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Sensing of Surface Layer Temperature Profiles
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Abstract—Inferior mirages provide a sensitive and fairly accurate
probe for determining vertical temperature distributions in the atmo-
spheric surface layer. Optical measurements on the image can be used
to calculate the parameters in a temperature profile model, in this case
a function with three adjustable parameters. The function contains an
exponential term (two parameters) and an additive linear term (one
parameter). The optical observations, for which a known target is re-
quired, consist of the elevation angles of the apparent peak, caustic,
and horizon. Analytic expressions that must be simultaneously satisfied
are derived for all three conditions. The parameter values are ex-
tracted numerically by minimizing a positive definite function of the
three conditions. The model is tested on a set of images for which nearly
simultaneous photographs, theodolite readings, and temperature pro-
files were available. For each image the three calculated elevations
matched the measured values very closely. The complete images also
match well in most of the cases. The results, a distinct improvement
over previous two-parameter models, also provide a more accurate re-
construction than is obtained from the thermodynamic model for un-
stable stratification.

I. INTRODUCTION

VER WATER or flat terrain, the vertical temperature

profile of the atmospheric surface layer can be de-
duced by optical means. Measurements on the refraction
of nearly horizontal light rays may be mathematically in-
verted to give a spatially averaged temperature structure
along the line of sight. An early example of this approach
is Fleagle’s study of a layer, only a few meters thick, over
water [1]. Sparkman [2], who concentrates on a two-pa-
rameter logarithmic profile at the surface, gives a large
list of references to previous work in refraction.

An attractive two-parameter model for the inferior mi-
rage is proposed by Fraser [3]. He develops a quadratic
approximation to the thermodynamic equations that con-
ventionally describe unstable stratification at the surface
and finds a very convenient closed-form solution. His op-
tical input data consist of two elevation measurements on
a mirage image: the horizon and the caustic. The latter is
the envelope of the rays, below which nothing can be seen
by the observer. Its elevation on the target object is easily
identified, for it appears as a line of ‘‘reflection’’ that di-
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vides the upper erect image from the inverted image be-
low it.

Fraser’s method takes no account of object information
available above the caustic and for this reason experiences
difficulties in predicting image behavior in this region.
The field observations described below are the motivation
for the present work, for they do not fit the Fraser model.
The horizontal range of the observations is 20 km, over
which distance the caustic elevation becomes much higher
than eye level. At such elevations, Fraser’s quadratic ap-
proximation for a steep lapse rate begins to turn into a
temperature increase, i.e., the approximation is not valid
over the elevation range encountered in this experiment.

In the following sections, a three-parameter model is
developed to extend the horizontal and vertical range of
the previous model [4]. It is evaluated in terms of field
data by comparing computed with measured temperature
profiles, and by comparing computed with photographed
images. A comparison with the standard thermodynamic
model is also made, showing that departures from it are
necessary to predict the observed images.

II. THE THREE-PARAMETER MODEL

Various functional forms have been proposed to ap-
proximate the temperature profile of the surface layer.
Temperature proportional to elevation plus square root of
elevation (linear plus square root) is discussed in Pernter
and Exner [5], based on experimental data. Theoretical
analysis of the unstably stratified surface layer yields a
logarithmic plus linear profile [6], also mentioned by
Sparkman and used by Fraser [3] to derive his two param-
eter quadratic. Sparkman [2] also suggests a power law,
but concentrates his attention on the logarithmic profile.
An exponential variation of refractive index with eleva-
tion was proposed by Sodha et al. [7], which in an ap-
proximation for small total temperature variation implies
an exponential plus linear law. This is the form chosen
for the present analysis:

T—Ty=ae™® -1 — vz 1

where T is the temperature at elevation z, T, the temper-
ature at z = 0 (sea level), and «, 3, and y are adjustable
parameters. This function is simple, and possesses the
necessary properties for appearance of a caustic, namely,
maximum temperature gradient at the ground [3]. The pa-
rameter vy allows adjustment of the lapse rate at higher
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elevations, necessary for matching measured peak eleva-
tions of known targets.

The optical field measurements needed to calculate the
parameters are the apparent angular elevations of horizon,
caustic, and peak of a known target. These points are ob-
vious in a photograph or through a theodolite, and hence
easy to measure. A theodolite reading to arc-seconds is
recommended.

Three conditions that permit calculation of the param-
eters are conveniently derived using Fraser’s transformed
coordinates; the reader is referred to [3] for details, of
which only a very brief summary appears here. The co-
ordinates £, {, of a point on a light ray are expressed in
parametric form as two integrals

&
§ = -2 L $'do (2)
[
G =2 S¢ {'ed do 3
and
o dS
' = ar @

where (approximately)

¢ is the local slope angle of the ray, relative to a cir-
cle concentric with the earth;

¢ is the ‘‘horizontal”’ distance from the observer,
measured along the earth’s curvature;

¢ is the elevation above the observer’s eye level;

7  is proportional to departure from eye level temper-
ature;

and e, ¢ are subscripts identifying eye and target values,
respectively. With these variables, Snell’s law assumes
the form

T =¢; — ¢ ®

Specifying a relation between 7 and ¢ (i.e., a temperature
profile) permits the integrals to be evaluated, and ray paths
to be found.

Specifically, the equation for 7 is

7=A"(T - T) - B{] (6)
where
A4 =T2%(1.58 x 107* p)
B =2A/rg — v, ‘
T is the temperature in degrees, Kelvin
p is the atmospheric pressure in millibars (typically
1013 mbar)
"rg is the radius of the earth (6.37 X 10° m)
Yo = 0.0342°C/m

and the superscript bar denotes mean values for the ob-
servation under consideration.

In the transformed coordinates, the exponential plus
linear profile appears as follows:
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r=ae™® - 1) - ¢t (7

The three conditions required to compute the parameters
a, b, and c are derived from this form, and (6) is used to
find temperature 7.

The horizon condition is the easiest to find: the horizon
ray is tangential to the earth, at which point ¢, = 0. The
position of the ground relative to the observer’s eye is ¢
(a negative number), and (2) becomes

0
5 S
bh

Here, ¢, has been renamed ¢, to identify the measured
elevation angle of the horizon.

The peak condition requires iterative calculation be-
cause the value of ¢, is not known. For any selected tem-
perature profile, {’ is known. The apparent peak elevation
(¢.) and the target distance (£,) are known from measure-
ments. Hence the value of ¢, necessary to satisfy (2) may
be found. This value when used in (3) gives the ray ele-
vation at the target peak. The peak condition is thus a
rewriting of (2), (3) with subscript p representing peak
values

&= {'ed do. 8)

&
£, =2 L $' do 9)

@t
= —2 gqs $'o do. (10

The caustic condition is derived from two derivatives
[3]: d§/dp, = O and d{/do, = 0. The second of these
states that {; is stationary with respect to ¢, on the caustic,
and thus, from (7), 7, is likewise stationary. From (5)

T, = ¢ — ¢ (11)

which, when the derivative with respect to ¢, is set to
zero, yields

g, _ ¢.
= —< 12
dé, & (12
as obtained in [3].
The £ derivative is found directly from (9)
ds, S¢'dr' , do,
0=—= —d¢ + ¢’ - (o). (13
o, o do, ] §(¢z)d¢e (@), (13)
The integrand is expressed as
¢’ _dgdg ar (14)

d¢, d¢ dr dg,

and evaluated using (7) and (5). The result (12) is also
substituted into (13) to produce, finally, the caustic con-
dition

P, 1 S'b' 2ab’e ™, o

0= V@ g Y v D@ ¥ o

5)
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where ¢, has been rewritten as ¢, to indicate the eleva-
tion angle of the caustic, as measured at the observer’s
position. The value of ¢, is found by the same iterative
process as used with the peak condition, i.e., in (9), ¢,
is replaced by ¢..

Because an analytic closed-form solution is not avail-
able, an iterative strategy is required. Each of the three
conditions (8), (10), and (15) is written as an expression
equated to zero. The correct choice of the parameters of
the temperature profile (a, b, c¢) will satisfy these condi-
tions, whereas an incorrect choice will produce nonzero
residuals. If the three residuals are appropriately com-
bined into a single positive definite function, then min-
imization of this function with respect to a, b, and ¢ will
provide the best fit to the observations. The function se-
lected is

1 =10|F)| + 4|F)| + |F| (16)
where F,, F,, and F; are, respectively, the residuals from
the caustic condition (15), the horizon condition (8), and
the peak condition (10). The choice of weighting factors
is discussed in the Appendix.

Ideally the correct parameters should give / = 0; in
practice, the minimum values attained were not quite zero.

III. EXPERIMENTAL RESULTS I

All of the field observations were carried out at Tuk-
toyaktuk, situated on the shores of the Beaufort Sea in the
Canadian Arctic. Whitefish Summit, a low rounded hill
easily identified on the horizon (Fig. 1), was selected as
the optical target. Its distance from the observation point
was 20 km. The height of its peak above sea level, mea-
sured on a local site survey, was 20.3 m. A 12-m mast
supporting 12 thermistors at about 1-m intervals was
erected on the sea ice 282 m from the observation point.
The elevations of the camera and theodolite were 5.7 m
above the ice. The map in Fig. 2 shows the significant
points for this experiment.

Observations were taken over a 4-week period in May
1983. Five sets were identified for which nearly simulta-
neous photographs, theodolite measurements, and tem-
perature readings were available; these sets were sub-
jected to detailed analysis. Fig. 3 shows a typical case:
the corners on the piecewise straight graph are thermistor
readings, made on a digital meter to a precision of
+0.1°C. Ray tracing based on such noisy data was con-
sidered pointless; rather, least squares curve fitting of
quadratic and cubic functions was attempted. For each fit,
rays were traced using previously reported methods [8],
[9], and the corresponding image of Whitefish Summit
was computed (Fig. 4). Neither computer image is even
close to the observed image.

The difficulties were typical of all attempts to compute
images on the basis of mast readings. As will be seen
below, the noise level of +0.1°C is sufficient to prevent
satisfactory image prediction.
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Fig. 1. Whitefish Summit, the target upon which the optical observations
were made. The elevation of the center, beneath the small vertical post,
is 20.3 m above sea level.
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Fig. 3. A measured temperature profile with least squares fits. The mea-
surements, made at 1946 h MDT on May 15, 1983, were the nearest in
time to the theodolite readings of 1959 h. The quadratic fit was extended
up to 20.3 m to compute the corresponding image. The cubic fit, how-
ever, was modified above 9.5 m to revert to the standard lapse rate of
0.006°/m.

IV. EXPERIMENTAL REsuLTs II

The three-parameter model, with values chosen to min-
imize (16), produces computed images that match the ob-
servations very well. Temperature readings from the mast
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Fig. 4. (a) Image of Whitefish Summit that would be seen at the obser-
vation point for the quadratic fit to the temperature profile. (b) Computed
image for the cubic fit profile. The actual image existing at the time is
shown in Fig. 5.

Fig. 5. Photograph of Whitefish Summit over the 20-km range from the
observation point, made at 1955 h on May 15, 1983. The dotted lines
show the computed image, based on the three parameter values that min-
imize (16) for the theodolite readings of 1959 h.

were used only to establish the eye level temperature (at
elevation 5.7 m).

Fig. 5 shows the results calculated from theodolite
readings made on May 15, 1983, at 1959 h Mountain
Daylight Time (MDT). The photograph was made at 1955
h, and the mast was read at 1946 h. The minimum of (16)
yielded the temperature profile (in degrees Celsius)

T =0.26 ¢ % — 0.0218z — 7.48. (17)

See the Appendix for an outline of the computation strat-
egy. The profile (17) is shown in Fig. 6, superimposed
on the mast readings; for most points it lies within the
noise level of +0.1°C. Comparison of Figs. 3 and 6 and
of the corresponding images shows how sensitive the im-
age is to small changes in the profile. It becomes obvious
that temperature profiling with +0.1°C measurements is
simply not adequate to predict appropriate image shapes.

Figs. 7 to 10 show the three-parameter images for the
remaining four cases selected. Table I compares the theo-
dolite measurements with values computed by ray tracing
for parameters minimizing (16). As expected, the errors
are small. However, two of the images show departures
from the calculated images. In Fig. 8, the photographed
caustic is at an elevation different from the theodolite
measurement. The time discrepancy was only 6 min be-
tween photograph and readings; based on observed rates
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Fig. 6. The best three parameter fit for 1959 h, May 15, 1983, superim-
posed on the measurements of 1946 h.

Fig. 7. Photograph of 1620 h, May 15, 1983, with image computed from
the fit to the theodolite measurements of 1648 h.

Fig. 8. Photograph: 1948 h, May 15, 1983; theodolite measurements: 1942
h. The computed image agrees with the measurements, which do not,
however, agree with the photograph (see text).

Fig. 9. Photograph: 1142 h, May 22, 1983; theodolite measurements: 1141
h. The elevations on the computed image agree with those of the pho-
tograph, but the computed image is too wide. This figure shows that the
proposed three parameter fit is not always fully successful in describing
the atmosphere along the observation range.



944

Fig. 10. Photograph: 1123 h, May 22, 1983; measurements: 1115 h.

TABLE 1

| | | |
Obsgervation | Parameters | Target | Measured | Computed | Error

Time | for minimum I | | Elevation | Elevation |

| | |
May 15/83 P : 0.26 | peak | -2.43 || -2.41 1-0.02
1959 h Pt - 181 i S < | caustic | -3.78 | -3.78 | 0.00
(Fig. 5) | vy 1 0.0218 | horizon | -4.85 I =S KO 1:0:25

1 6 1-7.48 | | | |

| | | | | |

| | | | | |
May 15/83 toa) 026 | peak | -2.33 | -2.30 1-0.03
1648 h LB 10473 | icanstdc | =3.92 1 =391 1-0.01
(Fig. 7) { '¥.110.0151 | horizon | -4.95 | -4.95 | 0.00

1 8 1-6.32 1 | 1 |

| | | | | |

| | | | | |
May 15/83 R ol e e | peak ) :~1,88 | -1.86 |-0.02
1942 h | B 0.63 | caustic | -4.07 | -4.05 1-0.02
(Fig. 8) I y | 0.00495 | horizon | -4.58 | -4.56 1-0.02

12364 2% D8 | | | |

| | | | | |

| | | | | |
May 22/83 (U 4 Y ) | peak | =2.33 |=2.30 1-0.03
1141 h {7 Bi1:1.88 [icaustic | ' =3.95 | -3.94 1-0.01
(Fig. 9) | vy 1 0.0198 | horizon | -4.65 1 -4.69 | 0.04

| 61-8.89 | | | |

| | | | | |

| | | | | |
May 22/83 o 00 AS | peak | -2.63 | -2.60 1-0.03
1115 h § Bt d02 | caustic | -4.10 | -4.10 | 0.00
(Fig. 10) | vy 1 0.0262 | horizon | -4.88 | -4 .88 | 0.00

| & 1-8.85 | | | |

| | | | | |

of change of images, this is not likely the source of the
error. The occasional reading error, however, cannot be
entirely ruled out. As seen in Table I, the relative spacing
of the theodolite readings for Fig. 8 falls somewhat out-
side the pattern established by the rest of the observations.

The computed image of Fig. 9 also shows deviations
from the photograph. In this case the elevations are con-
sistent, but the computed image is too wide at the caustic.
This occurs when the elevation at which the computed
caustic intersects the target is lower than it is in reality,
bringing more of the summit (i.e., down to lower eleva-
tions) into view. The present three-parameter model can
do nothing to correct for such discrepancies.

In general, the proposed three-parameter model pro-
duces image fits of remarkable fidelity. The assumption
of the horizontally invariant atmosphere, even over large
distances, appears to be vindicated by the results. The
computed temperature profiles were all found to lie within
the error spread of the mast readings, but well buried be-
neath the noise. '

A disadvantage of the three parameter model is the
computational burden. Each evaluation of (16) requires
the tracing of several rays, and many evaluations are re-
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Fig. 11. Comparison of temperature gradients for the measurements of
1959 h, May 15, 1983. When the thermodynamic model was adjusted to
approach the three parameter model as closely as possible (by visual
estimate), the thermodynamic gradient took the form d7/dz = —0.01 —
0.07/z.

quired to find the minimum, even with a moderately good
initial guess. For this reason it seems unprofitable to at-
tempt an extension into four parameters (to reduce the er-
ror in Fig. 9).

V. COMPARISON WITH THE THERMODYNAMIC MODEL

Under conditions of unstable stratification, the ther-
modynamic atmospheric model gives a temperature pro-
file of the following form [6]:

T = 0[ln (z/z9) — (18)

Comparison with the three-parameter model is most eas-
ily done using temperature gradients. Thus the gradient
from (18) is

V] Ly

ar
= -T + > (19)
dz 2
where
I' = 0.01, the adiabatic lapse rate;
0 = —(Ep/cypusk);

E, is the buoyancy flux;
is the specific heat of air at constant pressure;

P
o is the density of air;
k is the von Karman constant (=0.4);

and u,, = kz 0u/dz, the friction velocity. Humidity effects

can be ignored for the typical dry cold Arctic air.
The gradient for the three-parameter model is

T

d—z = —afe ™
where «, 3, and v are related to the parameters a, b, and
¢ by the scaling equations (see Appendix). Thus the gra-
dient (20) is known, computed from measurements. The
one parameter, 6, in the thermodynamic model (19) can
now be adjusted to match (19) as closely as possible to
(20); see graph in Fig. 11. The approximate heat flux from

i (20)
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TABLE II TABLE III
I | |
Target | Measured | Computed Elevations Change 1in Measurement ] Change 1in Residual
| Elevation | Three Parameter | Fraser | Thermodynamic |
| | Model | Model | Model
| ! | | X 2 Bdy, Peak Caustic Horizon
| | 1 1 * - (Fy) (F)) (Fy)
Peak | -2.43 | ~2.41 | -1.27 -2.45
| | | | [ ! [ ] |
Caustic 1 -3.78 | -3.78 | -3.78 | -4.10 1 | 0 1 0 | 0.6 1 ~0 | ~0
| | ! | ! | | ! |
Horizon | -4.85 | -5.10 | -4.84 | -5.30 | ] ] | |
] | ] | V] | 1 | 0 | ~0 | 0.0006 ] ~0
| | | | |
| ! [ | ]
0o | 0 | 1 | ~0 | ~0 | 0.15
| | | ] |

the surface could be estimated from 6 and a wind speed
measurement [10].

An image calculated by tracing rays through the best fit
thermodynamic model does not fit the observations as well
as the three-parameter model. Table II compares the com-
puted values for the various models, for the theodolite
observations of May 15, 1983, 1959 h. It is clear that
departure from the thermodynamic model is necessary, if
the observed images are to be reconstructed.

VI. CONCLUSIONS

A three-parameter model of exponential plus linear form
has been developed for the temperature profiles that exist
when the atmosphere is unstably stratified. This model
reproduces observed inferior mirage images very accu-
rately over horizontal ranges up to 20 km. Because it pro-
vides improved image representation, it must be consid-
ered an improvement in the estimation of the spatially
averaged temperature profile between the observer and the
target.

This study reinforces the idea that optical methods pro-
vide the simplest and most sensitive probes for determin-
ing micrometeorological temperature profiles.

APPENDIX
A. Scaling and Weighting Factors

In problems of terrestrial atmospheric refraction, there
is always a wide disparity between the horizontal and ver-
tical scales. Thus in the parametric ray equations (2) and
(3), the orders of magnitude of the values are 10* m, 10
m, and 1 mrad, for £, {, and ¢, respectively. Similarly,
from (5), 7 is an extremely small number. Scale factors
were selected as follows, to bring the scaled numbers to
sizes of the order of 10:

£ =¢/(3 x 104 (A1)
t=1¢ (A2)
é=3x10"¢ (A3)
F=9x 107 (A4)

Substitution of the scaled variables into the temperature
profile (7) produces an equation of identical form, if scaled
values for a, b, and c are defined as

a=9x10%a
=b
=9 x 10%¢c.

(AS)
(A6)
(A7)

S

The horizon, peak, and caustic conditions were evaluated
in terms of scaled variables.

The weighting factors in (16) were selected to distribute
angular errors equally between the three conditions, for
cases where the minimum value was greater than zero.
This distribution is consistent with the methods used in
obtaining the three angle measurements by theodolite,
i.e., the error in taking a reading was deemed likely to be
the same for each of the three readings.

To find the weights, a point near the minimum was cho-
sen for a typical case. Then each measurement, in turn,
was incremented by a small amount, while the remaining
measurements were held fixed, and the residuals of (8),
(10), and (15) were calculated; see Table III.

Thus the residual F; was assigned unit weight, F, a
weight of 0.6/0.15 = 4, and F; by analogous calculation
a weight of 1000. With these weights, and equal errors in
the three angles, each term makes an equal contribution
to 7 in (16).

B. Computational Strategy

The minimization of I requires adjustment of the pa-
rameters 4, b, and ¢ in the scaled version of (7) for the
profile 7. This profile, after de-scaling, is inserted into (6)
to convert temperature to ordinary degrees (Celsius or

Kelvin)
T=T,+ At + B¢. (A8)

The reference elevation can be moved from eye level to
sea level if {"is replaced by z + {,. The result, temperature
as a function of elevation above sea level, is

T =T, + Aale "% — 1] — (4c — B)(z + {)

= Aae % e — (4c — B)z

+ [T, — Aa + (B — Ao)¢l] (A9)
which may be rewritten as
T=cae ™ — vz +6. (A10)

This is the form originally proposed in (1), with Ty — «
replaced by 6.

Some experimentation with these functions showed that
a direct search for a minimum of I by adjusting 4, b, and
¢ was ill-conditioned. Changes in @ and b tended to com-
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pensate for each other, to produce very similar 7'(z) func-
tions, (A10), for significantly different a, b.
Minimization of (16) through variation of «, 3, and vy
in (A10) was more successful. Because refractive effects
are dominated by temperature gradients, adjustments in
the constant term 6 have no significant effect on the im-
age; hence, the value of 6 was set at an estimated value
and left fixed. The search through the remaining coordi-
nates was executed as a kind of two-dimensional process:
for a trial point «, 3, the value of v was adjusted to give
minimum /. This somewhat tedious search through the «,
@ plane, with the subsidiary y minimization at each point,
was able to identify the minima of / with no difficulty.
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