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In this paper it is shown how the Coulomb wave functions, commonly used in the description of a Coulomb field surrounding a 
nucleus, can be used in the description of electromagnetic fields that are symmetric with respect of + inside a paraboloidal 
waveguide. The Abraham potentials Q and U, which are useful in describing fields with rational symmetry, are used to simplify 
the problem. It is shown that these potentials must satisfy a partial differential equation that when separated yields the Coulomb 
wave equation of order L = 0. Electromagnetic fieldsdue to simple source distributions inside the paraboloid are expanded in 
terms of these functions. Specifically, solutions for current-loop sources locatedin the focal plane of the paraboloid are obtained. 
The case where the wall of the paraboloidal waveguide is assumed to be perfectly conducting is treated as well as the case where 
the wall has finite impedance. The finite paraboloid is also considered, and the far field is formulated using Huygen's principle. 
It is found that for the finite surface-impedance case, the far-field pattem due to a current loop operating at 100 MHz in the focal 
plane of a paraboloidal reflector of 1 m focal length is different from the perfectly conducting case. Specifically, the pattem seems 
to be more omnidirectional for the impedance case than for the perfectly conducting case. Numerical results are presented for 
relevant aspects of the problem. 

Dans cet article, on montre comment les fonctions d'onde de Coulomb, communtment utilistes dans la description d'un 
champ de Coulomb autour d'un noyau, peuvent Stre utilistes dans la description de champs electromagnttiques qui sont 
symttriques parrapport a + h l'inttrieur d'un guide d'onde paraboloi'dal. Les potentiels Q et U dlAbraham, qui sont utiles pour la 
description de champs ayant une symttrie de rotation, sont utilists afin de simplifier le problkme. On montre que ces potentiels 
doivent satisfaire a une equation aux dtrivtes partielles qui donne, apres stparation des variables, l'iquation d'onde de Coulomb 
d'ordre L = 0. Les champs tlectromagnttiques dus h des distributions simples de sources a l'intbieur du paraboloide sont 
dtveloppts en stries de ces fonctions. Spkifiquement, on obtient des solutions pour des sources en forme d'anneaux de courants 
plads dans le plan focal du paraboloide. On traite le cas ou la paroi du guide d'onde paraboloidal est supposte parfaitement 
conductrice aussi bien que le cas oil le paroi a une impedance finie. On considkre aussi le paraboloi'de fini, et le champ lointain est 
dtterminC en utilisant le principe de Huygens. On montre que dans le cas d'une surface d'imptdance finie, la configuration du 
champ lointain dQ un anneau de courant a 100 MHz plact dans le plan focal d'un rkflecteur paraboloidal de 1 m de distance 
focale est difftrente de celle qu'on obtient dans le cas d'une surface parfaitement conductrice. On prisente des risultats 
numtriques pour les aspects pertinents du problkme. 

[Traduit par la revue] 
Can. 1. Phys. 66. 212 (1988) 

1. Introduction 
Perhaps the most common type of communications antenna is 

the circular parabolic type, which has a surface generated by 
revolving a finite parabolic curve about its axis. The reflector is 
then usually illuminated by an electromagnetic source posi- 
tioned at or near the focal point. The reason for using the circular 
paraboloidal reflector is that from the theory of geometrical 
optics or ray optics, the circular paraboloidal shape has the 
property that all rays originating from the focus are reflected 
from the surface parallel to the axis. Most electromagnetic 
solutions of the paraboloidal reflector use the geometrical optics 
approximation. This is, in general, a high-frequency method 
and thus it is not an exact solution. 

One of the classic methods of determining exact solutions in 
electromagnetic problems is to solve Maxwell's equations 
directly for the geometry, material, and sources under consider- 
ation. Solving Maxwell's equations can usually be reduced to 
finding the solutions of the vector wave equation or, for 
time-harmonic problems, the vector Helmholtz equation. It 
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would probably be safe to say that most electromagnetic 
solutions are direc~ly or indirectly related to the solution of the 
vector wave equation. 

In terms of the orthogonal coordinate systems in which 
solutions can be obtained, the scalar Helmholtz equation can be 
solved using the method of separation of variables in 11 
orthogonal coordinate systems. The rotation-paraboloidal coor- 
dinate system is one of the 11 orthogonal coordinate systems in 
which the scalar Helmholtz equation separates (see refs. 1-3). 
The situation is quite different with the vector wave equation or 
the vector Helmholtz equation (ref. 4). The complications arise 
because the field is a vector field and the vector equation cannot 
be separated into individual ordinary differential equations in 
which each scalar component exists decoupled from the remain- 
ing components. Also, even if this were possible, the fitting of 
the boundary conditions becomes almost impossible. 

The first theoretical investigation of electromagnetic fields in 
rotation-paraboloidal coordinates was undertaken by Abraham 
(5). The paraboloidal coordinates were used to model a 
semi-infinite wire. The theoretical results did not agree with the 
experimental results available at the time and the problem was 
dropped. The electromagnetic reflection by a parabolic mirror 
was briefly mentioned by Lamb (6) ,  where integral expressions 
were obtained. The problem was not reconsidered until the 
parabolic reflector was used for radar applications in the 1940s. 
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For the acoustic case, Buchholtz analyzed many aspects of 
the problem. He obtained reults in integral and series form for 
the scattering of acoustic waves from an infinite paraboloid (7). 
The external (convex side) diffraction problem has been 
analyzed by Horton and Karal (8, 9). Horton used the series 
representations developed by Pinney (10) for the solution of the 
scalar Helmholtz equation in rotation-paraboloidal coordinates. 
Pinney developed his series representation in terms of Laguerre 
functions, whereas Buchholtz used the confluent hypergeomet- 
ric functions, which have a more general form. 

The cases of an electric dipole at the focus of the paraboloid 
and oriented parallel to the axis of symmetry, perpendicular to 
the axis of symmetry, and perpendicular to the axis backed by a 
dummy reflector were solved by Pinney (1 1). The solutions to 
these three cases were based on the series solutions he obtained 
in his earlier paper for the scalar Helmholtz equation in 
rotation-paraboloidal coordinates. The exact electromagnetic 
field produced by an electric dipole located on the axis of 
symmetry of a perfectly conducting concave paraboloid has also 
been solved by Buchholtz (12). Fock (13) has performed an 
in-depth study of the problem, expressing the exact solution for 
an electric dipole at the focus and perpendicular to the axis of 
symmetry, both as an integral and as an infinite series, as well as 
deriving high-frequency expansions. 

Fock first expresses Maxwell's equations in terms of the 
covariant spherical-field components and the Debye potentials 
(see ref. 14). From these he applies the transformation to obtain 
the rotation-paraboloidal field components. He then introduces 
two "parabolic potentials P and Q," which are connected with 
the separate Fourier components of the field with respect to the 
angle, +, and not the total field. He simplifies the field 
expressions by introducirig four interrelated auxiliary functions 
connected with the parabolic potentials P and Q. Although the 
introduction of the p a b o l i c  potentials permits formulation of 
the boundary conditions without recourse to finite-difference 
equations, the expressions are very complicated even for simple 
source illuminations. . 

FIG. 1. Rotation-paraboloidal coordinates. 

to apply an impedance boundary condition on the walls of the 
paraboloid. This is a technique that can be used for simulating 
mathematically the finite conductivity of the walls or can even 
be used when deliberate. or nondeliberate thin coatings of 
dielectric are applied to the walls, e.g., absorbing materials and 
rain, etc. This problem is difficult to solve if geometrical optics 
is used, but in the present technique it means only the 
determination of the new eigenvalues. Thus for each new 
boundary condition that we wish to solve (i.e., different wall 
impedance), all we need to do is calculate the new eigenvalues. 
This is one of the main advantages of this method. 

2. Formulation with Abraham potentials 
- ~ - --- ~ 

The problem under consideration in Horton and Karal's work The rotation-paraboloidal coordinate system ( E ; ,  rl, $1, see Fig. 1, 
was the electromagnetic scattering of a plane wave from a is related to the rectangular coordinate system (x, y, z), the circ- 
paraboloid made of any material in general (15). The Hansen . ular cylindrical coordinate system (P, 4, z), and the spherical 
wave vectors were obtained for the rotation-~araboloidal coordinate system (r ,  0,  +) by the transf~rmations 
coordinate system based on the series solution obtained by , 

Pinney (10) for the scalar Helmholtz equation. This was done 
even though the transverse vectors M and N did not appear to 
have the necessary orthogonality properties to enable b n e  to 
expand an arbitrary vector function in terms of them directly. 
Considerable manipulations were then performed to use the 
orthogonality properties of one of Pinney's paraboloidal func- 
tions S,*, which is related to the Laguerre functions. The final 
field expressions using this method are very complicated. 
Solutions for a plane wave incident upon a perfectly conducting 
paraboloid are formulated, but no numerical results are pre- 
sented because of a "lack of numerical values for the parabo- 
loidal functions." 

Approximate methods have been used by Donaldson et al. 
(16) to solve for the aperture distribution due to axially oriented 
dipoles at the focal point. In this paper, the paraboloid of 
revolution is insread treated as a waveguide and fields, which 

[2] y = [q sin + = p sin 4 = r sin 0 sin + 
[3] z .= 4(c2 - q2)  = z = r cos 0 

The scale factors can be obtained from [I]-[3] 

[41 h l = h 2 = m 2 = 2 r  

and 
151 h3 = E;q= P 

where, of course, p2 = x2 + Y2 and 3 = x2 + y2 + z2. 
If a harmonic time dependence of e-'"' is assumed, then 

Maxwell's equations can be written as 

[7] V x H = (- iwe + u)E 
are rotationally symmetric but arbitrary (i.e., the field compo- 

= - iwd,  lossless medium 
nents are independent of +), are found in terms of the Abraham 
potentials (seirefs. 2o r  17). Eigenfunctions are obtained for the [9 ]  V H = 0 
paraboloid in terms of the Coulomb wave functions. This [ lo] v . E = E  
technique of treating the as a waveguide allows one E 
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In the above, p, is the charge density in the medium, E is the 
permittivity of the medium, p is the permeability of the medium, 
and w is the harmonic frequency of the excitation. These must 
now be expressed in terms of the rotation-paraboloidal coordinate 
system. 

For the case where the field (E and H) itself has the same 
symmetry as the coordinate system, its components are inde- 
pendent of +. Thus, Maxwell's equations break up into the two 
independent groups: 

1 [A (* E,) - 2- (fl Eg)] 
[I4] p + q2 a[ arl 

The potential U(5, q)  represents an electromagnetic wave trans- 
verse electric to the z direction (i.e., TE to z), and the second 
potential U(5, q)  represents an electromagnetic wave transverse 
magnetic to the z direction (i.e., TM to z). However, both U 
and Q satisfy the same partial differential equation; that is, [20] 
and [24]. This suggests that the potentials U and Q should be 
similar but not exactly the same because the boundary conditions 
on the walls of the paraboloid are different for each potential. 
Moreover, a singularity in the field along the axis of the para- 
baloid'seems possible owing to the forms of the expressions of 
[17] and [21] because p = 0 along this axis. Solutions to the 
potentials are chosen such that they are equal to zero at p = 0 and 
that in the limit as p goes to zero, the field expressions remain 
finite. 

3. Boundary conditions for the potentials 
If the surface of the parabaloid (q = qo) is perfectly con- 

ducting, then a Neumann condition for the potential Q([, q )  
arises, 

- iwpH4 = 0 and a Dirichlet condition for the potential U([, q) arises, 

[26] U([, qo). = 0 and 

where p = [q. Substituting [12] and [13] into [ l l ] ,  and defining 
the Abraham potential U([, q )  as 

we find that 

where U([, q)  satisfies 

Similarly, if the same procedure is applied to [24], the second 
Abraham potential Q([, q )  can be defined as 

with 

where Q([, q )  satisfies 

Thus for the perfectly conducting paraboloidal waveguide, the 
Abraham potentials U([, q )  and Q([, q)  must satisfy partial 
differential equations given by [20] and [24] respectively, with 
boundary conditions at q = qo described by [26] and [25], 
respectively. . 

For the nonperfectly conducting paraboloidal waveguide, an 
impedance or Leontovich boundary condition is imposed on the 
surface q = qo. The Leontovich boundary condition can be 
expressed mathematically as 

t-) 

where N is the relative surface impedance of the walls of the 
paraboloid (N = 0 for the perfectly conducting case) and ri is the 
unit normal to the surface. As can be seen, the relative surface 
impedance is represented as a dyadic function. A nonzero 
surface impedance has been used for the finite conductivity of 
waveguides before (see ref. 18). It has also been used to account 
for the finite conductivity of scatterers (19), for the roughness of 
its surface (20), and for the presence of highly absorbing coating 
layers (21). 

1f v h a d  been assigned a scalar value, this would imply that 
the impedance is the same in any direction, but this is not the 
general case. In t heso re  general case considered here, the 
surface impedance N is represented by a two-dimensional 
dyadic transforming the tangential components of H into the 
tangential components of E on the boundary (see ref. 3, p. 
1814). 

It is found that the Leontovich condition manifests itself in the 
two equations 

and 
.- 
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Substitution of [17] ,  [18] and [21] ,  [22] into [29] and [28] ,  respec- 
tively, leads to boundary conditions in terms of the potentials 
given by 

and 
N 

[31]  Q 1 - A @ T 7 , 2 Q = O ,  q = q ,  
9 

If we assume, for the sake of mathematical simplicity, that 

and 

then the boundary conditions on the potentials simplify to 

[34]  U' + U =  0 ,  q = q, 

and 

1351 Q f  + Q =  0 ,  7 = q o  

These can be recognized as Dirichlet-Neumann or Robin 
boundary conditions and can be hand.led fairly easily by partial- 
differential-equation theory. 

3.1. Solution for the poteittials 
Solutions to the partial differential equation given by [20]  or 

[24] must now be found. It is sufficient to solve only one of 
these equations. 

The method of separation of variables is used to solve [ 20 ] .  
This results in a solution of the form 

If a separation constant C is chosen, then separation of the 
equation produces the two ordinary differential equations 

and 

These equations are identical except for the sign of the parameter 
C ,  but because the only restriction on the parameter is that it be 
a real number, only one of the equations need be solved. We 
choose [ 3 8 ] ,  the equation forthe variable q ,  as this equation will 
provide us with the eigenfunctions needed in later sections. 

It can be shown ( 22 )  with the use of variable transformations 
that [38] can be reduced to a form recognized as the Coulomb 
wave equation of order L = 0 

where for the present case 

C 
[40] P = - A = - -  4 K  

The Coulomb wave equation has a regular singularity at the 
point z = a. The general solution of [39]  is ' 

1411 y(z )  = CLFI(P, 2 )  + CIGI(P ,  Z )  

where C ,  and C2 are constants, FL is the regular Coulomb wave 
function, and GL is the irregular Coulomb wave function. For 
the specific case of L = 0 ,  the solution can be written as 

1421 y(z)  = CIFO(P ,  2)  + CzGo(P, 2 )  

The reason for introducing the negative sign in front of A, in 
[ 40 ] ,  is that when [39]  is defined as a Sturm-Liouville system, it 
will prove to be more convenient, because A will be defined as 
the eigenvalue. The mathematical properties of Coulomb wave 
functions used in this paper can be found in refs. 22 and 23.  
Some of the mathematical properties have been included herein 
as A ~ ~ e n d i x  A. 

 id solutions for the Abraham potentials U(5 ,  q )  and Q(5 ,  q )  
can be constructed using these Coulomb wave functions. The 
eigenfunctions are represented by the regular Coulomb wave 
functions Fo(-A,, f K q 2 )  with the eigenvalues An appropriately 
chosen so that the boundary conditions at q = q0 will be 
satisfied. These boundary conditions can be either Dirichlet, 
Neumann. or Robin boundarv conditions. whichever are re- 
quired, as' explained previousiy. The irreg;lar Coulomb wave 
functions are not used as eigenfunctions because not only are 
theynot orthogonal, but from [17]  and [21]  they would produce 
a singularity in the field at q = 0 (i.e., the axis of the 
paraboloid). The regular wave functions do not produce such a 
singularity because they produce a zero-over-zero term and 
L'Hopital's rule can be used to take the limit as q goes to 0 .  This 
limit turns out to be finite and thus there is no singularity. 

In the 5 coordinate, the functions that will be used are 
Fo(A, fKS2) (i.e., wave functions of the third kind, see 
Appendix A) for regions including the 5 = 0 axis and 
H&, $K t2 )  for regions not including the 5 = 0 axis. The 
reason that HA is chosen is clear from [A291 and the e-'"' time 
dependence, because these functions would best describe 
outward-travelling waves. Thus, the potentials can be con- 
structed as 

1 AnFo(An, ~ K ~ ~ ) F O ( - A , ,  4Kq2) ,  0 < q < qO, 5 = 0 region 

1 B n H h  fKS2)Fo(-An, f K q 2 ) ,  0 < q < qo, 5 = large region 

and 

and 

The summation over n in the above equations represents a summation over the ordered eigenvalues, where the eigenvalues 
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An = Cn/4K are obtained from the transcendental equation produced by applying the boundary conditions on the walls of the 
waveguide. Eigenvalues for all three types of boundary conditions are given in the next section. 

4. Eigenvalues and eigenfunctions 
The application of specific boundary conditions to the field at q = qo results in specific boundary conditions for the potential U and 

Q. These boundary conditions determine the appropriate eigenvalues for the problem under consideration. From the 
Sturm-Liouville system theory we know that there is a denumerable number of eigenvalues that can be ordered according to 
ascending value (see refs. 24 and 25). It is also known that all the eigenvalues are positive in value except for a finite number of them. 
The three boundary conditions are now considered. The first few eigenvalues are calculated for all three cases along with the 
normalization constants N. For the perfectly conducting paraboloidal waveguide, the Dirichlet condition arises for the potential U(6, 
q )  and the Neumann condition arises for the potential Q(6, q): Recall that the potential U represents circularly symmetric TE modes 
and the potential Q represents circularly symmetric TM modes inside the paraboloidal waveguide. 

The transcendental equation that arises from applying the Dirichlet condition to U is obtained by applying [26] to [43] and can be 
simply written as 

1451 Fo(- A,, 4Kq3 = 0 

Thus all values of An that satisfy this equation are the eigenvalues. The regular Coulomb wave function can be plotted as a function of 
the parameter A, (see ref. 22). The three frequencies, 100, 250, and 500 MHz, are chosen with a constant coordinate qo of the 
paraboloid corresponding to a focal length of 1 m. The zero crossings, which are the eigenvalues, are then obtained by a numerical 
technique, and the first few eigenvalues are shown in Table 1 for the respective frequencies. 

For the Neumann condition, the transcendental equation that arises can be obtained by applying [25] to [44] and can be written as 

I461 FA(- A,, 4Kq3 = 0 

This function can also be plotted as a function of the parameter A, (see ref. 22). The same frequencies and size of paraboloid are 
chosen as for the Dirichlet case.. Some eigenvalues with the respective normalization constants are shown in Table 2. 

For the case where the walls are nonperfectly conducting or absorbing, the Robin condition arises for both potentials if we assume 
the wall impedances to be given by [32] and [33]. The transcendental equation is derived by applying [34] or [35] to [43] or [44]. This 
transcendental equation can be written as 

[47] Fh(- A,, 3 ~ ~ 6 )  + FO(- A,, $KT$) = 0 -. 

This function, here called the Robin function, has also been plotted as a function of the parameter A, (see ref. 22). The zero crossings 
represent the eigenvalues, and these are found along with the normalization constants for the same frequencies and size of paraboloid 
as for the previous two cases. The first few eigenvalues and normalization constants are tabulated in Table 3. 

The eigenfunctions for the potentials U(6, q )  and Q(6, q) are given by the regular Coulomb wave functions with the parameter 
equal to the negative of the eigenvalue, -A,. These eigenfunctions are then normalized by the normalization constant N. 
Eigenfunctions for the case where the frequency is equal to 100 MHz are plotted in Figs. 2-4 for all three boundary-condition cases as 
indicated. As can be seen from these plots, the eigenfunctions all go to zero at q = 0. This is the condition that allows these functions 
to be orthogonal. Not all the components of the actual fields necessarily go to zero at q = 0 or 5 = 0, but care must be exercised in the 
evaluation of the fields at these points. The fields derived from the potential U([, q )  are expressed analytically at these critical points. 
The fields derived from the potential Q([, q )  are not shown explicitly here but can be derived by a similar procedure. 

Expressions for the TE-mode fields can be obtained by substituting [43] into [17]-[19]. Thus, 

[49] Hg = A,Fo(A,, ~K[~)F~( -A , ,  iKq2), 0 < q < qo, 6 = Oregion 
[K- 

B,H;(A,, iKt2)F~(-  A,, ;Kq2), O < q < qo, 6 = O region 

iwe C AnFb(An, iKS2)Fo(-A,, $Kq2), O < 7 <yo, 6 = 0 region 

C BnHb(An, $KS2)~o(-~, ,  ;Kr12), o < q <  qo, 5 = 0 region 

To evaluate these expressions on either the 5 = 0 or the q = 0 axis, we take the limit and use L'Hopital's rule throughout. As 
q -+0, the fields become 
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C A,Fo(A,, 6KS2)Co(-A,), q = 0, 5 = O region 
I [521 H e =  x BnHA(An, f KS2)Co(-A,), q = 0, 5 > 0 region 

[ where Co is given by [Ag]. As can be seen at q = 0, only the He component survives. This is consistent with expectations as the 

I 
field must be symmetric in 4. 

As 5 -) 0, the fields become 

[54] E 4 = 0 ,  [ = O  

I [55] H e = O ,  [ = 0  

1 This time only the q component of the magnetic field survives, 4s expected. 

5. Current-loop excitation 
Consider the case of an electric current sheet expressed by the following equation: 

1571 J(S, = J4(rl)8(S - S * ) 4  

where 8(( - t * )  represents the impulse function and J4(q)  represents the magnitude of the current sheet. The dependence on q of the 
magnitude J4(q)  is not shown explicitly as it is arbitrary. To simulate a current ring, we set the q dependence equal to the impulse 
function as well. 

It is obvious that this specific excitation of [57] will produce fields that are independent of the coordinate 4. Thus, the Abraham 
potentials are appropriate, and in fact, it will become apparent that only the potential U will be necessary as the fields will be 
transverse electric (TE to the z axis). 

The potential U can be represented in terms of an infinite summation of eigenfunctions where the Coulomb wave functions of the 
third kind are used in region I1 (i.e., in the region where 5 > t * ) .  The reason for this is that outward-travelling waves are desired in 
region I1 and these are best represented by wave functions of the third kind, i.e., 

The field expressions can now be obtained from the potential ioe 
U by [17]-[19]. Note that because the field will be TE to the z [621 J4(q) = 

direction, this implies that Ee = E, = H4 = 0.   he continuity of 
T , K ~  

E4 at 5 = [* must now be imposed on [17], and from this 
condition the following is obtained: x , [ B,HA1 (-$ ,; Kt*') - AnFb (2, f Kq*')  ] 

I and thus, 

Also, the appropriate boundary condition at a current source 
must be applied. This can be expressed in vector form as 

[60] ri x (HI - H") = J , ( [ ,  q )  

where ri is the unit normal into region I and J ,  is the current sheet 
at the interface between region I and region 11. Here, ii = -he 
and J ,  = J of [57]. Thus, applying the boundary condition of 
[60] to the problem at hand at 6 = [* ,  we get 

[611 H:(t*, q )  - HXS*, q )  = J4(q)8( t*  - t*)4$ = J4(q)4, 

Substituting [19] into [61], one obtains 

where the prime represents differentiation with respect to the 
argument z = $ K t 2 .  Applying [59] to the result of [62] and per- 
forming some algebraic manipulations, we arrive at 

where the argument of the wave functions in the numerator is the 
same as that of the denominator. Now recalling the Wronskian 
relation for the Coulomb wave functions 

FbCo - FOG;, = 1 
and recalling that . 
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TABLE 1. Eigenvalues and normalization constant for the Dirichlet case D 
0 

(focal length = 1 m) 

100 MHz 250 MHz 500 MHz 

n An N i n  N Xn N 

1 0.5083 1.4072 -0.7868 1.5105 - -2.8482 1.2835 
2 2.5904 1.0893 0.3574 1.6910 -1.3326 1.6026 
3 5.8261 0.9063 1.6424 1.4426 -0.2952 1.8698 
4 10.240 0.7925 3.3919 1.2568 0.5911 1.8304 
5 5.6191 1.1289 1.6480 1.6289 
6 8.3209 1.0340 2.9597 1.4781 $5 
7 4.5213 1.3657 
8 6.3269 1.2770 
9 8.3735 .1.2043 

TABLE 2. Eigenvalues and normalization constant for the Neurnann case 
(focal length = 1 rn) 

100 MHz 250 MHz 500 MHz 
E T R  

n Xn N Xn N Xn . N FIG. 2. Eigenfunctions for Dirichlet conditions. Frequency = 100 
MHz; focal length = 1 rn. 0: Xn = 0.50833, N = 1.40726; A: 

1 -0.2853 1.2951 -1.7051 - 1.1 140 -4.1067 ' 0.9635 . kn = 2.59043, N = 1.08930; +: in = 5.82614, N = 0.90634; x: 
2 1.4408 1.2257 -0.1828 1.6856 -2.0163 1.4433 . = = 0.79249. 
3 4.1050 0.9839 0.9510 1.5658 -0.7743 1.7475 
4 7.9360 0.8433 2.4663 1.3383 0.1426 1.8993 
5 4.4589 1.1868 1.0895 1.7245 
6 6.9264 1.0779 2.2746 1.5466 o 

0 
7 9.8667 0.9945 3.7134 1.4177 
8 5.3987 1.3186 
9 7.3261 1.2387 

10 9.493 1 1.1722 o 
(0 

0 

TABLE 3. Eigenvalues and normalization constant for the Robin case 
(focal length = 1 m) DZ 

d .  

co 

100 MHz 250 MHz 500 MHz . 
U 
Z 
3 
L O  

n Xn N X n N Xn N w 3  ~ " l  
0 ' 

1 0.1161 1.4991 -1.1043 1.4409 -3.2193 1.2492 , 
2 1.8132 1.2051 0.0852 1.7392 -1.6168 1.5560 
3 4.5313 0.9782 1.2410 1.5298 -0.5186 1.8323 
4 8.3900 0.8414 2.81 13 1.3210 0.3580 1.8864 
5 4.8424 1.1784 1.3408 1.6894 
6 7.3367 1.0734 2.5666 1.5256 

0 

7 10.2960 0.9920 4.0379 1.4048 o 

8 5.7492 1.3102 - 
9 7.6977 1.2330 0. 00 0. 30' 0.60 0.90 1.20 1.50 

E T R  
10 9.8820 1.1682 

FIG. 3. Eigenfunctions for Neurnann conditions. Frequency = 100 
MHz; focal length = 1 m. 0 :  Xn = -0.28530, N = 1.29514. A: 

we see that An = 1.44084, N = 1.22575; +: An = 4.10496, N = 0.98391; X: 
An = 7.93603, N = 0.84328. 

HA' F~ - F a o '  = (Gb + iFA)Fo - Fb(Go + iFo) 

= G P O  - GoFb= - 1  
Thus [63] becomes This can be recognized as the generalized Fourier transform 

of the function on the left with the Fourier coefficient being 
Bn enclosed in the brackets. Therefore, using the orthogonality 

[@I 
WE property of the regular Coulomb wave functions, which was [ I  de"ed previously, we can obtain the coefficients Bn. Multiply- 

ing [@] by ( 2 / z )Fo( -Cn /4K) ,  z ) ,  where 2 = !iKq2, and 
integrating over .the range 0 < z < 20, where zo = 1 ~ ~ 6 ,  we 
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then the equations for the coefficients simplify to 

x l , , , , ,  - 
'0.00 0.30 0.60 0.90 1.20 1.50 

E T R  

FIG; 4. Eigenfunctions for Robin conditions. Frequency = 100 
MHz; focal length = 1 m. 0: A, = 0.11608, N = 1.49910; A: 
A, = 1.81315, N = 1.20509; +:A, = 4.53125, N = 0.97824; X: 

A, = 8.39000, N = 0.84139. 

where N ,  represents the normalization constant for each eigen- 
value. 

For a current ring, J+(q) can be expressed as 

where JIM, represents the magnitude of the current flowing in 
the loop. Substitution of this into [65] yields 

[67] B, = i 4 K ~  
W C N ~  . 

and from [59] 

[68] A, = i 4 K ~ 1 ~ p m  Fo (2 , Kq*2) HA 
W E N :  

As can be seen from [67] and [68], the series coefficients An and 
B, are only functions of the eigenvalue, as the notation used 
(n subscript) would imply. If JIoop is set to 

and 

These equations have been used to calculate the first 
few coefficients for a paraboloid with a focal length equal to 
1 m and source frequencies of 100,250, and 500 MHz. These 
are the same frequencies for which the eigenvalues were 
calculated in the previous section. Calculations have been 
made for a current ring of radius 0.5 m located in the plane of 
the focal point. This current ring can be represented by letting 

1 1 
[* = - and q*  = - . Note that both coordinates have the 

.\/z .\/z 
same value because 'the ring is located in the focal plane. The 
coefficients for the Dirichlet boundary condition are shown in 
Table 4 for all three.frequencies. The Neumann and the Robin 
boundary-condition cases are also shown in Tables 5 and 6, 
respectively. 

As seen in the tables, the coefficients become smaller as the 
mode number n increases. This is expected as similar results 
appear in conical and other waveguides. Thus, only the first few 
modes actually propagate down the waveguide with the higher 
order modes being highly attenuated. 

6. Application to the paraboloidal reflector 
Up to now, the fields inside an infinite paraboloid have been 

determined. The logical step now is to consider the finite 
paraboloid and to determine the fields exterior to it. The 
paraboloidal reflector is treated as an aperture antenna, and the 
field-equivalence principle or Huygens' principle is used to 
determine the far field from the antenna. The far field is 
represented in spherical coordinates (r,  0, 4) and is plotted as a 
function of 0. Of course, the assumption of symmetry of the 
fields with respect to + is still made so that the field expressions 
of the previous sections can be used. Thus, the far-field patterns 
are also symmetric in +. 

The problem of the finite paraboloid with current-loop 
sources about the axis of symmetry can be transformed into an 
equivalent problem by considering the closed surface S shown 
in Fig. 5. This surface S is made up of the finite paraboloid itself 
plus the paraboloidal aperture surface described by 5 = to for 0 
< q < yo. The outward normal on the aperture surface is given 
by ri = tig. The fields outside the surface S are denoted by E l  and 
H I  while the fields inside are denoted by E and H. The 
equivalent problem of Fig. 5 is shown in Fig. 6. The original 
current-loop source that was interior to the closed surface S is 
removed with equivalent sources JS(t0, q )  and M,(SO, q )  placed 
on the surface 5 = 50. The current on the outside walls of the 
finite paraboloid is assumed to equal zero. A form of the 
equivalence principle, known as Love's equivalence principle 
(see ref. 6) is now used, which sets the field inside the surface S 
equal to zero. The equivalent sources are given by 

and 
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TABLE 4. Eigenvalues and series coefficients for the Dirichlet case (focal length = 1 m) 

100 MHz 250 MHz 500 MHz 

An Bn l i  An Bn/ i  An Bnl i  

0.5083 0 . 8 3 1 5 ~  lo-' -0.7868 0 . 9 1 3 4 ~  lo-'  -2.8482 0 .3022~  lo-' 
2.5904 0.3975x 0.3574 0.2402 -1.3326 -0.1819 
5.8261 -0 .1634~ 1.6424 -0 .2067~ lo-' -0.2952 -0.3992~ lo-' 

10.2400 -0.3671 X 10-l2 3.3919 -0 .7448~ 0.5911 -0.2203 
5.6191 0 . 3 6 4 8 ~  1.6480 - 0 . 5 8 5 6 ~ 1 0 ~ ~  
8.3209 0.3667x lo-' 2.9597 0 . 1 9 1 5 ~  lo-' 

4.5213 -0 .1423~ 
6.3269 -0.2087X 
8.3735 0.5161 x loL7 

TABLE 5. Eigenvalues and series coefficients for the Neumann case (focal length = I m) 

100 MHz 250 MHz 500 MHz 

An B,/i  An Bn l i  An B,li  

-0.2853 0.1300 -1.7051 -0 .3375~  10-I -4.1067 .0 .1927~  lo-' 
1.4408 0 . 1 3 1 3 ~  lo-' -0.1828 0.3030 -2.0163 0 .1485~  lo-' 
4.1050 -0.6222.X lob5 0.9510 0.3765x lo-' -0.7743 -0.2924 
7.9360 --0.5142~ 2.4663 -0.7351.X lo-' 0.1426 0 . 4 0 4 1 ~  10-I 

4.4589 -0.1253 X lo-' 1.0895 -0.2495 
6.9264 0 . 1 9 6 3 ~  2.2746 0 .2932~  lo-'  
9.8667 -0.1071 x lo-'' 3.7134 0 .3661~  lo-' 

5.3987 -0.1221 x 
7.3261 -0.1208~ lo-' 
9.4931 0 . 1 2 6 0 ~ 1 0 - ~  

TABLE 6. Eigenvalues and series coefficients for the Robin case (focal length = 1 m) 

100 MHz 250 MHz 500 MHz 

For El and HI at the surface 6 = to, we use the field that would 
have existed if the paraboloid was infinite. This is standard 
procedure in the analysis of conical horns and is used here 
because of the close resemblance between the problems. Thus 
for the problem of the current loop, the field is TE to the z axis 
and therefore [72] and [73] become 

and 

The far field can now be obtained from the equivalent sources 
by using the standard auxiliary potentials A and F. For far-field 
calculations, we make the usual approximation (given by . 

Balanis (27)). If these approximations and the equivalent 
surface-current expressions are used, then the far-field auxiliary 
potentials can be expressed as 

where 

and 
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t o  far-field Thus the transformation from rotation-paraboloidal com- 
ponents to rectangular components can be writted as 

observation point 
q f  COS +' COS +' 

[821 Jx = vy + dm J, - sin +'J+ 
+'-I 

q '  sin +' 5' sin +' 
J +cos+'J+ rg31 J y =  d m J t  + d m  , 

Y 

[84] J, = 5' 

FLG. 5. Current loop inside paraboloid. 

t o  Far-field 

observatlon polnt 

Aperture surface S 

FIG. 6. Equivalent problem using equivalent current sources. 

where 

[79] LF = IS M, e-ikrcOsl dsf 

where JI is the angle between the vectors r and r', s is the 
paraboloidal surface-, r is the distance from the origin to the 
observation point, r' is the distance from the origin to the source 
point, and R = Ir - rfl. The vectors N A  and LF are sometimes 
called the radiation vectors. 

It should be noted at this point that the relations given by [76] 
and [78] are only valid for the rectangular components of the 

: auxiliary potentials. Thus, the required equivalent sources for 
use in these equations and equations derived from these must be 
expressed in terms of the rectangular components. Because the 
fields we have determined previously are expressed in terms of i rotation-paraboloidal components, it is useful to write the 
rectangular current components for the above equations in terms 
of rotation-paraboloidal coordinates. To accomplish this we 
turn to the law of transformation of vectors (see ref. 3). This law 
states that if we transform the components of a vector F from 
one curvilinear coordinate system (t , ,  t2 ,  t3) with scale factors 
(hl, h2, h3) to another coordinate system (ti, (;, 5;) with 
scale factors (hi, h;, hi), then the components in the new 
system must be related to the components in the old system by 
the relations 

I [801 FA = C ~ n m F m  
m  

where 

Similar results are also obtained for the components of the 
magnetic current density required in [79]. 

As the radiated fields are usually determined in spherical com- 
ponents, the rectangular unit vectors can be transformed into 
spherical unit vectors using the transformation from rectangular 
components to spherical components given by 

ir,=&rsinOcos++ &ecosOcos+ -&+sin+ 

[85] $ = Gr sin 0 sin I$ + cos 0 sin + + &+ cos I$ 

The variables in these expressions are not primed as they were in 
[82]-[84] because there they represented coordinates at the source 
points and in this transformation they represent coordinates at 
the observation points. 

The auxiliary potentials could now be calculated by substi- 
tuting [85] and [82]-[84] into [76] and [78]. Our problem is 
greatly simplified because not all the components of the current 
densities exist. Once the auxiliary potentials have been found, 
the fields can be obtained from the relations 

1 1 
[86] E = - i w A - i - V ( V . A ) - z V ~ F  

WCLE 

and 

It can be shown (see ref. 27, p. 455) that the far field can be 
approximated by the set of relations 

Er(0,+) = 0 

and 

where NA+, NAB, LFer and LF+ are obtained from [77] and [79] 
and are functions of 0 and I$. Thus to obtain the far field, all that 
is required is that we solve [88] and [89]. After all the co- 
ordinate transformations have been applied to the electric and 
magnetic current densities of [74] and [75] and after extensive 
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simplifications, the required radiation vectors can be expressed 

X e i K ~ r l ' ~ d r l r  d+' 

[92] LFO = b / 2'1 % [So cos 0 cos (+ - 0') + y' sin 01 
0 0 

27, % 
[93] LF+ = lo sin (+', - +)Mq(S0, q ') eiK@T;& d+' 

0 

where 

1 EOqr sin 0 cos (+ - +') + (b - T ' ~ )  cos 0 I 
The equivalent current densities can be expressed 'as 

[951 J+(So, T') = H,(So, T') 

x (-A,, !zKqt2) 

and 

1961 M,(SO, q') = E+(b,  T') 

~ h e s e  expressions can now be substituted into [90]-[94] and we 
can express the radiation-vector components, for each mode n ,  
as 

iwe 
[97I NAB. = Bn[o cos eHh'(A., 8 KE;) 

x I:/: sin (+ - Qt)Fo(- A,, $KTr2) eiK@ drll d+' 

iwe 
1981 NA+. = BntoHh'(hn. $Kt;) 

necessary for the first few terms only because the series 
coefficients, B,, converge rapidly. However, the problem with 
the determination of these radiation-vector components is in the 
calculation of the Coulomb wave function of the third kind, 
which is present in all four expressions of [97]-[loo]. Calcula- 
tion of these functions entails calculation of the logarithmic 
Coulomb wave functions, which are in general, very difficult to 
compute. The problem arises because of the need for values of 
the logarithmic function for negative parameters. That is, when 
the eigenvalue A, is negative, which is the case for the first few 
modes, the parameter for which the logarithmic wave function 
must be calculated is also negative as can be seen in the 
expressions. This is not a problem for the regular wave 
functions because we have a series representation that con- 
verges fairly well, but for the logarithmic functions, the series 
representation does not yield to simple computations. The 
alternative naturally would be to integrate the equation, with the 
negative parameter, using a method such as the Runge-Kutta 
method, but this is useless without some initial values for the 
function and its derivative. The function values at the turning 
points, which were used previously, are of no use because these 
are defined for a positive parameter only. The function value at z 
= 0 is defined by [A25], but its derivative, which would also be 
required in the Runge-Kutta technique, is undefined as can be 
seen. from [A26]. There are no other published .results that 
would give us starting values when the parameter 'is negative. 
This is primarily due to the fact that in the field of nuclear 
physics, where these functions are normally encountered, a 
negative parameter has no physical significance. Thus, the 
computation of the exact radiated field would have to be left 
until a useful computation technique is found for calculating the 
logarithmic Coulomb wave function when the parameter is 
negative. Results can be obtained for the 100 MHz Dirichlet and 
Robin cases because all the eigenvalues are positive for those 
cases. 

For now we proceed by calculating the radiation field for only 
one mode in the series expansion, except for the 100 MHz 
Dirichlet and Robin cases as mentioned above. This allows us to 
set the wave function of the third kind to unity in the 
radiation-vector components of [97]-[loo]. 

Once the far field has been calculated from [88] and [89], it is 
a simple matter to calculate the radiation intensity U(0, +). The 
radiation intensity can be formulated from the far-zone electric 
and magnetic field components as 

1991 LFO- = B,H&(A,, $Kt;) where the asterisk superscript denotes the complex conjugate of 
the expression in the brackets. 

x [tacos cos (+ - 4') + T1 sin e]Fo Substituting [88] into [lo11 and normalizing the result, we 
obtain the relative radiation intensity F(8, +) as 

and 

[lo01 LF+" = B,SoHb(A,, &KC,;) 

X 1 2n 1 sin (b' - +)F~(-A,,, 1Kqt2) eiK@drl' d+' 
J O  J O  where Nu is the required normalization constant. 

, The radiation vectors can be obtained from the above expres- The integrals of [98]-[loo] were performed numerically 
sions by applying a summation over n. This should turn out to be using a 20 x 20 point Gauss-Legendre quadrature algorithm. 
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11031 5=50=rlo, O<rl<rlo 
The problem that was solved was for the dominant mode of a 
current loop with a 4 m radius located in the plane of the focal . where qo corresponds to a focal length of 1 m and is related to 

point of the paraboloid. Calculations were performed for all the focal length f by 

three types of boundary conditions and for all three previous [lo41 = fif frequencies of 100,250, and 500 MHz. The exact results for the 
100 MHz Dirichlet case and the 100 MHz Robin case were The relative radiation intensity F ( 8 , + )  was plotted as a function 
obtained, and the relative radiation intensities are shown in Fig. of 8  for theta ranging from 0 to 90" at 3" intervals. Of course, 
7. The size of the paraboloid was chosen to be of 1 m in focal because the fields Were Symmetric in +, the relative radiation- 
length, as in previous calculations. It was also assumed that the intensity function was independent of +, thus to simplify the 
walls of the paraboloid extended up to, but not beyond, the focal equations, we set 4 equal to 0". The three plots corresponding to 
plane. Thus, the aperture surface was described by the coordi- the three boundary conditions for the dominant mode only are 
nate surface shown in Figs. 8-10. 
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As can be seen from Fig. 7, the impedance boundary 
condition has an effect on the far-field radiation pattern. This is 
what we would expect because the field distribution inside the 
paraboloid is changed. Thus it seems that the Coulomb wave 
functions give accurate results for the far field of a current loop 
inside the paraboloid. 

The far-field plots due to the first single mode do not seem to 
tell us too much about the total field. If single modes could be 
excited inside the paraboloid, then these plots could be useful. 
Efficient calculating methods are desperately required in order 
that the total field, such as the one plotted in Fig. 7, may be 
obtained for the general case and thus firmly establish the 
method. 

7. Conclusions 

A method has been presented for the evaluation of electro- 
magnetic fields that i re  independent of 4 inside a paraboloidal 
waveguide. The method makes use of the Coulomb wave 
functions as eigenfunctions for the problem. Although there is 
little available information on the Coulomb wave functions, 
their calculation has been achieved with little effort. The 
procedures main advantage is that it is not restricted to the 
high-frequency case. There are no approximations made in the 
analysis, and except for the assumption that the fields must be 
independent of 4, the analysis is exact. For the case of the finite 
paraboloid, the Kirchhoff approximation is used in the applica- 
tion of Huygen's principle (i.e., the incident field for the infinite 
paraboloid case is used as the Huygen source). 

We have found that a finite impedance on the walls of the 
paraboloid tends to change the far-field pattern. Specifically, the 
far-field pattern seems to be more omnidirectional for the 
impedance case than for the perfectly conducting case. Whether 
or not this is a general result will have to wait until further 
calculations can be made. 

Further study is required into the calculation of the irregular 
Coulomb wave functions for a negative parameter. Once this is 
done and an efficient computing technique is devised, this 
method of solving the paraboloidal problem should yield many 
interesting characteristics. Some of the more important charac- 
teristics that are required are the input impedance of the source 
at the focal point and the difference in radiation pattern due to 
sources, which may be shifted up or down along the axis away 
from the focal plane. 

It is recommended that deep paraboloidal horns be constructed 
and that experimental radiation pattern results be obtained. 
Also, because the paraboloid is Bsymptotica~~y equal to the 
cone, it is suggested that the possible use of the Coulomb wave 
functions for the conical horn problem be investigated. 
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Appendix A 1 
In this appendix, some mathematical properties of the 

Coulomb wave equation and its solution, the Coulomb wave 
functions, will be investigated. These functions will be investi- 
gated in the form of a Sturm-Liouville system, as the ultimate 
goal for their use is as eigenfunctions. 

The notation used here for a regular Sturm-Liouville system 
follows that of Trim (25). and is given by 

The constants h l ,  h2, 1 1 ,  and l2 in the Robin boundary 
conditions are real and independent of the parameter A. The 
functionsp(z), q(z), r(z), and rf(z) are real and continuous over 
the specified interval. Also, it is assumed that p(z) > 0 and r(z) 
> 0 for a < z < b. The parameter A takes on a denumerable set 
of values of A,(n = 1, 2, ...) for which the corresponding 
nontrivial solution of [Al l  is denoted by y,(z) = y(A,, z). The 
y,(z)'s are called the eigenfunctions of the Sturm-Liouville 
system and the An's are the eigenvalues. 

For the case of the Coulomb wave functions and the 
rotation-paraboloidal coordinates, the specific values of the 
functions in the system of [Al l  are provided from [39] where 
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r(z) = 1 .O, p(z) = 212, and q(z) = - 1 .O, where the range of the 
variable z is 0 < z < zo. It is noted that r ,  p,  and q satisfy all of 
the necessary requirements quoted above. For the case of the 
paraboloidal waveguide, there is no boundary condition at z = 
0, but only at z = zo (i.e., at the walls of the paraboloidal 
waveguide). Thus, the singular Sturm-Liouville system 

arises, where at least one of l2 and h2 is not equal to zero. If 
l2 = 0, we have a Dirichlet condition at z = zo. If h2 = 0, we 
have a Neumann condition at z = zo. If both l2 and h2 exist then 
we have a Robin condition at z = zo, which will be necessary 
for the impedance boundary-condition case. Thus, it is necessary 
to obtain numerical results for all three cases. 

The above system of equations [A4]-[A51 is a singular 
Sturm-Liouville system because only one boundary condition 
exists. Thus, the general properties of a regular Sturrn-Liouville 
system cahnot be used without proof. One of the most useful of 
these properties that will be required in later discussion is the 
orthogonality of the eigenfunctions with respect to the weight- 
ing function p(z). 

Consider the eigenvalue-eigenfunction pairs (y,, A,) and 
(y,, A,). The differential equation satisfied by each of these 
eigenvalue-eigenfunction pairs is given by [A4]: 

The following manipulations are now performed: 

Ym[Yi(z) + [ I  + An (a)] Yn(z)} 

Integrating with respect to z over the interval, we get 

Now for orthogonality of the eigenfunctions with respect to 
the weighting function p(z), the right side of the above equation 
must be equal to zero. The first determinant is equal to zero 
because of the existence of the boundary condition at z = zo. 
That is, if one thinks of the boundary equations at z = zo for y, 
and yn as simultaneous equations in I2 and h2, then because 
these equations have nontrivial solutions (i.e., at least one of l2 
and h2 must exist), the determinant must go to zero. The second 
determinant does not collapse to zero as easily as the first 
because there is no boundary condition at z = 0. We find that if 
we examine the properties of the solutions of the Coulomb wave 
equation, we see that one of the solutions is identically zero at z 
= 0. Thus this solution is orthogonal. As will be seen in later 

discussions, the second solution is not appropriate and thus is 
not used in the eigenfunction solution because it produces a 
singularity in the field at z = 0. Therefore the orthogonality of 
the second solution is not required. 

Now that we have established orthogonality it is convenient 
to normalize the eigenfunctions. Thus a normalization constant, 
N, can be defined by 

The eigenfunctions are divided by N to make them orthonormal. 

A . I .  Properties of the Coulomb wave functions 
In this section the properties of the Coulomb wave functions 

are investigated. These properties are results obtained from 
many authors over a number of years (see refs. 28-30). The 
notation used here is that of Abramowitz and Stegun (23), which 
was a compilation of the properties known about the functions 
up to 1965. The results that will be shown here are modified to 
the case where L = 0 so that they can be directly applied to the 
problem at hand. 

The solution of the Coulomb wave equation (see [39]) 
consists of the two solutions given in [41]. In the following 
discussions, the parameter p is used, where p is related to A by 
[40]. The solution Fo(P, z) is called the regular Coulomb wave 
function, while Go(@, z) is called the irregular or logarithmic 
Coulomb wave function. 

A .2. The regular wave function 
The regular Coulomb wave function can be expressed in 

terms of the confluent hypergeometric equation, i.e., 

where 

A more appropriate form for numerical computations is 

where 

and 

The derivative with respect to z of the regular wave function 
can be computed using the relation 

where 

The above series relations were used to compute the regular 
wave function for 0 < z < 5, and for the parameter p ranging 
from $5 to -10. The results were checked with published 
results such as those of the National Bureau of Standards (28) 
and Luk'Yanov et al .  (30). The only source found for negative 
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FIG. A1 . Regular Coulomb wave function, F(n, 2). Parameters: 0, 
n = 1; A, n = 2; +, n = 3. 

values of p was the national Bureau of Standards (28). The 
reason for the scarcity of results in this region is probably that 
negative values of p have no physical significance in the use of 
these functions to express the Coulomb field about a nucleus. 

Unfortunately, the series representations given above cannot 
be used for all values of z and p. For different regions in the z-@ 
plane, different methods of computation must be used (see ref. 
29). One important region in this plane is called the transition 
region or the turning points where z =. 2P. Asymptotic 
expansions for z = 2P > 0 are given by 

and 

For values of z where the series solution was inaccurate, the 
values of the function and its derivative at the turning points 
were used as initial values and the differential equation was 
integrated using the Runge-Kutta-Verner fifth- and sixth-order 
method. The algorithm that was used was from the International 
Mathematical and Statistical Library, 1982. Calculations were 
performed for values of z down from the turning points and up 
from the turning points with a relative accuracy of lo-'. Plots of 
the regular Coulomb wave function and its derivative are shown 
in Figs. A1 and A2 respectively. 

As can be seen from the graphs, at the point z = 0 the regular 
Coulomb wave function takes on the value 

FIG. A2. Derivative'of regular Coulomb wave function, F(n, 2). 

Parameters:O, n-= 1;A, n = 2; +, n = 3. 

[A171 Fo(P,O)=O 

while, not so obviously, its derivative takes on the vaue 

[A181 F6(P, 0) = Co(P) 

A .3. The irregular wave function 
The irregular or logarithmic Coulomb wave function can be 

expressed in terms of the regular wave function as 

where 

and 

where A, is the same coefficient as that used in the series expan- 
sion of the regular wave function given in [A121 and Co(p) is 
given by [A9]. Also we have 

where y is Euler's number, y = 0.577215665. 
Unlike the series representation for the regular Coulomb 

wave function, the above representation is very difficult to use 
in computations. Thus, the differential equation has been 
integrated using the same Runge-Kutta method as for the 
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FIG. A3. Irregular Coulomb wave function, G(n, z) .  Parameters: 0, 
n = I ;  A, n = 2; +, n = 3. 

FIG. A4. Derivative of irregular Coulomb wave function, G(n, z ) .  
Parameters: 0, n = 1;  A, n = 2; +, n = 3. 

regularwave function. The initial values used are also the values 
of the function and its derivative at the turning points, which are 
given by 

[A231 Go(2P) = 1.223404016~"~ 

X [ l +  
0.04959570165 - 0.00888888889 

P4I3 P2 

and 

x [ l -  0.1728260369 + 0.0003174603 174 
PD3 P2 

The irregular wa.ve functions have been calculated for the same 
ranges as for the regular wave functions, and the plots are shown 
in Figs. A3 and A4. 

, At the point z = 0, the irregular wave function can be deter- 
mined from 

and its derivative from 

[A261 Gap, 0) = -03 

A .4. Wave functions of the third kind 
The two solutions Fo(P, z) and Go(@, z) can be combined to . . 

form two alternate solutions, which we shall call Coulomb wave 
functions of the third kind. These new functions are defined as 

and 

[A281 H%P, Z) = Go(P, Z) - iFo(P, Z) 

These functions are useful in terms of their asymptotic repre- 
sentations for large z, for as z gets large, 

[A291 Hg p , z) + eieo 

and 

where 

[A311 80 = z - P In (2z) + arg [T(1 + iP)] 

These functions and the method of defining them are analogous 
to the exponential expansions of the Hankel functions, which are 
defined in a similar way but should not be confused with the 
above functions. 


