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ARE THE DEGREES OF THE BEST (CO)CONVEX AND UNCONSTRAINED
POLYNOMIAL APPROXIMATIONS THE SAME? II

K. Kopotun,1 D. Leviatan,2 and I. A. Shevchuk3 UDC 517.5

In Part I of the paper, we have proved that, for every ˛ > 0 and a continuous function f; which is either
convex .s D 0/ or changes convexity at a finite collection Ys D fyi gsiD1 of points yi 2 .�1; 1/;

supfn˛E.2/n .f; Ys/Wn � N�g � c.˛; s/ supfn˛En.f /Wn � 1g;

where En.f / and E.2/n .f; Ys/ denote, respectively, the degrees of the best unconstrained and (co)convex
approximations and c.˛; s/ is a constant depending only on ˛ and s: Moreover, it has been shown that
N� may be chosen to be 1 for s D 0 or s D 1; ˛ ¤ 4; and that it must depend on Ys and ˛ for s D 1;
˛ D 4 or s � 2:

In Part II of the paper, we show that a more general inequality

supfn˛E.2/n .f; Ys/Wn � N�g � c.˛;N ; s/ supfn˛En.f /Wn � N g;

is valid, where, depending on the triple .˛;N ; s/; the number N� may depend on ˛; N ; Ys ; and f or
be independent of these parameters.

1. Introduction and Main Results

Let CŒ�1; 1� be the space of continuous functions on Œ�1; 1� equipped with the uniform norm k � k and let
Ys; s 2 N; be the set of all collections Ys WD

¶
yi
·s
iD1

of points yi ; such that ysC1 WD �1 < ys < : : : < y1 <

1 DW y0: For Ys 2 Ys by �2.Ys/ we denote the set of all piecewise convex functions f 2 CŒ�1; 1� that change
convexity at the points Ys; and are convex on Œy1; 1�: In particular, Y0 D f¿g and �2 D �2.Y0/ denotes the set
of all convex continuous functions. If f is twice continuously differentiable in .�1; 1/; then f 2 �2.Ys/ if and
only if

f 00.x/….xIYs/ � 0; x 2 .�1; 1/; where ….xIYs/ WD

sY
iD1

.x � yi / .….x; Y0/ W� 1/:

Further, by

En.f / WD inf
¶
kf � PnkW Pn 2 Pn

·
and

E.2/n .f; Ys/ WD inf
¶
kf � PnkW Pn 2 Pn \�

2.Ys/
·
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we denote the degrees of the best unconstrained and coconvex approximations of a function f by polynomials
from Pn (the space of algebraic polynomials of degree < n). In particular,

E.2/n .f / WD E.2/n .f; Y0/ D inf
¶
kf � PnkW Pn 2 Pn \�

2
·

is the degree of the best convex approximation of f:
Although it is obvious that En.f / � E

.2/
n .f /; Lorentz and Zeller [1] showed that the inverse inequality

E
.2/
n .f / � cEn.f / is invalid even if a constant c is allowed to depend on the function f 2 �2: There are many

examples showing that the same is true for piecewise convex functions from �2.Ys/: Despite the existence of
counterexamples, we have recently proved the following result:

Theorem A [2]. For each ˛ > 0 and integer s � 0; there is a constant c.˛; s/; such that, for every collection
Ys 2 Ys and a function f 2 �2.Ys/;

sup
¶
n˛E.2/n .f; Ys/Wn � N �

·
� c.˛; s/ sup

¶
n˛En.f /Wn � 1

·
; (1.1)

where N � D 1 if either s D 0 or s D 1 and ˛ ¤ 4 and N � D N �.˛; Ys/ is a constant depending only on ˛
and Ys if either s � 2 or s D 1 and ˛ D 4:

It has also been shown that Theorem A cannot be improved, i.e., if either s � 2 or s D 1 and ˛ D 4; then the
constant N � cannot be made independent of Ys:

Theorem B [2]. Let s � 2: Then, for any ˛ > 0 and m 2 N; there exist a collection Ys 2 Ys and a function
f 2 �2.Ys/ such that

m˛E.2/m .f; Ys/ � c.˛; s/m
˛C1�d˛e sup

¶
n˛En.f /Wn � 1

·
; (1.2)

where c.˛; s/ is a positive constant and d˛e is the ceiling function (i.e., the smallest integer not smaller than ˛).

Theorem C [2]. For every Y1 2 Y1; there exists a function f 2 �2.Y1/ satisfying the equality

sup
¶
n4En.f /Wn 2 N

·
D 1;

such that, for any m 2 N; we have

m4E.2/m .f; Y1/ �

�
c ln

m

1Cm2'.y1/
� 1

�
(1.3)

and

sup
¶
n4E.2/n .f; Y1/Wn 2 N

·
� c jln'.y1/j; (1.4)

where '.y/ WD
p
1 � y2 and c is an absolute positive constant.

Everywhere in what follows, by c.: : : / we denote positive real constants that depend only on the parameters,
sets, and functions in the parentheses. Generally speaking, these constants are different in different cases even if
they appear in the same line. In particular, absolute positive constants are also denoted by c: Similarly, N .: : : /
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denote natural numbers that depend only on the quantities in the parentheses. Thus, N .˛; Ys/ is a natural number
that depends only on ˛ and Ys but is independent of any other parameters.

The main goal in the present paper is to answer the following questions:

What happens if we replace n � 1 in (1.1) by n � N ; where N 2 N ?
Is Theorem A still valid? What can we say about the dependence of N �
on ˛; N ; Ys; and f ?

Our first result is the following generalization of Theorem A:

Theorem 1.1. For each ˛ > 0; N 2 N; s 2 N0 WD N [ f0g; Ys 2 Ys; and f 2 �2.Ys/; there exists
N � 2 N such that

sup
¶
n˛E.2/n .f; Ys/Wn � N �

·
� c.˛;N ; s/ sup

¶
n˛En.f /Wn � N

·
: (1.5)

Note that N � 2 N in the statement of Theorem 1.1 may depend on ˛; N ; Ys; and f or may be independent
of these parameters. Theorem 1.2 proved in what follows gives a complete answer to the question when and how
this dependence occurs.

It is easy to see that the assertion of Theorem 1.1 in the case N D 2 immediately follows from Theorem A.
Namely,

if N D 2; then Theorem 1.1 is true with N � D 2 if either s D 0 or
s D 1 and ˛ ¤ 4 and N � D N �.˛; Ys/ if either s � 2 or s D 1 and
˛ D 4:

Indeed, in view of the fact that the function g WD f � p2; where p2 WD arg infp2P2
kf � pk; is such that

En.g/ D En.f /; E
.2/
n .g; Ys/ D E

.2/
n .f; Ys/ for all n � 2; and E1.g/ � kgk D E2.f /; we conclude that

sup
¶
n˛E.2/n .f; Ys/Wn � N �

·
D sup

¶
n˛E.2/n .g; Ys/Wn � N �

·
� c.˛; s/ sup

¶
n˛En.g/Wn � 1

·
D c.˛; s/ sup

¶
n˛En.f /Wn � 2

·
:

Moreover, Theorems B and C imply that,

for N � D 2; the number N � cannot be made independent of Ys if
either s � 2 or s D 1 and ˛ D 4:

We now emphasize that, except the case 3 � N � sC 2; the number N � cannot be smaller than N : Indeed,
to show this, it suffices to consider any function fs 2 �2.Ys/ in the form of a polynomial of degree exactly N �1;
e.g., such that f 00s .x/ WD .x C 2/

N�s�3….xIYs/ for N � s C 3 and fs.x/ WD x for N D 2: Then En.fs/ D 0
for all n � N and we immediately arrive at a contradiction by assuming that N � in (1.5) is strictly smaller than
N : If 3 � N � sC 2; then PN \�

2.Ys/ D P2 \�2.Ys/ (any polynomial of degree � sC 1 with s changes of
convexity must be linear) and, hence,

E
.2/
N .f; Ys/ D E

.2/
2 .f; Ys/ D E2.f /;

i.e., if (1.5) is true with N � D N ; then it is also true with N � D 2:
In addition, by Theorem B, we cannot expect that N � is independent of Ys for s � 2;
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Given a triple .˛;N ; s/; we want to determine the exact dependences of N � on all quantities appearing in the
statement of Theorem 1.1 such that inequality (1.5) is satisfied.

We now show that there are three different types of behavior of N �: In order to describe these types of
behavior, we introduce the following notation:

Definition. Let .˛;N ; s/ 2 RC �N �N0:

1. We write .˛;N ; s/ 2 “C” , if Theorem 1.1 holds with N � D N :

2. We write .˛;N ; s/ 2 “˚” , if

(a) Theorem 1.1 holds with N � D N �.˛;N ; Ys/ and

(b) Theorem 1.1 is not valid with N � independent of Ys; i.e., for each A > 0 and M 2 N; one can
find a number m > M; a collection Ys 2 Ys; and a function f 2 �2.Ys/; such that

m˛E.2/m .f; Ys/ � A sup
¶
n˛En.f /Wn � N

·
: (1.6)

3. We write .˛;N ; s/ 2 “	”; if

(a) Theorem 1.1 holds with N � D N �.˛;N ; Ys; f / and

(b) Theorem 1.1 is not valid with N � independent of f; i.e., for each A > 0; M 2 N; and Ys 2 Ys;
one can find m > M and f 2 �2.Ys/ such that inequality (1.6) holds.

It turns out that N � depends on

˛ WD d˛=2e (1.7)

but not on ˛ itself with the only exception of the case ˛ D 2; N � 2; and s D 1; which has already been
discussed above.

Theorem 1.2. Let .˛;N ; s/ 2 RC �N �N0: Then

(i) .˛;N ; s/ 2 “C” � if

s D 0; ˛ � 2; and N � 3I
s D 0; ˛ � 3; and N 2 NI

s D 1; ˛ D 1; and N � 2I
s D 1; ˛ D 2; ˛ ¤ 4; and N � 2I
s D 1; ˛ D 3; and N � 4I
s D 1; ˛ � 4; and N 2 N:

(ii) .˛;N ; s/ 2 “	” � if

s � 0; ˛ � 2; and N � s C 4I
s � 1; ˛ D 1; and N D s C 3:

(iii) .˛;N ; s/ 2 “˚” in all other cases, except possibly the case s � 3; ˛ D 2; and N D s C 3:
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Recall that the cases N D 1 and N D 2 in this theorem follow from Theorems A – C and the discussion
following the assertion of Theorem 1.1.

In order to make it easier to understand and remember the assertions of Theorem 1.2 and recognize the patterns
of behavior of the triples .˛;N ; s/; we summarize the results in the following tables relating N and ˛ to various
values of s:

˛
:::

:::
:::

:::
::: . . .

4 C C C C C � � �

3 C C C C C � � �

2 C C C 	 	 � � �

1 C C C 	 	 � � �

1 2 3 4 5 N

s D 0

˛
:::

:::
:::

:::
:::

::: . . .

5 C C C C C C � � �

4 C C C C C C � � �

3 C C C C ˚ ˚ � � �

2
ı

C
ı

C ˚ ˚ 	 	 � � �

1 C C ˚ 	 	 	 � � �

1 2 3 4 5 6 N

s D 1

˛
:::

:::
:::

:::
:::

:::
::: . . .

4 ˚ ˚ ˚ ˚ ˚ ˚ ˚ � � �

3 ˚ ˚ ˚ ˚ ˚ ˚ ˚ � � �

2 ˚ ˚ ˚ ˚ ˚ 	 	 � � �

1 ˚ ˚ ˚ ˚ 	 	 	 � � �

1 2 3 4 5 6 7 N

s D 2

˛
:::

:::
:::

:::
:::

:::
:::

::: . . .

4 ˚ ˚ � � � ˚ ˚ ˚ ˚ ˚ � � �

3 ˚ ˚ � � � ˚ ˚ ˚ ˚ ˚ � � �

2 ˚ ˚ � � � ˚ ˚ ‹ 	 	 � � �

1 ˚ ˚ � � � ˚ ˚ 	 	 	 � � �

1 2 � � � s C 1 s C 2 s C 3 s C 4 s C 5 N

s � 3

The symbol “
ı

C” in the positions .˛;N / D .2; 1/ and .2; 2/ for s D 1 (exceptional case) means that
.˛;N ; s/ 2 “C” for ˛ ¤ 4 (i.e., 2 < ˛ < 4/ and .˛;N ; s/ 2 “˚” for ˛ D 4:
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We also write “‹” in the position .˛;N / D .2; s C 3/ for s � 3 because we do not know exactly what
happens in this case. We know, however, that .˛;N ; s/ 2 “	” or “˚” for s � 3; 2 < ˛ � 4 and N D sC 3 (see
Theorem B and case 11 in Section 4.2).

2. Proofs of the Negative Results

We first formulate the following well-known result (see, e.g., [3, p. 418], Theorem 7.5.2):

Lemma 2.1. Let r 2 N and Gr.x/ D .x C 1/r ln.x C 1/; Gr.�1/ WD 0: Then

En.Gr/ � c.r/n
�2r ; n 2 N: (2.1)

Further, we prove the following lemma:

Lemma 2.2. For every A > 0 and m 2 N; there are points y1 2 .�1; 1/ and Qy1 2 .�1; 1/ and functions
f 2 �2.Y1/ and Qf 2 �2. QY1/; where Y1 WD fy1g and QY1 WD f Qy1g; such that

n4En.f / � 1; n � 3; and n6En. Qf / � 1; n � 5: (2.2)

At the same time,

E.2/m .f; Y1/ � A and E.2/m . Qf ; QY1/ � A:

Proof. Given A > 0 and m 2 N in the proof of [4] (Theorem 2.4), we construct functions g4 2 �2.Y1/ and
g6 2 �

2. QY1/ for some �1 < y1 < 1 and �1 < Qy1 < 1 such that

E.2/m .g4; Y1/ � A and E.2/m .g6; QY1/ � A: (2.3)

These functions have the representation g2r D P2r�1C crGr ; r D 2; 3; where P2r�1 2 P2r�1 and cr is an
absolute constant. Therefore, by virtue of (2.1), we conclude that

n2rEn.g2r/ � c; n � 2r � 1;

and the proof is complete.

Remark 2.1. Note that Lemma 2.2 readily implies that if s D 1; then, for ˛ D 1; 2 and all N � 3 , as well
as for ˛ D 3 and all N � 5; the symbol “C” cannot occupy the position .˛;N /:

Our next result is true for any s 2 N0:

Lemma 2.3. Let s 2 N0 and let Ys 2 Ys: For any A > 0 and m 2 N; there exists a function f 2 �2.Ys/;
such that

n4En.f / � 1; n � s C 4:

At the same time,

E.2/m .f; Ys/ � A:
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Proof. Following [4], for each b 2 .�1; 0/; we denote

fb.x/ WD

xZ
0

.x � t /….t IYs/

0@ tZ
b

t � u

.uC 1/2
du

1A dt:
Clearly, f 00

b
.x/….xIYs/ � 0; x 2 .�1; 1/; and, hence, fb 2 �2.Ys/: Straightforward computations performed

by using the Taylor expansion of ….xIYs/ about t D �1 imply that

fb D PsC4 �

sX
rD0

….r/.�1IYs/

.r C 2/Š
GrC2;

where PsC4 2 PsC4: Hence, by virtue of Lemma 2.1, we obtain,

n4En.fb/ � c.s/; n � s C 4; (2.4)

because
….r/.�IYs/ � c.s/; 0 � r � s:

The polynomial

psC4.x/ WD

xZ
0

.x � t /….t IYs/

0@ 1Z
b

t � u

.uC 1/2
du

1A dt;
belongs to PsC4 and satisfies the equality

….�1IYs/p
00
sC4.�1/ D …

2.�1IYs/ ln
b C 1

2
:

Hence, for any polynomial Pm 2 Pm \�2.Ys/; m � s C 4; we get

�…2.�1IYs/ ln
b C 1

2
D �….�1IYs/p

00
sC4.�1/

� ….�1IYs/
�
P 00m.�1/ � p

00
sC4.�1/

�
� m4j….�1IYs/jkPm � psC4k; (2.5)

where we have used Markov’s inequality. In addition,

psC4.x/ � fb.x/ D

xZ
0

.x � t /….t IYs/

0@ 1Z
t

t � u

.uC 1/2
du

1A dt;
which is independent of b: Hence, in view of (2.5),

m�4
ˇ̌
….�1IYs/

ˇ̌
ln

2

b C 1
� kPm � fbk C kfb � psC4k � kPm � fbk C c.s/
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and, thus,

E.2/m .fb; Ys/ � m
�4
ˇ̌
….�1IYs/

ˇ̌
ln

2

b C 1
� c.s/:

Taking f WD cfb with suitable c D c.s/ and b; we complete the proof of the lemma.

Remark 2.2. Lemma 2.3 implies that if ˛ D 1 or 2; then, for all s � 0 and N � s C 4; the symbol “C”
or “˚” cannot occupy the position .˛;N / (thus, the best possible situation is that these positions are occupied by
the symbol “	I” as shown in what follows, this is indeed the case).

Finally, for s � 1; we have the following lemma:

Lemma 2.4. Let s 2 N and let Ys 2 Ys: For each A > 0 and m 2 N; there exists a function f 2 �2.Ys/;
such that

n2En.f / � 1; n � s C 3;

and

E.2/m .f; Ys/ � A:

Proof. Denote Dj .x/ WD xj ln jxj .Dj .0/ WD 0/: It is well known (and easy to check) that, for j � 1;

the function D
.j�1/
j belongs to the Zygmund class, i.e., !2.D

.j�1/
j ; t / � c.j /t: Thus, for j � 2; we have

En.Dj / � c.j /n
�j � c.j /n�2; n � 1: Hence, for Dj; .x/WDDj .x C /; �1 <  < 1; j � 2; we get

En.Dj; / �
c.j /

n2
n � 1: (2.6)

We take 0 < b <
1

2
minfy1 � y2; 1 � y1g: Further, let

Qlb.x/ WD
x

b
� 1C ln b: (2.7)

(Note that y D lb.x/ is the tangent to the function ln jxj at the point x D b:/ Also let b� be the other (clearly,
negative) root of the equation Qlb.x/ D ln jxj: It is obvious that

jb�j D �b� < b; (2.8)

and .x � b�/
�
Qlb.x/ � ln jxj

�
� 0; x ¤ 0: This means that, for

lb.x/ WD Qlb.x C b
�/; (2.9)

we have

x.lb.x/ � ln jx C b�j/ � 0; x ¤ jb�j: (2.10)

Denote

…1.x/ WD …
s
iD2.x � yi / .…1 W� 1 for s D 1/;
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and let

Lb.x/ WD

xZ
0

.x � u/…1.u/lb.u � y1/du

and

gb.x/ WD

xZ
0

.x � u/…1.u/ ln juC b� � y1jdu:

Finally, we write

fb WD Lb � gb:

As a result of integration by parts, we obtain

xZ
0

.x � u/ ln juC b� � y1jdu D
1

2
D2.x C b

�
� y1/C p3.x/;

where p3 2 P3: Similarly,

gb.x/ D

s�1X
rD0

…
.r/
1 .y1 � b

�/

.r C 2/Š
DrC2.x C b

�
� y1/C psC2.x/; (2.11)

where psC2 2 PsC2: Further, since Lb 2 PsC3; inequality (2.6) implies that

En.fb/ �
c.s/

n2
; n � s C 3: (2.12)

At the same time, it follows from (2.10) that fb 2 �2.Ys/:
On the other hand, given Pm 2 Pm \�2.Ys/; by virtue of (2.7) and (2.9), we conclude that

0 < …1.y1/ ln
1

b
< …1.y1/

�
ln
1

b
C 1 �

b�

b

�

D �L00b.y1/ D P
00
m.y1/ � L

00
b.y1/ � c.s; y1/m

2
kPm � Lbk;

where we have used Bernstein’s inequality. Since

kgbk � 2k…1k

1Z
0

j ln xjdx D 2k…1k � 2s;

we have

0 < …1.y1/ ln
1

b
� c.s; y1/m

2
�
kPm � fbk C kgbk

�
� c.Ys/m

2.kPm � fbk C 1/:
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Hence,

E.2/m .fb; Ys/ �
c.Ys/

m2
ln
1

b
� 1:

In combination with (2.12), this inequality yields the statement of the lemma for f WD cfb with suitable c D c.s/
and b:

Remark 2.3. Lemma 2.4 implies that if ˛ D 1 and s � 1; then, for all N � s C 3; the symbols “C” and
“˚” cannot occupy the position .˛;N / (thus, the best possible situation is that the corresponding positions are
occupied by “	 ;” as shown in what follows, this is indeed the case).

3. Auxiliary Results

Recall that '.x/ D
p
1 � x2: Let Cr

' ; r � 1; be the space of functions f 2 Cr.�1; 1/\CŒ�1; 1� such that

lim
x!˙1

'r.x/f .r/.x/ D 0;

and C0
' WD CŒ�1; 1�:

By

�kı .g; x/ WD

kX
iD0

 
k

i

!
.�1/k�ig

�
x �

kı

2
C iı

�
;

we denote the k th symmetric difference of a function g with step ı: Thus, the Ditzian–Totik-type modulus of
smoothness of the r th derivative of a function f 2 Cr

' ; is defined as follows:

!
'

k;r
.f .r/; t / WD sup

h2Œ0;t�

sup
xWjxjC.kh/'.x/=2<1

W r

�
x;
kh

2

�ˇ̌̌
�kh'.x/.f

.r/; x/
ˇ̌̌

(3.1)

with the weight

W.x;�/ WD '
�
jxj C �'.x/

�
; jxj C �'.x/ < 1: (3.2)

If r D 0; then

!
'

k
.f; t/ WD !

'

k;0
.f; t/

is the (ordinary) Ditzian–Totik modulus of smoothness. Finally, let kf kCŒa;b� be the uniform norm of a function
f 2 CŒa; b� (in particular, kf kCŒ�1;1� D kf k/: We recall that the ordinary k th modulus of smoothness of
f 2 CŒa; b� is

!k
�
f; t; Œa; b�

�
WD sup

h2Œ0;t�

�kh.f; �/CŒaCkh=2;b�kh=2�;

and denote !k.f; t/ WD !k.f; t; Œ�1; 1�/:
The following results are the so-called inverse theorems. They characterize the smoothness (i.e., describe the

class) of functions with prescribed order of polynomial approximation.
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First, we formulate a corollary of the classical Dzyadyk–Timan–Lebed–Brudnyi inverse theorem (see, e.g.,
[3], Theorem 7.1.2).

Theorem 3.1. Let 2r < ˛ < 2k C 2r and let f 2 CŒ�1; 1�: If

n˛En.f / � 1; n � k C r;

then f 2 Cr Œ�1; 1� and

!k.f
.r/; t2/ � c.˛; k; r/t˛�2r : (3.3)

For the Ditzian–Totik-type moduli of smoothness, we need the following result obtained as a generalization
of [5] (Theorem 7.2.4) to the case p D1:

By ˆ we denote the set of nondecreasing functions �W Œ0;1/! Œ0;1/ such that �.0C/ D 0:

Theorem 3.2. Given k 2 N; r 2 N0; N 2 N; and � 2 ˆ such that

1Z
0

r�.u/

urC1
du < C1:

If

En.f / � �

�
1

n

�
; for all n � N;

then f 2 Cr
' and

!
'

k;r
.f .r/; t / � c.k; r/

tZ
0

r�.u/

urC1
duC c.k; r/tk

1Z
t

�.u/

ukCrC1
duC c.k; r; N /tkEkCr.f /; t 2 Œ0; 1=2�:

If, in addition, N � k C r; then the following Bari–Stechkin-type estimate holds:

!
'

k;r
.f .r/; t / � c.k; r/

tZ
0

r�.u/

urC1
duC c.k; r/tk

1Z
t

�.u/

ukCrC1
du; t 2 Œ0; 1=2�:

We present the proof of this theorem in the appendix.
In fact, we only need the following theorem which is an immediate consequence of Theorem 3.2 .�.u/ WD u˛/

but is of especial interest in the context of the present paper.

Theorem 3.3. Let r 2 N0; k 2 N; and ˛ > 0; be such that r < ˛ < k C r and let f 2 CŒ�1; 1�: If

n˛En.f / � 1 for all n � N;
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where N � k C r; then f 2 Cr
' and

!
'

k;r
.f .r/; t / � c.˛; k; r/t˛�r C c.N; k; r/tkEkCr.f /:

In particular, if N D k C r; then

!
'

k;r
.f .r/; t / � c.˛; k; r/t˛�r :

Lemma 3.1. [See [6], [4] (Theorems 2.7, 2.8, and 2.11), [2] (Lemma 2.8), and [7] (Theorem 3.1).]

I. Let f 2 �2: If f 2 CŒ�1; 1�; then

E.2/n .f / � c!
'
4

�
f;
1

n

�
C cn�6kf k; n � 3: (3.4)

Moreover, if f 2 C2
' \C1Œ�1; 1�; then

E.2/n .f / � c.k/n�2!
'

k;2

�
f 00;

1

n

�
C c.k/n�2!2

�
f 0;

1

n2

�
; n � 3: (3.5)

Furthermore, if f 2 C2
' \C2Œ�1; 1� and k; l 2 N; then, for n � l C 2; the following inequality is true:

E.2/n .f / � c.k; l/n�2!
'

k;2

�
f 00;

1

n

�
C c.k; l/n�4!l

�
f 00;

1

n2

�
: (3.6)

II. Let f 2 �2.Y1/: If f 2 CŒ�1; 1�; then

E.2/n .f; Y1/ � c!
'
3

�
f;
1

n

�
C c!2

�
f;
1

n2

�
; n � 2: (3.7)

If, in addition, f 2 C2
' \C1Œ�1; 1�; then

E.2/n .f; Y1/ � cn
�2!

'
3;2

�
f 00;

1

n

�
C cn�2!1

�
f 0;

1

n2

�
; n � 2; (3.8)

and

E.2/n .f; Y1/ � cn
�2!

'
3;2

�
f 00;

1

n

�
C cn�2!2

�
f 0;

1

n2

�
; n'.y1/ > 1: (3.9)

If f 2 C2
' ; then

E.2/n .f; Y1/ � cn
�2!

'
3;2

�
f 00;

1

n

�
C cn�4!

'
2;2

�
f 00;

1

n

�
; n � N.Y1/; (3.10)
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and

E.2/n .f; Y1/ � cn
�2!

'
3;2

�
f 00;

1

n

�
; n � N.f /: (3.11)

Moreover, if we actually have f 2 C3
' \C2Œ�1; 1�; then, for any k 2 N;

E.2/n .f; Y1/ � c.k/n
�3!

'

k;3

�
f .3/;

1

n

�
C c.k/n�4!2

�
f 00;

1

n2

�
; n � 4: (3.12)

Furthermore, if f 2 C3Œ�1; 1�; then

E.2/n .f; Y1/ � c.k/n
�3!

'

k;3

�
f .3/;

1

n

�
C c.k/n�6!k

�
f .3/;

1

n2

�
; n � k C 3: (3.13)

III. Let f 2 �2.Ys/; s 2 N: If f 2 CŒ�1; 1�; then

E.2/n .f; Ys/ � c.s/!
'
3

�
f;
1

n

�
; n � N.Ys/: (3.14)

Moreover, if f 2 C3
' \ C2Œ�1; 1�; s 2 N; and k; l 2 N; then there exists N.Ys; k; l/ such that, for all n �

N.Ys; k; l/;

E.2/n .f; Ys/ � c.k; l; s/n
�3!

'

k;3

�
f .3/;

1

n

�
C c.k; l; s/n�4!l

�
f 00;

1

n2

�
: (3.15)

In addition, if s � 2 and f 2 C2
' ; then

E.2/n .f; Ys/ � c.s/n
�2!

'
3;2

�
f 00;

1

n

�
; n � N.Ys/: (3.16)

Remark 3.1. Estimate .3:13/ was not proved in [2]. However, its proof is very similar to the proof presented
in [2] and based on the fact that if f 2 C3Œa; b� is such that f is concave on Œa; y1� and convex on Œy1; b� (i.e.,
f 00.x/.x � y1/ � 0; a � x � b/ and pk is such that pk � f .3/ on Œa; b� and

kf .3/ � pkk � c.k/!k.f
.3/; b � a; Œa; b�/

(e.g.,

pk WD arg inf
p2Pk

kf .3/ � pkCŒa;b� C inf
p2Pk

kf .3/ � pkCŒa;b�/;

then

P.x/ WD

xZ
a

tZ
a

sZ
y1

pk.v/ dv ds dt C f .a/C f
0.a/.x � a/
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is a polynomial from PkC3 coconvex with f on Œa; b� and such that P.a/ D f .a/ and

kf � P kCŒa;b� � c.k/.b � a/
3!k

�
f .3/; b � a; Œa; b�

�
: (3.17)

We omit the details.

4. Proofs of the Positive Results

Since the cases N D 1 and N D 2 have already been discussed, we assume that N � 3: Given ˛ > 0;

integers N � 3; s � 0; a collection Ys 2 Ys; and a function f 2 �2.Ys/; we suppose, without loss of generality,
that

n˛En.f / � 1; for all n � N : (4.1)

Thus, it is necessary to prove the inequality

n˛E.2/n .f; Ys/ � c.˛;N ; s/; n � N �; (4.2)

with proper N �:

4.1. Convex Approximation: s D 0:

1. N D 3; 0 < ˛ < 3 (“+”).

Theorem 3.3 (with r D 0 and k D 3/; inequality (4.1), and the estimate E.2/n .f / �c!
'
3 .f; 1=n/; n � 3;

proved in [8] yield E.2/n .f / � c!
'
3 .f; 1=n/ � cn

�˛ for n � 3 DW N �:

2. N D 3; 3 � ˛ � 4 (“+”).

Theorem 3.3 (with r D 2 and k D 3/; Theorem 3.1 (with r D 1 and k D 2/; and inequality (4.1) imply
that f 2 C2

' \ C1Œ�1; 1�; !
'
3;2.f

00; t / � c.˛/t˛�2; and !2.f 0; t2/ � c.˛/t˛�2: Inequality (3.5) now

yields E.2/n .f / � c.˛/n�˛ for n � 3 DW N �:

3. ˛ > 4; N > ˛ (“+”).

Theorem 3.3 (with r D 2 and k D N � 2/; Theorem 3.1 (with r D 2 and k D N � 2/; and inequality
(4.1) imply that f 2 C2

' \C2Œ�1; 1�;

!
'
N�2;2.f

00; t / � c.˛;N /t˛�2; and !N�2.f
00; t2/ � c.˛;N /t˛�4:

Therefore, inequality (3.6) (with k D l D N � 2/ yields inequality (4.2) with N � D N :

4. ˛ > 4; 4 < N � ˛ (“+”).

Let N1 WD b˛c C 1: Note that N1 > ˛ � N : Since (4.1) is satisfied with N1 instead of N ; it follows
from case 3 that n˛E.2/n .f / � c.˛/; n � N1: Now let ˛1 WD N=2 C 2 and note that 4 < ˛1 < N :
It follows from (4.1) that n˛1En.f / � 1 for all n � N : Thus, by using case 3 once again, we get
n˛1E

.2/
n .f / � c.N /; n � N : Hence, for N � n < N1; we find

n˛E.2/n .f / � c.N /n˛�˛1 � c.N /N ˛�˛1

1 � c.˛;N /;
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which proves (4.2) with N � D N :

5. N D 3; ˛ > 4 (“+”).

It follows from cases 3 and 4 that inequality (4.2) is true for n � 5: Note that the polynomial of the
best approximation of degree � 2 to a convex function f must be convex (this follows, e.g., from the
Chebyshev equioscillation theorem) and, therefore, E.2/3 .f / D E3.f /: Hence, for n D 3 and 4; we
have

E.2/n .f / � E
.2/
3 .f / D E3.f / � 1 � 4

˛n�˛;

and, thus, we arrive at inequality (4.2) with N � D 3:

6. N D 4; ˛ > 4 (“+”).

As in case 5, it follows from cases 3 and 4 that inequality (4.2) is valid for n � 5 and, hence, it remains
to show that E.2/4 .f / � c.˛/: Since (4.1) implies that n˛1En.f / � 1; n � 4; where ˛1 WD minf˛; 5g;
it follows from Theorem 3.1 (with r D 2 and k D 2/ that f 2 C2Œ�1; 1� and !2.f 00; t2/ � c.˛/t˛1�4;

and in particular, !2.f 00; 1/ � c.˛/: Therefore, E2.f 00/ � c!2.f
00; 1/ � c.˛/: Further, since the

inequality E.2/4 .f / � 2E2.f
00/ holds for each f 2 C2Œ�1; 1�\�2; we conclude that E.2/4 .f / � c.˛/;

as required.

7. N � 4; 0 < ˛ < 4 (“	”).

Theorem 3.3 (with k D 4 and N D N / and inequalities (4.1) and (3.4) yield

E.2/n .f / � c.˛/n�˛ C c.N /n�4kf k � c.˛/n�˛

for all n � max
¶
3; c.˛;N /kf k1=.4�˛/

·
DW N �:

8. N � 4; ˛ D 4 (“	”).

Theorem 3.3 (with r D 2 and k D 3/; Theorem 3.3 (with r D 1 and k D 3/; and inequality (4.1)
imply that f 2 C2

' \ C1Œ�1; 1�; !
'
3;2.f

00; t / � ct2; and !3.f 0; t2/ � ct2: By the Marchaud classical
inequality (see, e.g., [5], (4.3.1)), the last estimate implies that !2.f 0; t / � ct C ct2kf 0k: Inequality
(3.5) (with k D 3/ now yields E.2/n .f / � cn�4 C cn�6kf 0k; n � 3; and hence, we arrive at inequality
(4.2) with N � WD max

¶
3; ckf 0k1=2

·
:

4.2. Coconvex Approximation: Case s � 1: For some cases considered in what follows, we need the fact
(see [9]) that, for any f 2 �2.Ys/; s � 1;

E2.f / � c.Ys/EsC2.f /: (4.3)

Remark 4.1. For the sake of convenience, for each case analyzed in what follows, we present the full range
of the values of ˛ for which the corresponding proof can be used. Hence, the same triple .˛;N ; s/ may be covered
by more than one case.

1. s D 1; 4 < ˛ < 8; N D 4 (“+”).

Theorem 3.3 (with r D 3 and k D 5/; Theorem 3.3 (with r D k D 2/; and inequality (4.1), imply that
f 2 C3

' \C2Œ�1; 1�;

!
'
5;3.f

.3/; t / � c.˛/t˛�3; and !2.f
00; t2/ � c.˛/t˛�4:
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Therefore, (3.12) (with k D 5/; yields inequality (4.2) with N � D 4:

2. s D 1; 4 < ˛ < 8; N D 3 (“+”).

It follows from case 1 that (4.2) is true for n � 4: Thus, in order to show that N � D 3; it remains to check
the inequality E.2/3 .f; Y1/ � c.˛/: Indeed, since inequality (4.1) is true for ˛1 WD minf˛; 5g; it follows
from Theorem 3.2 (with r D 2 and k D 1/; that f 2 C2Œ�1; 1� (so that f 00.y1/ D 0/; !1.f

00; t2/ �

c.˛/t˛1�4; and in particular, !1.f 00; 1/ � c.˛/: We now set p2.x/ WD f .y1/C f
0.y1/.x � y1/: This

yields

E
.2/
3 .f; Y1/ D E

.2/
2 .f; Y1/ D E2.f / � kf � p2k

D


xZ

y1

uZ
y1

.f 00.s/ � f 00.y1// ds du

 � c!1.f 00; 1/ � c.˛/:
3. s D 1; ˛ > 6; N > ˛ (“+”).

Theorems 3.3 and 3.1 (with r D 3 and k D N � 3/ and inequality (4.1) imply that f 2 C3;

!
'
N�3;3.f

.3/; t / � c.˛;N /t˛�3; and !N�3.f
.3/; t2/ � c.˛;N /t˛�6: Estimate (3.13) (with k D

N � 3/ now yields inequality (4.2) with N � D N :

4. s D 1; ˛ > 6; 6 < N � ˛ (“+”).

Let N1 WD b˛c C 1: Note that N1 > ˛ � N : Since (4.1) is satisfied with N1 instead of N ; it follows
from case 3 that n˛E.2/n .f; Y1/ � c.˛/; n � N1: Now let ˛1 WD .N C 6/=2: Note that 6 < ˛1 < N :
It follows from (4.1) that n˛1En.f / � 1 for all n � N : Further, by using case 3 once again, we get
n˛1E

.2/
n .f; Y1/ � c.N /; n � N :

Hence, for N � n < N1; we get

n˛E.2/n .f; Y1/ � c.N /n˛�˛1 � c.N /N ˛�˛1

1 � c.˛;N /;

which proves (4.2) with N � D N :

5. s D 1; ˛ > 6; N D 3 (“+”).

It follows from cases 3 and 4, that (4.2) is valid with n � 7: Thus, since (4.1) is obviously true, say, with
˛ D 5; it follows from case 2 that E.2/3 .f; Y1/ � c; and hence, for 3 � n � 6;

n˛E.2/n .f; Y1/ � 6
˛E

.2/
3 .f; Y1/ � c.˛/:

This means that (4.2) is true with N � D 3:

6. s D 1; ˛ > 6; N D 4 (“+”).

The proof is completely analogous to the proof in case 5 except the fact that the inequality E.2/4 .f; Y1/ � c

follows from case 1.

7. s D 1; ˛ > 6; N D 6 (“+”).
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It follows from cases 3 and 4, that inequality (4.2) is valid with n � 7: Hence, as in case 5, it suffices
to show that E.2/6 .f; Y1/ � c.˛/: If ˛1 WD minf˛; 7g; it follows from (4.1) that n˛1En.f / � 1 for all
n � 6: Thus, by applying Theorem 3.2 (with r D 3 and k D 3/; we conclude that f 2 C3Œ�1; 1�;

!3.f
.3/; t2/ � c.˛/t˛1�6; and in particular, !3.f .3/; 1/ � c.˛/: The inequality E.2/6 .f; Y1/ � c.˛/

now follows from (3.17) (with k D 3 and Œa; b� D Œ�1; 1�/:

8. s D 1; ˛ > 6; N D 5 (“+”).

The argument is exactly the same as in the previous case with the only difference that we use k D 2

instead of k D 3:

9. s � 1; 0 < ˛ < 3; 3 � N � s C 2 (“˚”).

Theorem 3.3 (with k D 3 and f � p3 instead of f; where p3 WD arg inf
p2P3

kf � pk/; implies that

!
'
3 .f; t/ � c.˛/t

˛
C c.s/t3E3.f /:

Further, by using (4.3) and (4.1), we get

E3.f / � E2.f / � c.Ys/EsC2.f / � c.˛; Ys/:

Therefore,

!
'
3 .f; 1=n/ � c.˛/n

�˛
C c.˛; Ys/n

�3
� c.˛/n�˛

for n � N.˛; Ys/: Inequality (4.2) now follows from (3.14).

10. s � 2; 2 < ˛ < 5; 3 � N � s C 2 (“˚”).

Theorem 3.3 (with r D 2; k D 3/ implies that f 2 C2
' and

!
'
3;2.f

00; t / � c.˛/t˛�2 C c.s/t3E5.f /:

Further, by virtue of (4.3) and (4.1), we conclude that

E5.f / � E2.f / � c.Ys/EsC2.f / � c.˛; Ys/:

Hence,

!
'
3;2.f

00; 1=n/ � c.˛/n�˛C2 C c.˛; Ys/n
�3
� c.˛/n�˛C2

for n � N.˛; Ys/: Inequality (4.2) now follows from (3.16).

11. s � 1; 2 < ˛ < 5; N � s C 3 (“	”) (except all “˚” cases in these regions).

As in case 10, we can prove that

!
'
3;2.f

00; 1=n/ � c.˛/n�˛C2 C c.s/n�3kf k4



ARE THE DEGREES OF THE BEST (CO)CONVEX AND UNCONSTRAINED POLYNOMIAL APPROXIMATIONS THE SAME? II 437

and, hence,

!
'
3;2.f

00; 1=n/ � c.˛/n�˛C2

for n � N.˛; f /: Thus, inequality (4.2) with N � D N �.˛; f / follows from (3.16) for s � 2; and from
(3.11) for s D 1:

12. s D 2; 2 < ˛ < 5; N D 5 (“˚”).

Theorem 3.3 (with r D 2 and k D 3/ and inequality (4.1) imply that f 2 C2
' and !

'
3;2.f

00; t / �

c.˛/t˛�2: Now inequality (3.16) implies inequality (4.2) with N � D N �.˛; Ys/:

13. s D 1; 4 < ˛ � 6; N � 5 and s � 2; ˛ > 4; N � 3 (“˚”).

If N1 WD maxfb˛cC 1;N g; then Theorem 3.3 (with r D 3 and k D N1 � 3/; Theorem 3.3 (with r D 2
and k D N1 � 2/; and inequality (4.1) imply that f 2 C3

' \C2Œ�1; 1�;

!
'
N1�3;3

.f .3/; t / � c.˛;N /t˛�3; and !N1�2.f
00; t2/ � c.˛;N /t˛�4:

Therefore, inequality (3.15) (with k D N1 � 3 and l D N1 � 2/ yields inequality (4.2) with N � D
N �.˛;N ; Ys/:

14. s D 1; 2 < ˛ < 5; N D 3 or 4 (“˚”).

Theorem 3.3 (with r D 2 and k D 3/ and inequality (4.1) imply that f 2 C2
' and !

'
3;2.f

00; t / �

c.˛/t˛�2: We set ˛1 WD minf˛; 3g: Then Theorem 3.3 (with r D k D 2/ implies that !'2;2.f
00; t / �

c.˛/t˛1�2: Therefore, it follows from inequality (3.10) that

E.2/n .f; Y1/ � cn
�˛
C cn�˛1�2 � cn�˛; n � N.Y1/;

as required.

15. s � 1; 0 < ˛ < 3; N � s C 3 (“˚”).

Theorem 3.3 (with k D 3 and N D N / and inequalities (4.1) and (3.14) yield

E.2/n .f / � c.˛/n�˛ C c.N /n�3kf k � c.˛/n�˛

for all sufficiently large n; n � N �.˛;N ; Ys; f /:

5. Appendix: Proof of Theorem 3.2

First, we present the proof for the case r � 1: Without loss of generality, we assume that N � k C r and set
mj WD N2

j and �j WD �.m�1j /: Further, we expand f in the telescopic series

f D PkCr C .PN � PkCr/C

1X
jD0

.PmjC1
� Pmj

/ DW PkCr CQC

1X
jD0

Qj ; (5.1)

where Pn 2 Pn are the polynomials of the best approximation of f; i.e., kf � Pnk D En.f /: Hence, the
polynomials Qj are of degree < mjC1 and satisfy the inequality kQj k � �jC1 C �j � 2�j . For fixed



438 K. KOPOTUN, D. LEVIATAN, AND I. A. SHEVCHUK

x 2 .�1; 1/ and h 2 Œ0; t �; satisfying the inequality kh'.x/=2 < 1� jxj; we set x� WD jxj C kh'.x/=2 and note
that if

u 2 Œ�x�; x�� � Œx � kh'.x/=2; x C kh'.x/=2� DW A;

then '.u/ � '.x�/: Hence, for u 2 A and l 2 N; the Markov–Bernstein inequality implies that

ˇ̌
Q
.l/
j .u/

ˇ̌
� c.l/mljC1

�
1

mjC1
C '.u/

��l
�j � c.l/m

l
j

�
1

mj
C '.x�/

��l
�j ; (5.2)

which, in turn, yields the inequality

ˇ̌
�kh'.x/.Q

.r/
j ; x/

ˇ̌
� 2k max

u2A
jQ

.r/
j .u/j � c.r/2k

mrj

'r.x�/
�j

for l D r: Therefore, if we denote J WD minfj W 1=mj � hg; then we find

'r.x�/

1X
jDJC1

ˇ̌̌
�kh'.x/

�
Q
.r/
j ; x

�ˇ̌̌
� c.r/2k

1X
jDJC1

mrj�j

D c.k; r/

1X
jDJC1

m�1
j�1Z

m�1
j

�j

urC1
du � c.k; r/

1X
jDJC1

m�1
j�1Z

m�1
j

�.u/

urC1
du

D c.k; r/

m�1
JZ
0

�.u/

urC1
du � c.k; r/

hZ
0

�.u/

urC1
du: (5.3)

We also note that

'.x/ � '.x�/

kh=2
D
'.x/ � '.x�/

x� � jxj
'.x/ <

'.x/ � '.x�/

x� � jxj

�
'.x/C '.x�/

�
D x� C jxj < 2

and, therefore,

'.x/ < khC '.x�/:

Hence, for 0 � j � J; in view of the fact that 1=mj > h=2; by virtue of inequality (5.2) with l D r C k; we
obtain

ˇ̌
�kh'.x/.Q

.r/
j ; x/

ˇ̌
� .h'.x//k max

u2A

ˇ̌
Q
.kCr/
j .u/

ˇ̌

� c.k; r/
hkmkCrj 'k.x/

.khC '.x�//kCr
�j � c.k; r/

hkmkCrj

'r.x�/
�j
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� c.k; r/
hk

'r.x�/

m�1
j�1Z

m�1
j

�j

ukCrC1
du

� c.k; r/
hk

'r.x�/

m�1
j�1Z

m�1
j

�.u/

ukCrC1
du;

where m�1 WD N=2: Hence, we get

'r.x�/

JX
jD0

ˇ̌̌
�kh'.x/

�
Q
.r/
j ; x

�ˇ̌̌
� c.k; r/hk

JX
jD0

m�1
j�1Z

m�1
j

�.u/

ukCrC1
du

D c.k; r/hk

2=NZ
m�1

J

�.u/

ukCrC1
du � c.k; r/hk

1Z
h=2

�.u/

ukCrC1
du

� c.k; r/hk
1Z
h

�.u/

ukCrC1
du: (5.4)

Note that

hZ
0

�.u/

urC1
duC hk

1Z
h

�.u/

ukCrC1
du �

tZ
0

�.u/

urC1
duC tk

1Z
t

�.u/

ukCrC1
du; h � t:

Finally, we arrive at the estimate

ˇ̌
�kh'.x/.Q

.r/; x/
ˇ̌
� hk

Q.kCr/ � 2N 2.kCr/hkEkCr.f /; (5.5)

which follows from Markov’s inequality. Note that if N D k C r; then Q � 0 and, therefore, the left-hand side
of inequality (5.5) vanishes and no estimates are required.

Finally, the fact that �k
h'.x/

.P
.r/

kCr
; x/ D 0 combined with inequalities (5.3), (5.4), and (5.5) completes the

proof of the theorem for r � 1:
For r D 0; we can write

f D Pk CQC

JX
jD0

Qj C .f � PmJC1
/;
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where Q WD PN �Pk and Qj WD PmjC1
�Pmj

[see (5.1)]. As above, the proof is completed by using inequalities
(5.4) and (5.5) and the following inequality:

hk
1Z
h

�.u/

ukC1
du � 3tk

1Z
t

�.u/

ukC1
du; h � t �

1

2
:

Theorem 3.2 is proved.

Remark 5.1. In the definition of the modulus !'
k;r

in the present paper, we use the weight W.x;�/ from
.3:2/; where � D kh=2: Note that it is also possible to use the weights (see [4, 10])

W1.x; �/ WD
�
.1 � �'.x//2 � x2

�1=2
;

or (see [2])

W2.x; �/ WD
�
'2.x/ � �'.x/.1C jxj/

�1=2
;

which would yield equivalent definitions of the modulus !'
k;r

because, for � 2 .0; 1/ and xW jxj C �'.x/ < 1;

we have s
1 � �

1C �
W � W1 � W2 � W:
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