤ Chj0 , ν ≥ 2 .(14)

Finally, in order to estimate E4, we need an estimate on q′n(α). To this end we
observe that since qn is convex in [−1, y2], then q′n is monotone increasing there. If
q′n(α) ≥ 0, then by (5), for some ξ ∈ (α, α+ hj0),

0 ≤ q′n(α) ≤ q′n(ξ) =
qn(α + hj0)− qn(α)

hj0

= h−1
j0
qn(α + hj0) ≤ Ch−1

j0
ωϕ

3 (f, n−1).

And if q′n(α) < 0, then by (5), for some ξ ∈ (α− hj0 , α),

0 ≤ −q′n(α) ≤ −q′n(ξ) =
qn(α− hj0)− qn(α)

hj0

= h−1
j0
qn(α− hj0) ≤ Ch−1

j0
ωϕ

3 (f, n−1).

Hence by (9), (10) and (14),

E4 ≤ |q′n(α)|
∫ x

α

|Vn(u)−Wn(u)| du
≤ Chj0 |q′n(α)| ≤ Cωϕ

3 (f, n−1).
(15)

Combining (12), (13) and (15) we see that

‖f − Pn‖ ≤ Cωϕ
3 (f, n−1).

This completes our proof.
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