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Dedicated to the memory of our friend and colleague
Victor N. Konovalov 4.4.1946-1.11.2008

Ukrainian Mathematical Journal, Vol. 62, No. 3, 2010

ARE THE DEGREES OF THE BEST (CO)CONVEX AND UNCONSTRAINED
POLYNOMIAL APPROXIMATIONS THE SAME? 11

K. Kopotun,' D. Leviatan,” and I. A. Shevchuk® UDC 517.5

In Part I of the paper, we have proved that, for every @ > 0 and a continuous function f, which is either
convex (s = 0) or changes convexity at a finite collection Yy = {y;}j_, of points y; € (-1, 1),

sup(n® 2 (£, Y5):n = N*} < (. 5) sup{n® En (f):n > 1},

where E,(f) and E ,(12) (f. Ys) denote, respectively, the degrees of the best unconstrained and (co)convex
approximations and c¢(«, s) is a constant depending only on « and s. Moreover, it has been shown that
N™* may be chosentobe 1 for s =0 or s = 1, o # 4, and that it must depend on Y and « for s = 1,
a=4ors>2.

In Part II of the paper, we show that a more general inequality

sup{n® EQ (£, Ys)in > N*} < c(a, N, s) supin® En(f)in > N},

is valid, where, depending on the triple (a, N, s), the number AN'* may depend on &, A, Y;, and f or
be independent of these parameters.

1. Introduction and Main Results

Let C[—1, 1] be the space of continuous functions on [—1, 1] equipped with the uniform norm || - || and let
Ys, s € N, be the set of all collections Yy := {yi}f:1 of points y;, such that ys41 i= -1 < ys < ... <y <
1 =: yg. For Y5 € Yy by A?(Y,) we denote the set of all piecewise convex functions f € C[—1, 1] that change
convexity at the points Y, and are convex on [y1, 1]. In particular, Yo = {&} and A? = A2(Y,) denotes the set
of all convex continuous functions. If f is twice continuously differentiable in (—1, 1), then f € AZ(Yy) if and
only if

7 ()(x;Ys) >0,x € (—1,1), where I(x;Ys) := l_l(x - i) (TI(x, Yp) :=1).
i=1
Further, by
En(f) = inf{”f — Ppll: Pp € Pn}
and

EQ(f.Ys) = inf {|| f — Pall: Py € Py 0 A2(Yy))
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we denote the degrees of the best unconstrained and coconvex approximations of a function f by polynomials
from P, (the space of algebraic polynomials of degree < n). In particular,

EP(f) = EP(f.Yo) = inf{|| f — Pyll: Py € P, 0 A%}

is the degree of the best convex approximation of f.

Although it is obvious that E,(f) < E,gz) (f), Lorentz and Zeller [1] showed that the inverse inequality
E ,52) (f) < cEn(f) is invalid even if a constant ¢ is allowed to depend on the function f € AZ2. There are many
examples showing that the same is true for piecewise convex functions from AZ2(Yy). Despite the existence of
counterexamples, we have recently proved the following result:

Theorem A [2]. Foreach o > 0 and integer s > 0, there is a constant ¢(«, §), such that, for every collection
Ys € Yy and a function f € A?(Yy),

sup {n“E,SZ)(f, Yo)in = N*} < c(a,s)sup {n“En(f):n > 1}, (1.1)

where N* = 1 if either s = 0 or s = 1 and a # 4 and N* = N*(«,Y;) is a constant depending only on «
and Ys if either s > 2 or s = 1 and o = 4.

It has also been shown that Theorem A cannot be improved, i.e., if either s > 2 or s = 1 and o = 4, then the
constant A/* cannot be made independent of Y.

Theorem B [2]. Let s > 2. Then, forany « > 0 and m € N, there exist a collection Yy € Yy and a function
f e A?(Yy) such that

m*EP (f.Ys) > (o, s)m® 11T qup {n*E,(f):n =1}, (1.2)

where c(a, s) is a positive constant and [o] is the ceiling function (i.e., the smallest integer not smaller than ).

Theorem C [2]. Forevery Y| € Y1, there exists a function f € A*(Yy) satisfying the equality
sup {n4En(f):n € N} =1,

such that, for any m € N, we have

4 1-(2) m
m*E Y )= lch——— -1 1.3
m (1) ( 1+ m2¢(y1) ) (-
and
sup {n4E,52)(f, Yi)ne N} > c|lng(y1)], (1.4)

where ¢(y) := /1 — y2 and c is an absolute positive constant.

Everywhere in what follows, by c(...) we denote positive real constants that depend only on the parameters,
sets, and functions in the parentheses. Generally speaking, these constants are different in different cases even if
they appear in the same line. In particular, absolute positive constants are also denoted by ¢. Similarly, A'(...)



422 K. KOPOTUN, D. LEVIATAN, AND I. A. SHEVCHUK

denote natural numbers that depend only on the quantities in the parentheses. Thus, A/ («, Y;) is a natural number
that depends only on « and Y but is independent of any other parameters.
The main goal in the present paper is to answer the following questions:

What happens if we replace n > 1 in (1.1) by n > N, where N’ € N?
Is Theorem A still valid? What can we say about the dependence of A/*
ona, N, Y, and f?

Our first result is the following generalization of Theorem A:

Theorem 1.1. For each o > 0, N € N, s € Ng := NU{0}, Yy € Yy, and [ € AZ(YS), there exists
N* € N such that

sup (n* EP (f, Yy):n > N*} < c(@, N, s) sup {n®En(f):in > N}, (1.5)

Note that N* € N in the statement of Theorem 1.1 may depend on &, N, Y5, and f or may be independent
of these parameters. Theorem 1.2 proved in what follows gives a complete answer to the question when and how
this dependence occurs.

It is easy to see that the assertion of Theorem 1.1 in the case N' = 2 immediately follows from Theorem A.
Namely,

if N = 2, then Theorem 1.1 is true with N** = 2 if either s = 0 or
s =1and a # 4 and N* = N*(a, Y;) if either s > 2 or s = 1 and
o =4.
Indeed, in view of the fact that the function g := f — p», where p, := arginf,cp, || / — p|, is such that
En(g) = En(f), EX(g,Ys) = EXX(f.Yy) forall n > 2, and Ey(g) < llgll = E2(f), we conclude that

sup {n® E@ (f, Ys)in > N*} = sup (n*EP (g, Ys):n > N}
< c(a,s)sup{n®En(g):n = 1} = c(a,s)sup {n*En(f):n = 2}.
Moreover, Theorems B and C imply that,

for N* = 2, the number N'* cannot be made independent of Yy if
either s >2ors =1 and o = 4.

We now emphasize that, except the case 3 < N < s + 2, the number N'* cannot be smaller than A . Indeed,
to show this, it suffices to consider any function f; € A?(Y;) in the form of a polynomial of degree exactly A" — 1,
e.g., such that £ (x) := (x + 2)N =S 73TI(x: ¥s) for N > s + 3 and fi(x) := x for N = 2. Then E,(f;) =0
for all n > N and we immediately arrive at a contradiction by assuming that A* in (1.5) is strictly smaller than
N.If 3 <N <542, then Py N A%(Ys) = P, N A%(Ys) (any polynomial of degree < s + 1 with s changes of
convexity must be linear) and, hence,

EQ(f.Ys) = EP(f.Y5) = E2(f),

i.e., if (1.5) is true with N* = N, then it is also true with N'* = 2.
In addition, by Theorem B, we cannot expect that N* is independent of Yy for s > 2,
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Given a triple (o, V, s), we want to determine the exact dependences of N'* on all quantities appearing in the
statement of Theorem 1.1 such that inequality (1.5) is satisfied.

We now show that there are three different types of behavior of A/*. In order to describe these types of
behavior, we introduce the following notation:

Definition. Let (o, N,s) € Ry x N x Nj.
1. Wewrite (a,N,s) € “+ 7, if Theorem 1.1 holds with N* = N..
2. Wewrite (a,N,s) € “@®”, if

(a) Theorem 1.1 holds with N* = N*(a, N, Ys) and

(b) Theorem 1.1 is not valid with N'* independent of Yy, i.e., for each A > 0 and M € N, one can
find a number m > M, a collection Yg € Y, and a function f € A*(Yy), such that

m*EP(f.Ys) = Asup {n®En(f):n = NY. (1.6)

3. We write (a,N,s) € “©7, if

(a) Theorem 1.1 holds with N* = N*(a, N, Yy, f) and

(b) Theorem 1.1 is not valid with N'* independent of f, i.e., for each A > 0, M € N, and Y € Y,
one can find m > M and f € A*>(Yy) such that inequality (1.6) holds.

It turns out that N* depends on
o= [a/2] 1.7

but not on « itself with the only exception of the case @ = 2, NV < 2, and s = 1, which has already been
discussed above.

Theorem 1.2. Let (@, N,s) € R4 x N x Ng. Then

(i) (. N.,s)e “+7]if

(iii) (a,N,s) € “@®” in all other cases, except possibly the case s > 3, & = 2, and N = s + 3.
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Recall that the cases ' = 1 and N = 2 in this theorem follow from Theorems A —C and the discussion
following the assertion of Theorem 1.1.

In order to make it easier to understand and remember the assertions of Theorem 1.2 and recognize the patterns
of behavior of the triples («, N, s), we summarize the results in the following tables relating N and @ to various
values of s.

a o
4 + + + + +
30+ 4+ + + +
2 + + + 6 ©
I+ + + 8 6 -
1 2 3 4 5 N
s=20
A
54 + + 4+ 4+ +
4+ 4+ + + + +
34+ 4+ + + @ @
2 + + & & 6 ©
1 + + & 6 &6 & ---
1 2 3 4 5 6 N
s =1
a o rr
4 & & & & & & &
3 b b & & & & P
2 6 & & & & © ©
1 & & &6 & 6 6 & ---
1 2 3 4 5 6 7 N
s =2
g i S
4 & & D ) D (S5 &
3 & & D 85 D (&) )
2 & & D &5} ? o S
1 & & ® &) e e e .-
1 2 s+1 s+2 s4+3 s+4 s+5 N
s>3

The symbol “%o—” in the positions (&, N) = (2,1) and (2,2) for s = 1 (exceptional case) means that
(a,N,s) € “+ " fora # 4 (ie, 2 <a <4) and (o, N,5) € “®” for @ = 4.
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We also write “?” in the position (&, N) = (2,s + 3) for s > 3 because we do not know exactly what
happens in this case. We know, however, that (a, N, s) € “©” or“@”fors >3, 2 <a <4 and N = s + 3 (see
Theorem B and case 11 in Section 4.2).

2. Proofs of the Negative Results
We first formulate the following well-known result (see, e.g., [3, p. 418], Theorem 7.5.2):

Lemma 2.1. Letr € N and G,(x) = (x + 1)" In(x + 1), G,(—1) := 0. Then
En.(Gy) <c(r)n™?", neN. (2.1)

Further, we prove the following lemma:

Lemma 2.2. For every A > 0 and m € N, there are points y1 € (—=1,1) and y1 € (—=1,1) and functions
f e A%2(Yy) and f € A*(Y1), where Y1 := {y1} and Y1 := {91}, such that

n*E,(f)<1, n>3, and n®E,(f)<1, n>5. (2.2)

At the same time,
EP(fY1)=A and EP(f.T1) > A.

Proof. Given A > 0 and m € N in the proof of [4] (Theorem 2.4), we construct functions g4 € A%(Y7) and
g6 € A%(Y7) forsome —1 < y; <1 and —1 < y; < 1 such that

EP(g4. Y1) = A and EP(gs Y1) > A. (2.3)

These functions have the representation g, = Pz,—1 + ¢, Gy, r = 2,3, where P,—; € P>, and ¢, is an
absolute constant. Therefore, by virtue of (2.1), we conclude that

n* En(g2r) <c, n>2r—1,

and the proof is complete.

Remark 2.1. Note that Lemma 2.2 readily implies that if s = 1, then, for @ = 1,2 and all N > 3, as well
as for @ = 3 and all A/ > 5, the symbol “+” cannot occupy the position (@, \).

Our next result is true for any s € Np.

Lemma 2.3. Let s € Ng and let Yy € Y. Forany A > 0 and m € N, there exists a function f € A*(Yy),
such that

n*E (f)<1, n=>s+4.
At the same time,

EQD(f.Y5) > A.
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Proof. Following [4], for each b € (—1,0), we denote

t

fo () 1= /(x—z)na;n) /(;;—:‘)zdu i,
0 b

Clearly, fb” (x)II(x;Ys) = 0, x € (—1,1), and, hence, f;, € A%(Y;). Straightforward computations performed
by using the Taylor expansion of I1(x; Ys) about t = —1 imply that

N

fb:Ps+4—Z

r=0

H(r)(_1§ Ys)
(r +2)!

r+2»
where Psy4 € Psy4. Hence, by virtue of Lemma 2.1, we obtain,

n*En(fy) <c(s), n>s+4, (2.4)

because HH(’)(-; Ys)” <c(s), 0<r <s.
The polynomial

X 1
perat) = [-nnw | [ o |t
0 b

belongs to Ps44 and satisfies the equality

bh+1
M(—1;Yy) pyia(—1) = TT*(=1; ¥) In T

Hence, for any polynomial P, € P, N A%(Yy), m > s + 4, we get

b+1
= —TI(-1; Ys)P;/+4(—1)

—T1%(—1;Y5) In

< T(—LYs) (Pp(=1) — piia(=1) <m*TU(=1; Y| P — ps+al,  (2.5)
where we have used Markov’s inequality. In addition,

X

1
Pssa(x) — fy(x) = / (x — OIL(E: ) / (u’;—i‘)zdu ar,
t

0

which is independent of b. Hence, in view of (2.5),

m~*I(~1; Y,)|In

1S 1 Pm = foll + [1fp = Ps+all = | Pm — fpll + c(s)
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and, thus,

E@ (fp,Ys) = m™*|TI(—1; ¥y)| In

b1 —c(s).

Taking f := cfp with suitable ¢ = ¢(s) and b, we complete the proof of the lemma.

Remark 2.2. Lemma 2.3 implies that if @ = 1 or 2, then, for all s > 0 and A/ > s + 4, the symbol “+”
or “@” cannot occupy the position (&, \') (thus, the best possible situation is that these positions are occupied by
the symbol “&;” as shown in what follows, this is indeed the case).

Finally, for s > 1, we have the following lemma:

Lemma24. Lets € N andlet Yy € Y. For each A > 0 and m € N, there exists a function f € A*(Yy),
such that

n?E,(f) <1, n>s+3,
and
EQ(f.Ys) > A.

Proof. Denote Dj(x) := x/ In x| (Dj(0) := 0). It is well known (and easy to check) that, for j > 1,
the function D](.J_l) belongs to the Zygmund class, i.e., a)z(D](.J_l),t) < c¢(j)t. Thus, for j > 2, we have
Ey(Dj) < c(j)n~/ <c(j)n™2, n > 1. Hence, for Dj,(x):=Dj(x+vy), -1 <y <1, j>2, weget

En(Dyy) <L) s (2.6)
n
L.
We take 0 < b < 3 min{y; — y2, 1 — y1}. Further, let
~ X
Ip(x) = 5 1 4+ 1nb. 2.7

(Note that y = Ip(x) is the tangent to the function In |x| at the point x = b.) Also let b* be the other (clearly,
negative) root of the equation /5 (x) = In|x|. It is obvious that

|b*| = —b* < b, (2.8)
and (x — b*)(ib(x) —In |x|) >0, x # 0. This means that, for
Ip(x) = Ip(x + b*), (2.9)

we have
x(lp(x) —In|x +b*]) >0, x # [b*|. (2.10)
Denote

Iy (x) := {5 (x — yi) (My:=1 for s=1),
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and let

X

Ly(x) = / (r — 1) T (o)l — y1)du

0

and
X
gp(x) = /(x — )y (u)In|u + b* — yq|du.
0

Finally, we write

Jo = Lb — &b
As aresult of integration by parts, we obtain

X

1
/(X —u)In|u +b* — yildu = EDz(X +b* —y1) + p3(x),
0

where p3 € P3. Similarly,

s—1 (r) *
gr(x) =) 1(r+—12)!Dr+2(x +b* = y1) + psa(x), (2.11)
r=0

where ps4o2 € Ps4p. Further, since Ly € P43, inequality (2.6) implies that

En(fp) < % n=>s+3. (2.12)

At the same time, it follows from (2.10) that f; € A?(Yy).
On the other hand, given Py, € P,, N A%(Yy), by virtue of (2.7) and (2.9), we conclude that

0 < ITq( )11<H( )11+1 b*
n-— n-— - —
11 b 1 b b

=—Ly(y0) = Pp(y1) — Ly(y1) =< c(s, y)m?| Pm — Ly,

where we have used Bernstein’s inequality. Since
1
lgall < 2/ Ty | / | Inx|dx = 2| T || <2°,
0

we have

1
0<Ii(y)n, =< c(s, y)m> (1P = foll + llgal) < c(Ys)m> (1P — fill + 1).
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Hence,

C(Ys)lnl 1

ER(fpYs) =~ ln o

In combination with (2.12), this inequality yields the statement of the lemma for f := cf; with suitable ¢ = c¢(s)
and b.

Remark 2.3. Lemma 2.4 implies that if @ = 1 and s > 1, then, for all N’ > s + 3, the symbols “+ " and
“@” cannot occupy the position (@, \') (thus, the best possible situation is that the corresponding positions are
occupied by “&;” as shown in what follows, this is indeed the case).

3. Auxiliary Results

Recall that ¢(x) = +/1 — x2. Let C

o> I = 1, be the space of functions f € C"(—1,1) N C[—1, 1] such that

lim ¢ (x)f(x) =0,
x—>+1

and Cg = C[-1,1].
By
Kk 5 [k k—i ks .
Ag(g,x):zz ; D) "g x—7+18,
i=0

we denote the kth symmetric difference of a function g with step §. Thus, the Ditzian—Totik-type modulus of
smoothness of the r th derivative of a function f € C/, is defined as follows:

wf (fD 1) = S wr (x’ %) ‘Aﬁq)(x)(f ™) x) 3.1)
with the weight
W(x, ) := (x| + pe(x)). x|+ pox) < 1. 3.2)
If r =0, then

of (f.1) = of o (f.1)

is the (ordinary) Ditzian—Totik modulus of smoothness. Finally, let || f||c[q,5] be the uniform norm of a function
f € Cla,b] (in particular, || fllc—1,17 = II.f|]). We recall that the ordinary kth modulus of smoothness of
f €Cla,b] is

. k
o (fit.[a,b]) == sup [|AF(f) HC[a+kh/2,b—kh/2]’
he[0,t]
and denote wi (f,1) := wr(f,t,[—1,1]).

The following results are the so-called inverse theorems. They characterize the smoothness (i.e., describe the
class) of functions with prescribed order of polynomial approximation.
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First, we formulate a corollary of the classical Dzyadyk—Timan-Lebed—Brudnyi inverse theorem (see, e.g.,
[3], Theorem 7.1.2).

Theorem 3.1. Let 2r < o <2k + 2r andlet f € C[—1,1]. If
n“E,(f) <1, n>k+r,

then f € C"[—1,1] and
or (f D, 12) < clak,r)*=2". (3.3)
For the Ditzian—Totik-type moduli of smoothness, we need the following result obtained as a generalization

of [5] (Theorem 7.2.4) to the case p = oo.
By ® we denote the set of nondecreasing functions ¢: [0, c0) — [0, 00) such that ¢(0+) = 0.

Theorem 3.2. Given k € N, r € Ng, N € N, and ¢ € ® such that

1

/ r¢(u)du < +00.

urt+1

0
If
1
En(f)<¢ (—) forall n> N,
n
then f € C,, and

1
¢ (u)
uk+r+1
t

r

PO v e, ryit

y du + c(k,r, N)t* Ex o (f), 1 €10,1/2].

wf (fO0) <clh,r)
/

If, in addition, N < k + r, then the following Bari—Stechkin-type estimate holds:

1

t
reu)
of ,(fO.0) < clkor) | —pdu+ ek,

0 t

u,‘ff”ll du, 1e€[0,1/2].

We present the proof of this theorem in the appendix.
In fact, we only need the following theorem which is an immediate consequence of Theorem 3.2 (¢ (1) := u%)
but is of especial interest in the context of the present paper.

Theorem 3.3. Letr € Ng, k € N, and o > 0, be such that r <o <k +r andlet f € C[—-1,1]. If

n“E,(f)<1 forall n> N,
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where N > k +r, then [ € (C;, and
of (fO.1) <cla k)" + (N k. )k Ep i, (f).

In particular, if N = k + r, then

of (f.0) < clak.r®.

Lemma 3.1. [See [6], [4] (Theorems 2.7, 2.8, and 2.11), [2] (Lemma 2.8), and [7] (Theorem 3.1).]

LLet f € A2 If f € C[—1,1], then

EP(f) <cof (f, 1) +cn8fll, n=3.

n

Moreover, if [ € (C(% N C[~1,1], then

EP(f) < clonwf, (f 1) + c(k)yn 2w, (f’, iz) n>3.
’ n

"
, —
n

Furthermore, if f € (C(% N C2[—1,1] and k,l € N, then, for n > | + 2, the following inequality is true:

"
, —
n

1 1
EP(f) < ctk,Dn"%0f (f ) +clk,DHn "y (f”, —2).
’ n
IL Let f € A>(Yy). If f € C[—1,1], then
ES(f ) scoy | fi— | +teco| fi5 ), n=2.
n n
If, in addition, f € C(% N Cl—1,1], then
?) -2 ¢ " 1 -2 ’ 1
E7(f,Y1) <cn w3, | f7 = | +cn “wr f,—2 , n>2,

’ n n

and

- 1 _ 1
ER(f, 1) = en”0f (f ;) +en"2wp (f’, n—z) np(yn) > 1.

If f € C2, then

_ 1 _ 1
EQ(f.Y1) <en20f, (f ;) +entof, (f ;), n = N(Y1).

34

(3.5)

(3.6)

3.7)

(3.9)

(3.9)

(3.10)
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and
E@(f,Y1) <cn 2w3‘/’2 (f”, %) n>N(f). (3.11)
Moreover, if we actually have f € (CS, N C2[—1,1], then, for any k € N,
EP(f 1)) < cln ! (f(3) )—l—c(k)n w2 (f” nl—z) n>4. (3.12)
Furthermore, if f € C3[—1,1], then
EP(f.11) < clon™wf (f(3) ) + c(k)nCwy (f(3), niz) n>k+3. (3.13)
IL Let f € A?(Ys), s e N.If f € C[—1,1], then
EP(f.Y) < c(s)wf (ﬁ %) n > N(Ys). (3.14)

Moreover, if [ € (C; N (Cz[—l, 1], s € N, and k,l € N, then there exists N(Ys,k,l) such that, for all n >
N(YSak,l)s

1
EQ(f,Ys) < clle, L sinwf (f<3> )+c(k 1, s)n"*w, (f n—z) (3.15)
In addition, if s > 2 and f € Cz then
1
E@(£.Yy) < c(s)n 20, (f —), n = N(¥y). (3.16)
’ n

Remark 3.1. Estimate (3.13) was not proved in [2]. However, its proof is very similar to the proof presented
in [2] and based on the fact that if f € C3[a, ] is such that f is concave on [a, y1] and convex on [y1,b] (i.e.,
F"(x)(x = y1) =0, a <x <b) and py is such that px > @ on [a,b] and

1/ ® = pell < e (fP,b—a,la,b])

(e.g.,
pr=arg inf [|f® —plcs + inf 1P = plcs).
DEPk DEPk

then

X t S
P() :=///pkw)dvdsdt+f<a>+f’<a>(x—a)

a a y
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is a polynomial from P 3 coconvex with f on [a, b] and such that P(a) = f(a) and
If = Plictapy = k)b —aV’r (fP .0~ a.[a.b). (3.17)
We omit the details.

4. Proofs of the Positive Results

Since the cases N' = 1 and N' = 2 have already been discussed, we assume that N > 3. Given o > 0,
integers A/ > 3, s > 0, acollection Y5 € Yj, and a function f € AZ(YS), we suppose, without loss of generality,
that

n*E,(f) <1, forall n>N. 4.1)

Thus, it is necessary to prove the inequality
n®E@(f,Ys) < c(a,N,s5), n=N*, 4.2)
with proper N'*.

4.1. Convex Approximation: s = (.

I. N=3,0<a<3 ().
Theorem 3.3 (with r = 0 and k = 3), inequality (4.1), and the estimate E,(lz)(f) fca);p(f, 1/n), n >3,
proved in [8] yield E,(,z)(f) < cwgp(f, 1/n) <cn®forn >3 =:N*

2. N=3,3<a <4+

Theorem 3.3 (with r = 2 and k = 3), Theorem 3.1 (with r = 1 and k = 2), and inequality (4.1) imply
that f € (C(zp NnCl-1,1], a)f,z(f”,t) < ()t 2, and wa(f7,1?) < c(a)t* 2. Inequality (3.5) now

yields EP(f) < c(@)n™ forn > 3 = N'*.

3. a>4, N >a ().

Theorem 3.3 (with r = 2 and k = N — 2), Theorem 3.1 (with r = 2 and k = N — 2), and inequality
(4.1) imply that f € CZ N C?[—1,1],

(,l)/qf/-_z,z(f”,t) S C(aaN)ta_27 and CUN—2(]N/,[2) E C(O{aN)ta_4‘

Therefore, inequality (3.6) (with k = [ = N — 2) yields inequality (4.2) with N'* = N/.

4. a>4, 4 <N <a (“4+).

Let N7 := || + 1. Note that N7 > a > N. Since (4.1) is satisfied with N7 instead of N/, it follows
from case 3 that n"‘E,(,Z)(f) < c¢(a), n > Nj. Now let @1 := N/2 + 2 and note that 4 < a; < N.
It follows from (4.1) that n®' E,(f) < 1 for all n > N. Thus, by using case 3 once again, we get
n“lE,(,z)(f) <cN), n > N. Hence, for N' < n < N7, we find

n*E@(f) < c(N)n®™ < c(WINT™™ < e(a, N),
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which proves (4.2) with N* = N.

N =3, a>4E ).

It follows from cases 3 and 4 that inequality (4.2) is true for n > 5. Note that the polynomial of the
best approximation of degree < 2 to a convex function f must be convex (this follows, e.g., from the
Chebyshev equioscillation theorem) and, therefore, E§2)( f) = E3(f). Hence, for n = 3 and 4, we
have

EP(f) < EP(f) = Es(f) <1 =407,
and, thus, we arrive at inequality (4.2) with N'* = 3.

N =4, a>4E+).

As in case 5, it follows from cases 3 and 4 that inequality (4.2) is valid for n > 5 and, hence, it remains
to show that E‘(tz)(f) < c¢(). Since (4.1) implies that n*' E,(f) < 1, n > 4, where «; := min{«, 5},
it follows from Theorem 3.1 (with r = 2 and k = 2) that f € C?[—1,1] and wa(f”,t?) < c(a)t* ™4,
and in particular, w(f”,1) < c(a). Therefore, E»(f”) < cwa(f”,1) < c(a). Further, since the
inequality E‘(tz)(f) < 2E>(f") holds foreach f € C2?[—1,1]N A2, we conclude that Eiz)(f) <c(a),
as required.

N>4,0<a<4 7).
Theorem 3.3 (with k = 4 and N = N) and inequalities (4.1) and (3.4) yield

EP(f) < clayn™ + N[ f]| < cla)n™

for all n > max {3,c(a,/\/)||f||1/(4_°‘)} =: N™.

N=>4, a=4¢o".

Theorem 3.3 (with r = 2 and k = 3), Theorem 3.3 (with » = 1 and k = 3), and inequality (4.1)
imply that f € (Cé NnCl-1,1], a);p,z(f”,t) < ct?, and w3(f',t?) < ct?. By the Marchaud classical
inequality (see, e.g., [5], (4.3.1)), the last estimate implies that wy(f”,t) < ct + ct?||f’||. Inequality
(3.5) (with k = 3) now yields E,Sz)(f) <cn * +cn7®| f'|l, n > 3, and hence, we arrive at inequality
(4.2) with N* := max {3, | f'||/2}.

4.2. Coconvex Approximation: Case s > 1. For some cases considered in what follows, we need the fact

(see [9]) that, for any f € A%(Yy), s > 1,

E>(f) < c(Yy)Es+2(f). 4.3)

Remark 4.1. For the sake of convenience, for each case analyzed in what follows, we present the full range

of the values of « for which the corresponding proof can be used. Hence, the same triple («, NV, s) may be covered
by more than one case.

s=1,4<a<8 N =4E+).

Theorem 3.3 (with » = 3 and k = 5), Theorem 3.3 (with r = k = 2), and inequality (4.1), imply that
feClnC?-1.1],

a)g,3(f(3), 1) < c(a)r* 3, and wr(f".1%) < c(a)t® .
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Therefore, (3.12) (with k = 5), yields inequality (4.2) with N'* = 4.

2. s=1,4<a<8 N =3(+).

It follows from case 1 that (4.2) is true for n > 4. Thus, in order to show that N** = 3, it remains to check
the inequality E;z) (f. Y1) < c(a). Indeed, since inequality (4.1) is true for oy := min{w, 5}, it follows
from Theorem 3.2 (with r = 2 and k = 1), that f € C?[—1,1] (so that f”(y1) = 0), w1(f",1?) <
c(e)t®1=*, and in particular, w1 (f”,1) < c(a). We now set pa(x) := f(y1) + f'(y1)(x — y1). This
yields

EQ(f11) = EP(f.11) = Ex(f) < | f — pal

- / / (f"(5) = £ () ds du| < con(f".1) < c(@).

Y1 )1

3. s=1,a>6 N>a(“+).

Theorems 3.3 and 3.1 (with r = 3 and k = N — 3) and inequality (4.1) imply that f € C3,
a)/(’\’f_3’3(f(3),t) < c(a, %3, and wn—_3(f®,12) < c(a, N)t* . Estimate (3.13) (with k =
N — 3) now yields inequality (4.2) with N* = N.

4. s=1,a>6, 6 <N <a (“+").

Let N7 := || + 1. Note that N7 > a > N. Since (4.1) is satisfied with N7 instead of N/, it follows
from case 3 that n* ES? (£, Y1) < c(@), n > Ni. Now let o := (N + 6)/2. Note that 6 < a; < .
It follows from (4.1) that n*' E,(f) < 1 for all n > N . Further, by using case 3 once again, we get
n EX (Y1) < e(N). n = N

Hence, for N' < n < N7, we get

n®EP(£.Y1) < cN)n™ < c(MNF™ < c(a. N),

which proves (4.2) with N* = A/

5. s=1,a>6, N =3("+).

It follows from cases 3 and 4, that (4.2) is valid with n > 7. Thus, since (4.1) is obviously true, say, with
o = 5, it follows from case 2 that Egz)(f, Y1) < ¢, and hence, for 3 < n <6,

”aErgz)(f, Y1) < 6aE§2)(f, Y1) < c().

This means that (4.2) is true with N'* = 3.

6. s=1,a>6 N =4E+").

The proof is completely analogous to the proof in case 5 except the fact that the inequality Ef) (f,Y1)<c
follows from case 1.

7. s=1,a>6, N =6+").
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It follows from cases 3 and 4, that inequality (4.2) is valid with n > 7. Hence, as in case 35, it suffices
to show that Eéz)(f, Y1) < c(). If a1 := min{a, 7}, it follows from (4.1) that n*!' E,,(f) < 1 for all
n > 6. Thus, by applying Theorem 3.2 (with r = 3 and k = 3), we conclude that f € C3[-1,1],
w3(f®,12) < c(a)t*~°, and in particular, a)3(f(3), 1) < c(a). The inequality Eéz)(f, Y1) < c(o)
now follows from (3.17) (with k = 3 and [a, b] = [-1, 1]).

s=1,a>6, N =5E+).

The argument is exactly the same as in the previous case with the only difference that we use k = 2
instead of k = 3.

s>1,0<a<3,3<N<s+2E D).
Theorem 3.3 (with k = 3 and f — p3 instead of f, where p3 := arg in]Pf Ilf — pl), implies that
DPEr3
o3 (f;1) < c(@)t® + c()> E3(f).

Further, by using (4.3) and (4.1), we get

E3(f) = E2(f) = c(Ys) Es42(f) = c(o, Ys).
Therefore,
w§(f,1/n) < cl@)n™ + c(a, Yo)n > < c(a)n™
for n > N(«, Ys). Inequality (4.2) now follows from (3.14).

§>2,2<a<53<N=<s+2Ed.
Theorem 3.3 (with r = 2, k = 3) implies that f € C?p and

03,(f"1) < (@72 + c() > Es(f).

Further, by virtue of (4.3) and (4.1), we conclude that

Es(f) = E2(f) = c(Y5) Es42(f) = c(a.Yy).
Hence,
a)f,z(f”, 1/n) < c(@)n %2 4+ c(o, Yo)n ™3 < c(a)n %12
for n > N(a, Ys). Inequality (4.2) now follows from (3.16).

s>1,2<a<5 N>s5+3(“O") (except all “@” cases in these regions).

As in case 10, we can prove that

w3, (f" 1/n) < (™2 + c(s)n™>| f]|4
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12.

13.

14.

15.

and, hence,
0%, (f" 1/n) < clen™+?

for n > N(«, f). Thus, inequality (4.2) with N* = N*(«a, 1) follows from (3.16) for s > 2, and from
3.11) for s = 1.

s=2,2<a<5 N=5Ea").

Theorem 3.3 (with r = 2 and k = 3) and inequality (4.1) imply that f € C(% and a);p,z(f”,t) <
c()t*~2. Now inequality (3.16) implies inequality (4.2) with N'* = N*(«a, Yj).

s=l4<a<6, N>5ands>2,a>4, N >3 ).

If A7 := max{|a| + 1, N}, then Theorem 3.3 (with r = 3 and k = N7 — 3), Theorem 3.3 (with r = 2
and k = N —2), and inequality (4.1) imply that / € C3 N C?[—1,1],

of _33(fP.0) <c@M* 3 and oy 2(f" 1) <l N
Therefore, inequality (3.15) (with k = N7 — 3 and [ = N7 — 2) yields inequality (4.2) with N/*

N*(a, N, Yy).

s=1,2<a<5 N=3ord (“®".

Theorem 3.3 (with r = 2 and k = 3) and inequality (4.1) imply that f € C% and a);p,z(f”,t)
c(a)t*"2. We set @y := min{a, 3}. Then Theorem 3.3 (with r = k = 2) implies that a)z(p,z(f”,t)
c(a)t*1 72, Therefore, it follows from inequality (3.10) that

IATA

EQ(fY)<en™+en ™2 <cen™@, n> N(Y),

as required.

s>1,0<a<3, N>s+3E D).
Theorem 3.3 (with k = 3 and N = N) and inequalities (4.1) and (3.14) yield

EP(f) < clayn™ +cNn3| f] < cla)n™

for all sufficiently large n, n > N*(a, N, Ys, f).

5. Appendix: Proof of Theorem 3.2

First, we present the proof for the case r > 1. Without loss of generality, we assume that N > k + r and set
mj = N2/ and ¢; := ¢(mj_1). Further, we expand f in the telescopic series

o0 o0
f=Pirr+ (PN = Pisr)+ Y (Pmjyy — Pmy) = Prgr + O+ Y _ 0, (5.1)
j=0 j=0
where P, € P, are the polynomials of the best approximation of f, i.e., |f — Pn|| = En(f). Hence, the

polynomials Q; are of degree < mj; and satisfy the inequality ||Q;| < ¢j+1 + ¢; < 2¢; . For fixed
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x € (—1,1) and h € [0, 7], satisfying the inequality kho(x)/2 < 1 —|x|, we set x4 := |x| + khe(x)/2 and note
that if

UE [—Xx, Xx| D [x —kho(x)/2,x + kho(x)/2] =
then ¢(u) > ¢(xx). Hence, for u € A and [ € N, the Markov—Bernstein inequality implies that

1 - 1
mensdm%HCE:+ww0 WENW%(%ﬁwun)¢p (5:2)

which, in turn, yields the inequality

r

Ay (07 )] = 2 max |07 )] < c(r>2k(p"z;*)¢j

for [ = r. Therefore, if we denote J := min{; : 1/m; < h}, then we find

o0
" (xs) Z ‘Ahw(x) (05", )‘fc(r)zk > midy
j=J+1 j=J+1

—c(k,r) Z / ¢J —du < c(k,r) Z /‘]ﬁ‘z

J=J+1 m7! j=J+1 i

=c(k,r) /

(5.3)

We also note that

P(x) —@(xs)  o(x) — @(xx) (x) < P(x) — @(xx)
k)2 xe—px 7 Yo — |x]

(0(x) + @(xx)) = x5 + |x] <2

and, therefore,
o(x) <kh + @(x4).

Hence, for 0 < j < J, in view of the fact that 1/m; > h/2, by virtue of inequality (5.2) with [ = r + k, we
obtain

[y (0 0)] = (o)) max |04+ )|

hk k+r¢) () hk k+r

=D G gl =

®;
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m1

L
J
= C(k’r)(pr(x*) uk+r+1du
my
mj__ll
h* ¢ ()
§c(k,r)(pr(X*) ke 4
mj
where m_; := N/2. Hence, we get
J A
r k ") k ¢ )
0" () Y ‘Ah(p(x)(Qj x)‘ <clk.rh* Y] e
j=0 =0~
J
2/N ) 1 ()
_ k ¢ (u k ¢ (u
=ck.nh® | —mgdu < cleonh® | oo du
m;l h/2
[ )
k M
h

Note that

1 1

h t
/¢(u)du+hk o) du5/¢(”3du+tk P gy h<t.
0 0

w1 uk+r+l ur+ ykrrr e

h t

Finally, we arrive at the estimate
A% oy (@7 0)| < HE Q¥ < 2N2EIRK B (), 55)

which follows from Markov’s inequality. Note thatif N = k + r, then Q = 0 and, therefore, the left-hand side
of inequality (5.5) vanishes and no estimates are required.

Finally, the fact that All;q;(x)(Pk(:—)r’ x) = 0 combined with inequalities (5.3), (5.4), and (5.5) completes the
proof of the theorem for » > 1.

For r = 0, we can write

J
f:Pk+Q+ZQj+(f_PmJ+1),

Jj=0



440 K. KOPOTUN, D. LEVIATAN, AND I. A. SHEVCHUK

where Q := Py — P and Q; := Pp; , — P, [see (5.1)]. As above, the proof is completed by using inequalities
(5.4) and (5.5) and the following inequality:

¢(u) ¢(u)
T = 3¢ r?
h t

hk

h<t<

Theorem 3.2 is proved.

Remark 5.1. In the definition of the modulus a)k in the present paper, we use the weight W(x, u) from
(3.2), where u = kh/2. Note that it is also possible to use the weights (see [4, 10])

Wix, ) = ((1 - pp(x)? - 22)"/2,
or (see [2])

Wa(x, 1) == (92(x) — pp(x)(1 + |x]))"/?,

which would yield equivalent definitions of the modulus a);f because, for u € (0,1) and x: |x| + pe(x) < 1,

we have

1_
Pw<w < <w
1+
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