Rubrics of home work \#1

10 points in total

Q1 (A3)

Q2 (A8) and Q3 (A9)

$$
\begin{aligned}
{[B]^{T}[A]^{T} } & =\left[\begin{array}{ll}
b_{11}\left(a_{11}\right)+b_{21}\left(a_{12}\right) & b_{11}\left(a_{21}\right)+b_{21}\left(a_{22}\right) \\
b_{12}\left(a_{11}\right)+b_{22}\left(a_{12}\right) & b_{12}\left(a_{21}\right)+b_{22}\left(a_{22}\right) \\
b_{13}\left(a_{11}\right)+b_{23}\left(a_{12}\right) & b_{13}\left(a_{21}\right)+b_{23}\left(a_{22}\right)
\end{array}\right] \\
& =\left[\begin{array}{ll}
a_{11}\left(b_{11}\right)+a_{12}\left(b_{21}\right) & a_{21}\left(b_{11}\right)+a_{22}\left(b_{21}\right) \\
a_{11}\left(b_{12}\right)+a_{12}\left(b_{22}\right) & a_{21}\left(b_{12}\right)+a_{22}\left(b_{22}\right) \\
a_{11}\left(b_{13}\right)+a_{12}\left(b_{23}\right) & a_{21}\left(b_{13}\right)+a_{22}\left(b_{23}\right)
\end{array}\right]
\end{aligned}
$$

Answer: $([A][B])^{T}=[B]^{T}[A]^{T}$
(2)
A. $8[T]=\left[\begin{array}{rr}C & S \\ -S & C\end{array}\right]$

$$
[C]=\left[\begin{array}{rr}
C & S \\
-S & C
\end{array}\right] \quad[C]^{T}=\left[\begin{array}{rr}
C & -S \\
S & C
\end{array}\right] \quad 0.5
$$

$$
\begin{aligned}
& |[T]|=C^{2}+S^{2}=1 \\
& {[T]^{-1}=\frac{[C]^{T}}{|[T]|}=\left[\begin{array}{rr}
C & -S \\
S & C
\end{array}\right] 0.5}
\end{aligned}
$$

and

$$
\left.[T]^{T}=\left[\begin{array}{rr}
C & -S \\
S & C
\end{array}\right] \quad \partial<\right)
$$

$\therefore \quad[T]^{T}=[T]^{-1}$ and T is an orthogonal matrix
(2) A. 9 Show $\{X\}^{T}[A]\{X\}$ is symmetric. Given

$$
\begin{aligned}
\{X\} & =\left[\begin{array}{ll}
x & y \\
1 & x
\end{array}\right],[A]=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \\
\{X\}^{T} & \left.=\left[\begin{array}{ll}
x & 1 \\
y & x
\end{array}\right] \quad 0,\right\} \\
\{X\}^{T}[A]\{X\} & =\left[\begin{array}{ll}
x & 1 \\
y & x
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{ll}
x & y \\
1 & x
\end{array}\right] \quad 0, \int \\
& =\left[\begin{array}{ll}
a x+b & b x+c \\
a y+b x & b y+c x
\end{array}\right]\left[\begin{array}{ll}
x & y \\
1 & x
\end{array}\right]
\end{aligned}
$$

Q3 (A9) and Q4 (A11)

$$
=\left[\begin{array}{cc}
a x^{2}+b x+b x+c & a x y+b y+b x^{2}+c x \\
a x y+b x^{2}+b y+c x & a y^{2}+b x y+b x y+c x^{2}
\end{array}\right] \quad \text { 0. } \int
$$

as the $1-2$ term $=2-1$ term $\{X\}^{T}[A]\{X\}$ is symmetric. 0,5
A. 10 Evaluate $[K]=\int_{0}^{L}[B]^{T} E[B] d x,[B]=\left[\begin{array}{ll}-\frac{1}{L} & \frac{1}{L}\end{array}\right]$

$$
\begin{aligned}
& {[K]=\int_{0}^{L}\left\{\begin{array}{c}
-\frac{1}{L} \\
\frac{1}{L}
\end{array}\right\} E\left[\begin{array}{ll}
-\frac{1}{L} & \frac{1}{L}
\end{array}\right] d x} \\
& {[K]=\int_{0}^{[}\left[\begin{array}{cc}
\frac{1}{L^{2}} & \frac{-1}{L^{2}} \\
\frac{-1}{L^{2}} & \frac{1}{L^{2}}
\end{array}\right] E d x} \\
& {[K]=E\left[\begin{array}{rr}
\frac{1}{L} & \frac{1}{L} \\
\frac{-1}{L} & \frac{1}{L}
\end{array}\right]=\frac{E}{L}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]}
\end{aligned}
$$

(Should multiply by A to get actual $[K]$ for a bar)
(2)
A. 11 The following integral represents the strain energy in a bar

$$
\begin{aligned}
& U=\frac{A}{2} \int_{0}^{L}\{d\}^{T}[B]^{T}[D][B]\{d\} d x \\
& \{d\}=\left\{\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right\} \quad[B]=\left[\begin{array}{ll}
\frac{-1}{L} & \frac{1}{L}
\end{array}\right] \\
& {[D]=E}
\end{aligned}
$$

Show that $\frac{d U}{d\{d\}}$ yields $[k]\{d\}$, where $[k]$ is the bar stiffness matrix given by

$$
\begin{aligned}
{[k] } & =\frac{A E}{L}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \\
\{d\}^{T} & =\left[\begin{array}{ll}
\left.d_{1} d_{2}\right] \quad[B]^{T}=\left\{\begin{array}{l}
\frac{-1}{L} \\
\frac{1}{L}
\end{array}\right\} \\
U & =\frac{A}{2} \int_{0}^{L}\{d\}^{T}[B]^{T}[D][B]\{d\} d x \quad 0, j \\
U & =\frac{A L}{2}\{d\}^{T}[B]^{T}[D]^{T}[B]\{d\}=\frac{A L}{2}\left[\begin{array}{ll}
d_{1} & \left.d_{2}\right]
\end{array}\left\{\begin{array}{l}
\frac{-1}{L} \\
\frac{1}{L}
\end{array}\right\} E\left[\begin{array}{ll}
\frac{-1}{L} & \frac{1}{L}
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right\}\right. \\
U & =\frac{A L}{2}\left[\frac{d_{2}-d_{1}}{L}\right][E]\left[\begin{array}{ll}
\frac{-1}{L} & \frac{1}{L}
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right\} \\
U & =\frac{A E L}{2}\left[\frac{d_{2}-d_{1}}{L}\right]\left[\begin{array}{ll}
\frac{-1}{L} & \frac{1}{L}
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right\}=\frac{A E L}{2}\left[\frac{d_{1}-d_{2}}{L^{2}} \frac{-d_{1}+d_{2}}{L^{2}}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

Q4 (A11) and Q5 (A12)

$$
\begin{aligned}
& U=\frac{A E L}{2}\left[\frac{d_{1}^{2}-d_{1} d_{2}-d_{1} d_{2}+d_{2}^{2}}{L^{2}}\right]=\frac{A E}{2 L}\left[d_{1}^{2}-2 d_{1} d_{2}+d_{2}^{2}\right] \quad \text { o. } \int \\
& \frac{d U}{d d}=\left\{\begin{array}{l}
\frac{\partial U}{\partial d_{1}} \\
\frac{\partial U}{\partial d_{2}}
\end{array}\right\}=\left\{\begin{array}{ll}
\frac{A E}{2 L} & 2 d_{1}-2 d_{2} \\
\frac{A E}{2 L} & 2 d_{2}-2 d_{1}
\end{array}\right\}=\frac{A E}{L}\left\{\begin{array}{r}
d_{1}-d_{2} \\
-d_{2}-d_{1}
\end{array}\right\}=\frac{A E}{L}\left\{\begin{array}{c}
d_{1}-d_{2} \\
-d_{1}+d_{2}
\end{array}\right\} \\
& \left.=\frac{A E}{L}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right\} \quad 0 \text { i }\right\} \\
& \frac{d U}{d d}=\frac{A E}{L}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right\}=[k]\left\{\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right\}=[k]\{d\} \text { knowing that }[k]=\frac{A E}{L}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \text { O. } 5 \\
& \text { Thus } \quad \frac{d U}{d d}=[k]\{d\} \\
& \text { (2) A12. } \\
& \operatorname{det}|k|=0 \\
& 4 \\
& 0.5 \\
& \text { positive semidefinite } \\
& 0.5 \\
& \text { sigular ois } \\
& \operatorname{det} \mid \text { redueed } k \mid \neq 0 \quad 0.5
\end{aligned}
$$

