ME 478 FINITE ELEMENT METHOD

Chapter 6. Isoparametric Formulation

Same function that is used to define the element geometry is used
to define the displacements within the element

2 Node Truss Element
Linear geometry Linear displacements

—— o |

3 Node Beam Element
Quadratic geometry Quadratic displacements

o—o—° e

We assign the same local coordinate system to each element. This
coordinate system is called the natural coordinate system.

The advantage of choosing this coordinate system is 1) it is easier
to define the shape functions and 2) the integration over the surface
of the element is easier (we will use numerical integration which is
much simpler in the natural coordinate systems and can be scaled
to the actual area)

The steps in deriving the elemental stiffness matrices are the same:
Step 1 Select element type
Step 2 Select displacement function
Step 3 Define strain/displacement, stress/strain relation
Step 4 Derive element stiffness matrix and equations
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1-D Truss Elements

For 1-D linear truss elements the natural coordinate system for an
element is:

s=0

.—’—>.

i J
The natural coordinates are related to the global coordinates
through

s=-1 s=1

X=3a, +a,S
which we can solve for the a’s as:

x:%[(l— )X, + (1+9)%, |

bl
_1+s

1-s
=_ - N, ="
2 2
Now following the remainder of the steps becomes much simpler.

or in matrix form as;:

where

N,

Step 2 Select a displacement function

u=[N, NZ]{qu}

Uyo
Step 3 Define u/e and ¢/c relations
Recall that we had the following relation:

du
e (X)=—
«(X) o

Then by applying the chain rule of differentiation, we have

6.2



_du /d
ds/ ds

|2 e}

The stress/strain relation is expressed as:
O-x — Dax where D — E
Thus: o, =EBU

£.(X)

Thus,

Step 4. Derive the element stiffness matrix and equations

The stiffness matrix is

K<e>:jAEBTB dx
L

which has an integral over x which we have to convert to an
integral over s. This is done through the transformation:

j f (x)dx = i f(s)|J]|ds

where “]‘ Is the Jacobian and for the simple truss element it is:
dx
J=—=L/2
_ ds
And Voila!!
1)
= 1 -1
K (€ :AEI J L >|:_1 i:|£ dSZE
1L Lj2 L -1 1
L L)
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we choose a natural coordinate system as shown and define the

s=1

> X

CST Elements
s=0.5

571

5=0

geometry in terms of the natural coordinate system as:
X=X +S,X; + SX,,

Y=S,Yi +S5Y; + SsYm
which we can write in matrix form as:

Which can be solved as:

5)
132

[S3)

1
X

Yi

rl\
1 X

LY

1

X

Y

1
X

m

Yoo |

1
X

Yi

1 1
X; X
yj ym_
1
r=——
2A

S

7i

Vm |
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In this case, these S's are the shape functions

SANAN/

Yi

(Y
The sum of the shape functions anywhere on the element add to 1

N;+N; +N_ =1

Note that in this case, the N,’s are simply s; s, and ss.

Step 2: Choose the displacement function
we can simply write the element displacement as a function of

nodal dof in the same form as used to describe the geometry:
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Xi
yi
X]
¥ or ¥ =Nu

Xm

u (x,y)l [Ny 0 N; O N, O
u(x,y)| |0 N, O N, O Nm<

C C ¢c c c c

\ ym/

Step 3: Strain/displacement and stress/strain relations

In 2-D the strain displacement relations are:
ou, _du, du, ou,

X

- g, =—r = x4
ST Y oy . and Py dy  ox

or in matrix form as:

R R e
™ 0 ™ 0 U,
X _l g i u, _l o i Ni 0 Nj 0 Nm 0 uxj
Y ay ||U, dy|| O N, 0 N, 0 N_|lu
vl 1a 9 0
| dy  OX | dy  OX u
L ym
I N 7[ U |
N o T g Nmo o ||,
£y oX oX ; oX M
: N . u
ey t=| 0 IN; o 1 INm ;]
ay ay dy || Uy
7Xy aN, BN, aNJ aNJ aNm aNm uxm
| dy  odX oy oX oy X | Uym

e =Bu
In 2-D the stress/strain relations are:
c =Dg=DBuU

Where D depends on whether plane stress or plane strain
conditions prevails(see Chapter 5 for details)
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Since the shape functions are functions of the natural coordinate s
and not x and y, we apply the chain rule as:

oN, oN, asl oN; ds, +3Ni 0S, oN; oN, asl oN, 0s, aNi 0S,
oX asl ax ds, dX dS, OX dy 9s ay 0s, ay ds; ay
Let us consider the following

(ON, ON, 9N, |

d8, 08 dS | 1 0 0

S VRV R PR
N N, aN,| Lot
| 0, dS; 08y

then for the derivatives of the shape functions with respect to the
global coordinate system we simply have:

oN; _ds _ ON; _9s; _ ON, _ 9s, _
x ox P e T P T Tax e
%:ai:_ aNj:8Sj: | 8Nm:8sm:
dy o9y U a9y a9y VU dy oy ‘"
And the strains are written as:
uxi
u..
gx ﬂi O ﬁj O ﬂm O ”
e t=Llo 0 0 i
y - 2A yi }/J }/m uyj
Y xy vi B Vi ,Bj Ym Pn u
Uym

Step 4. Derive the element stiffness matrix and equations
Lastly, we use the PMPE to obtain the stiffness equations as:

[[[B"DBUdv—P—[[[N"X,,, dV—[[N'T, ,,dS=0

tract

Since all the terms in B are constant and assuming the thickness
and material properties are constant over the element we have:

Ku=f where K =tAB'DB
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Linear Strain Triangle (LST) Elements
Again we choose the same natural coordinate system as for the
CST

$=0

$=0.5

=1

=1

> X
we define the geometry in terms of the natural coordinate system
through the shape functions as:

X=NyX + N,X, + NoX; + NyX, + NoXe + NgXq
y= N1y1+ Nzyz + N3y3 + I\|4y4 + N5y5 + N6y6

Which we can solve for the shape functions in terms of the natural
coordinates as follows:

Let N; be a quadratic function of s; and s, (Nt we can express
Sz as a function of s; and s, as: s3=1-S;-S5)

2 2
Ni =ay, + ;5 +a,S,+3a5S5 +3a,S, +385SS,

which means that there are 6 unknown coefficients to be
determined for each shape function
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Using the following information that at node i we want N;=1 and all
other N;s= O, then we get 6 equations for each shape function and
we can solve for the coefficients and we have:

N, =s(2s -1

N, =s,(2s,-1)

N; =s;(2s,-1)

N, =4s,s,

Ny = 4s;5

Ng =4ss,

or recognizing that 3 =1-5 =S, then we have
N, =s(2s -1)

N, =s,(2s, -1)
N;=(1-5-5)(21-5-5,)-1)
N, =4s,(1- 5, - 5,)
Ny = 4(1- S — 52)31
Ng = 4SS,

In this case, these look like

The sum of the shape functions anywhere on the element add to 1
N, +N,+N;+N,+N;+N;,=1
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Incidentally, the shape functions in the global coordinate system for
a nice element with sides aligned with the x and y axes would look
something like this:

N, =1-3x/b-3y/h+2x*/b* + 4xy/(bh) + 2y*/h?
N, = -x/b+2x*/b*
N, =-y/h+2h?/h?
N, = 4xy/(bh)
N, = 4y/h—4xy/(bh) - 4y*/h?
N, = 4x/b—4xy/(bh) — 4x* /b’
This is why we use the Isoparametric formulation!!!

Step 2: Choose the displacement function
We can simply write the element displacement as a function of

nodal dof in the same form as used to describe the geometry:
uxl

yl
ux2

y2
ux3

y4
y4
y5

y5
ux6

y6

or ¥ =Nu
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Step 3: Strain/displacement and stress/strain relations

In 2-D the strain/displacement relations are:

. _aux . _Buy

or in matrix form as;:

9
£, oX .
=1 0 =
. 2 {
Pwl |9 9
| dy  OX |
In 2-D the stress/strain relations are:
¢ = D& =DBu

ou, du

X y

— - — +
" ox 7 oy and P dy  ox

Where D depends on whether plane stress or plane strain

conditions prevails(see Chapter 5 for details)

So how do we construct the B matrix?
Let us define the following matrix

(ON, ON, oON, oN, oN, oN

B _|9% 98 9ds ds ds ds
°"|oN, oN, oN, oN, oN; oN,

| ds, ds, ds, ds, ds, OIS,
(45-1 0  4s +4s,-3 —4s,
0 4s -1 4s +4s,—-3 4-4s -8s,

4—-8s —4s, 4s,
—4s 4s,

and let the Jacobian matrix be (note that it is a 2by2)
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X% Y
[ON, ON, ON, oN, oN. oN,|*% Y.
I S 05 05 05 05 05 |% Vs
ON, N, 9N, 9N, oNg N, |x, v,
05, 95, ds, 95, Is, IS |x
% Yo
Then the terms in the B matrix are simply extracted from the
product
[ON; ON, oN, oN, oN, oN;
3B — oX  oOX 0X oX oX 0X
o1 dN, JN, JIN, JIN, JIN. INg
| dy dy dy dy dy 9y |

Step 4. Derive the element stiffness matrix and equations
Lastly, we use the PMPE to obtain the stiffness equations as:

([150Beh -~ [[[\ X, V- [INT, 050
Vv Y, S

We use Gaussian quadrature to perform the integration over the
element

(Note that B and N in the above are functions of the natural
coordinates s; and s»)
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Gaussian Quadrature (Numerical Integration)

As we saw, the derivation of the stiffness requires that we perform an
integration over the element (this comes from the definition of the internal
strain energy and when we assemble the force vector). Often this is difficult
to do explicitly, unless you are using Mathematica so we turn to numerical
integration techniques.

Note that in the element formulation, we are choosing the function form of
the displacement (hence indirectly the form of the strains and stress which
appear in the internal strain energy) — The principle behind Gaussian
Quadrature is that if we know the functional form of what we are trying to
integrate, then there is certain number of points where we need to evaluate
the function which will give us an exact representation of the integral.

Gauss Formula:

int

I =J1‘f(x)dxl =_nZV\/i f(x)

We evaluate an integral by evaluating the function we want to integrate at
discrete point njy; and multiply this by an appropriate weight

Rule:

Niy¢ INtegration point rule = 2 e n;,; — 1 order accuracy

Examples:
1 integration point will integrate a 1% order polynomial exactly

nint:]-
E s;1=0
| | W, =2
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2 integration points will integrate a 3™ order polynomial exactly

| .
s=-1/4/3 s=1/+/3

Gauss Formula in 2-Dimensions:

| = ﬁ f (s,t)dsdt = szi f(sl,t)} dt

-1-1 1L i=1

{ijj {ZW f(s,t)DéZZjWin f(s.t))

J

Example: CST (constant strain triangle)

Here we assumed a linear displacement function — which means that

the strain field (and the stress field) is constant over the element. The find
the integral of a constant, i.e. the area under the curve, we need only
evaluate that function at one point. For a CST, this point is located in the
center of the triangle, in the natural coordinate system, this point is located
at s;=s,=s3= 0.333 and the corresponding weight is 1.

3-node versus 6-node triangular elements

)
NS
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Returning to the six node LST element, we had B and N which
were expressed in terms of the natural coordinates. For these
elements we have 3 Gauss points with location and weights as:

gpl S, =5, =0.1666, s =0.666 W, =0.333
gp2 s =s,=0.1666, s, =0.666 W, =0.333
gp3 s =S, =0.1666, s,=0.666 W, =0.333

This gives us a degree of precision of 2 (integrates a 2" order
polynomial exactly) so we now have for the stiffness matrix

k®=t[[BTDB dA,_, e =t [[B'DB[J| dA, 4o == W (B"DB)

X=y S-S

0.33 0.33 0.33

—t v T ettt T
=t= (B"DBJ|). , +t 5 (B"DBJJ|)

gpl

)
+t7(B DB|J|)

J|

gp3

Note: the factor of ¥2 comes from the area
of the triangle in s; — S, space

where the Jacobian has already been constructed (when we
formed the B matrix) as:

X Y

ON, ON, ON, oN, oN. ON.|X VY.
I=clI0 o N, N o o |y,
1 2 3 4 5 6 || X4 Va4

| dS, ds, 0s, dS, JS, OS, | x. vy,

| X5 Y.

Similarly, we can perform the integrals appearing in the force vector
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2-D Brick Elements

Natural coordinate system
For each element we assign a local coordinate system represented by s and
t which both span the range from —1 to 1 over the area of the element

Linear displacement function  Quadratic displacement function
(4 noded) (8 noded)

t t

4 Node Bricks — BiLinear Quads

At
t=1
o o
>
s=-1 s=1
O O
t=-1

we choose a natural coordinate system as shown and define the
geometry in terms of the natural coordinate system as:

X=a, +a,s+at+a,st
y=Db, +b,s+b;t+Db,st
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or rather in terms of the shape functions and the nodal coordinates

as.:

X = N;X + N,X, + N;X, + N, X,

y= N1y1+ N2y2 + N3y3 + I\|4y4

which we can write in matrix form as:

1] [1
IXp =X
Y, Y

Here the shape functions are

1
X,
Y2

1

1
X3
Y3

1
Xy

Ya_

N, =5 0-9)(1-1)

N, = %(1+ S)(1-t)

N, = %(1+ S)(1+1)

N4=%a—9a+0

Thus we have

=

w

Z Z Z2 Z

IS
N

Y4

The sum of the shape functions anywhere on the element add to 1
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Step 2: Choose the displacement function
we can simply write the element displacement as a function of
nodal dof in the same form as used to describe the geometry:

%ux(x,y)} {Nl 0 N, O N3 0 Ny o}uy2
= X

— >
uy(X,y) O Nj O N, O N3 O Nyllug| or ¥=Nu

Step 3: Strain/displacement and stress/strain relations

Again the 2-D strain displacement relations are:
_du, au, du, ou,

= —_— — +
T ox . YT oy . and DT 50Ty
or in matrix form as:

E

Uyq |

— — — — ul

d d Y

] |ax ° x O e

Iy 2|wl_| g oM 0 N 0 Ng 0 Ny 07Juy
E = JE— — _

7y ; aay Uy ) aay 0 Nl 0 N2 0 N3 0 N4 Uyg

Xy u

- - y3

| dy  OX | dy  OX Uy

(Uya
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ONg o ONp o ONg o Ny
o ax N ax N ax N ax N
£y _1 o ~—~t o =222 o I8 o =14
2A oy oy oy oy
Vxy ON; oN; 9N, 9N, 9Nz 0Nz oN, 09Ny
| dy 0X oy 0X oy X oy oxX |
€ =Bu
In 2-D the stress/strain relations are:
c = De=DBuU

Where D depends on whether plane stress or plane strain
conditions prevails (again see Chapter 5 for details)

But N,;’s are functions of sand t and not x and y so we have to

apply the chain rule of differentiation again. This time we have:

oN. 8N 85 oN. ot

ox ds ax ot oX

oN. BN as oN. ot

dy  0s ay ot oy

Or in matrix form as:

(ON;] [9s ot ](oN,)

ox | _|ox ox| as
10N, [T|os ot ||oN. [

Loy | Loy oyl ot

0s ot ds ot oX dy oX

but X ox’ ay,and a_yare difficult to evaluate, but 3s’ 9s’ ot

are not so we can write;

N

q%

ot
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ON, _ 1(0N;dy oN;dy) 9N, _ 1( 9N, ax AN, I
\J\ i

ox os ot ot as)®™ By T3\ as ot ot os
where the determinant of the Jacobian, |J| is:
[ OX  OX |

M:detg ot :E)x dy ox dy
dy dy| 9s ot ot ds
| Js ot |

So we get a new B which equals B but is now a function of sand t.

Step 4. Derive the element stiffness matrix and equations
Lastly, we use the PMPE to obtain the stiffness equations as:

t[[B'DBUdA—P—[[ [N, dV- j |N'T,,dS=0

tract

in which we transform the integrals in the x-y plane to integrals over
the st plane from -1 to 1 through the transformation and use
Gaussian Quadrature to perform the integration

j f (x)dxdy = j j f (5)|3dsdlt = 4ZW(BTDB) J|

-1-1
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8-Node Brick Elements

Natural coordinate system
For each element we assign a local coordinate system represented by s and
t which both span the range from —1 to 1 over the area of the element

Quadratic displacement function

the shape functions are: .
N, = %(1— S)(1-t)(-s—t—1) N, = %(1+ S)(L-t)(s—t-1)
N, = %(1+ S)(L+t)(s+t—1) N, = %(1— S)(L+t)(=s+t—1)
N, = %(1+ (1= s)(1+s) N, = %(1+ S)(1—t)(1+1)
N, :%(1—t)(1— s)(1+s) N, =%(1— S)(L—t)(1+1)

alternatively we choose a natural coordinate system as shown and
define the geometry in terms of the natural coordinate system as:

X=a, +a,S+azt+a,st +as° +ait’ +a,st+ast’
y =b, +b,s+ bt + b,st + b.s* + bt* + b, st + byst®
Note that this is an incomplete quadratic polynomial.
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Gauss points at 4 node and 8 node brick elements
Recall that we had assumed the form of the displacements as:

U, =a, +a,S+a.t+a,st= Z N.u,
u,=b +b,s+bt+bst=> Nu,

This is a bilinear approximation, it is not linear in every direction,
and so perhaps 1 point is not sufficient

Quads tend to exhibit instabilities.

The following modes have no strains

r o

o

\

4

O

‘e

X | X X\ X
o O O
X | X X [ X
o] O o)
Therefore, we use more points.
At At
o t=1 o o 1t=1 o
, x| X [x
> —oX X X0
s=-1 s=1 s=-1 s=1
4 < x x
O O O EE: O
t=-1 t=-1

6.22



Validity of Isoparametric Elements

PATCH TEST

Critical test for validity is the patch test
Serves as a necessary and sufficient condition for the correct
convergence of a finite element formulation

Basic idea is to assemble a small number of elements so that at
least one node within the patch is shared by more than two
elements. The boundary nodes of the model are loaded by a set of
consistently derived nodal loads corresponding to a state of
constant stress.

Example

2F
TF T tF
A patch test for | ,

oy for 4-node
elements

Vo S
A patch test must be performed for all constant stress states
demanded of the element

A successful patch test reveals that the element
- will display a state of constant strain
- will not strain when subjected to a rigid body motion
- Is compatible with adjacent elements when subjected to a
state of constant strain
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Numerical example of LST
Specify the nodal coordinates
xccord = 881.5, 1<, 84, 2<, 82, 3<, 83, 2.5<, 81.75, 2<, 82.75, 1.5<<;
Material properties and plain stress D matrix

plainstress;

E1=100.;

v1i=0.3;

Dmat= — °Y  :81,v1, o<, 8v1, 1, 0<, 20, 0, ~ V155,
1-v12 2

Specify the shape functions

s3=1-sl-8s2;

nl=slH2sl-1L;

n2=s2H2s2-1L;

n3=s3H2s3-1L;

n4 = 4 s2 s3;

n5=4 sl s3;

n6 =4 sl s2;

Form the Bnot matrix and determine the Jacobian

MatrixForm@

Bnot = 88D@nl, s1D, D@n2, s1D, D@n3, s1D, D@n4, s1D, D@nS, s1D, D@n6, slD<,
8D@nl, s2D, D@n2, s2D, D@n3, s2D, D@n4, s2D, D@n5, s2D, D@n6, s2D<<D

-1+45sl 0 1-4Hl1-sl1-s2L -4 s2 -4s1+4Hl1-s1-s2L 482
0 -1+4s2 1-4H1-sl1-s2L 4Hl-sl-s2L-4s2 -4s1 4s1
MatrixForm@Jmat = Simplify@Bnot .xccordD é€ ChopD
-0.5 -2
J N
2 -1.

MatrixForm@Bno = Simplify@Inverse@JmatD . BnotDD

:‘3‘:‘:‘39 —0.444444+1. 7778 L2 —0.666667+0.888889<1+0.8883892  1.777/8—1.777/851-2.666672  —0.888839+0. 51+0.8388892 l.7777851—0.888%952N
0.444444-1.77778€l  0.111111-0.444444 2 1.66667-2.2222261-2.2222 0. —0.444444+0.444404 S1+2.666672  —1.777718+4. s1+1. 7778 —0.444444 51 —1.77TB L

Form the B matrix
MatrixForm(@
Bmat = 88Bno@@1, 1DD, 0, Bno@@1, 2DD, 0, Bno@@l, 3DD, 0, Bno@@1, 4DD, O,
Bno@@1, 5DD, 0, Bno@@1, 6DD, 0<,
80, Bno@@2, 1DD, 0, Bno@@2, 2DD, 0, Bno@@2, 3DD, 0, Bno@@2, 4DD, 0,
Bno@@2, 5DD, 0, Bno@@2, 6DD<,
8Bno@@2, 1DD, Bno@@1, 1DD, Bno@@2, 2DD, Bno@@1l, 2DD, Bno@@2, 3DD,
Bno@@1, 3DD, Bno@@2, 4DD, Bno@@1, 4DD, Bno@@2, 5DD, Bno@@®l, 5DD,
Bno@@2, 6DD, Bno@@1, 6DD<<D

jO2Z2Z2-0.58s]. 0 041 TITBL. 0 —0.6865 0,50 SR 0 L7TTB-LTTTRE- 26862 0 ~O.SDH0. SHOSHDD. 0 L7TTBS-0SD2 0
0 04-1.77TREL 0 OINT-044He2 0 1E85/-2.222 27722 0 0L OS2 BB 0 —L7TTBHL S LTITRR 0 041!
k044-1777Rs. 02222-0.88ps]. OTIII-0 44N -0 LTTTRR.  LaHEF 222822222 ! 04O EEI2. LTTTB-LTITRS266/2.  —LTTTBH.SHLTITEL. ~0.SHDH0.SHOSHDD -04MUg-177BL. 1LTTTRS-0OSH D2 {

Start forming the stiffness matrix
MatrixForm@Kj@sl , s2 D= Det@JdmatD Simplify@Transpose@BmatD.Dmat.BmatDD

Perform numerical integration(evaluate at the gauss points)

MatrixForm@
Kloc=1é3 .2é2HKJj@.66666, .16666D + Kj0.166666, .6666D + Kj@.166666, .16666DLD
5.86064 3.17451 1.34302 1.01744 0.610504  0.0407003 0.0000338645 0.0000369036  —2.442 -0.162835 -5.3722 ~4.06986 y
3.17451 10.6224 0.834302 -0.244186  0.223851 3.78512  0.0000251813 —0.000110059 —0.895414 -15.1401 -3.33728  0.976867
1.34302 0.834302 9.97885 -1.58685 1.98319 -1.3628 -7.93367 5.45212 0.000310882 —0.000485298  —5.3717 -3.33629
1.01744 -0.244186 -1.58685 4.02816 -1.54587 1.58655 6.18451 -6.34714 -0.000561474 0.000452564 -4.06867  0.976163
0.610504 0.223851 1.98319 -1.54587 7.78358 -3.9681 —7.93483 6.18568 -2.44125 -0.895912 —0.00119246 0.000351119
0.0407003 3.78512 -1.3628 1.58655 -3.9681 16.1166 5.45303 -6.34514 -0.163268 -15.1394  0.000439018 —0.003679
0.0000338645 0.0000251813  —7.93367 6.18451 —7.93483 5.45303 31.4979 -3.17146 -10.7473 —7.40719 -4.88214  —-1.05891
0.0000369036 —0.000110059  5.45212 -6.34714 6.18568 -6.34514 -3.17146 41.0168 -7.40715 1.94975 -1.05922  —30.2742
-2.442 -0.895414  0.000310882 —0.000561474 —2.44125 —0.163268  —10.7473 -7.40715 31.5022 -3.17387 -15.872 11.6403
-0.162835 -15.1401  —0.000485298 0.000452564 —0.895912  —15.13% —7.40719 1.94975 -3.17387 41.0245 11.6403 -12.6952
-5.3722 -3.33728 -5.3717 -4.06867 —0.00119246 0.000439018 —4.88214 -1.05922 -15.872 11.6403 31.4992 -3.17556
k —4.06986 0.976867 -3.33629 0.976163  0.000351119 -0.003679  —1.05891 -30.2742 11.6403 -12.6952 -3.17556 4.2 {
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Apply the boundary conditions
Rx2 = 1;

Ry2 =
Rx2 =
Ry3 =
Rx4 =
Ry4 =
Ry5 =
Rx6 =
Ry6 =
uxl =

o
Ne o Ne N

o ©O o o ¥
(5}
~

Ul o~
~

. Ne

uyl =

7

ux3 = 0;

©o o o o o .

ux5=0;
MatrixForm@
fvect = 88Rx1<, 8Ryl<, 8Rx2<, 8Ry2<, 8Rx3<, 8Ry3<, 8Rx4<, 8Ry4<, 8Rx5<,
8Ry5<, 8Rx6<, 8Ry6<<D
MatrixForm@
uvect = 88uxl1<, 8uyl<, 8ux2<, 8uy2<, 8ux3<, 8uy3<, 8ux4<, 8uy4<, 8ux5<,
8uy5<, 8ux6<, 8uy6<<D
Solve@Kloc.uvect == fvectD
88ux2 - 0.210567, ux4 - 0.0729666, ux6 - 0.074885, uy2 - 0.0483552,
uy3 - —0.0211898, uy4 - -0.00110893, uy5 - -0.00970086, uy6 - 0.0198336,
Rx1 - —0.150302, Rx3 - —0.150302, Ryl - —4.23449x10 %7, Rx5 - —1.6994<<
MatrixForm@
fvect = 88Rx1<, 8Ryl<, 8Rx2<, 8Ry2<, 8Rx3<, 8Ry3<, 8Rx4<, 8Ry4<, 8Rx5<,
8Ry5<, 8Rx6<, 8Ry6<<D
MatrixForm@
uvect = 88uxl1<, 8uyl<, 8ux2<, 8uy2<, 8ux3<, 8uy3<, 8ux4<, 8uy4<, 8ux5<,
8uy5<, 8ux6<, 8uy6<<D

—-0.150302 0
0 ] 0
1 0.210567
0 0.0483552
—-0.150302 0
0 —-0.0211898
0.5 0.0729666
0 —-0.00110893
-1.6994 0
0 —-0.00970086
0.5 0.074885
k 0 {k 0.0198336 {
MatrixForm@stressvect@sl , s2 D= Simplify@Dmat.Bmat.uvectDD
3.5683+0.341056s1+11.455s2
—0.149976 +0.0000323908 s1+ 0.449932 s2

k —-0.374859+0.674735s81+0.449883s2 {

Determine the stresses at the Gauss points
MatrixForm@stressvect@®.666, .166DD
MatrixForm@stressvect®.166, .666DD

MatrixForm@stressvect®.166, .166DD

i 5.69697 i 11.2539 i 5.52644
-0.0752658 ‘ 0.149684 ‘—0.075282
k 0.149195 { k0.0367692{ andk-0.188172{
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