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In this paper the use of the finite-difference time-domain technique for the modeling of the seat dip
effect in concert halls is demonstrated. The linear time-domain acoustic partial differential equations
are discretized using a finite-difference technique. The second-order accurate differencing scheme is
time–space centered, and the velocity and pressure are solved on an interlaced mesh. First- and
second-order Mur absorbing boundary conditions, originally formulated for electromagnetic
problems, are adapted to the acoustics case and used to truncate the numerical grid. The technique
is first verified by comparing the numerical results to the analytic solution of a simple point source.
Results from computer simulations of the seat dip phenomena are compared with the findings of
previous studies where measurements had been made on scale models and in real concert halls. The
computer model successfully predicts the effects associated with the source–receiver distance, the
height of the receiver, and the height of the source. ©1996 Acoustical Society of America.

PACS numbers: 43.55.Ka, 43.55.Fw, 43.55.Dr, 43.20.Dk@JDQ#

INTRODUCTION

The computer modeling of room acoustics has been tra-
ditionally limited to the image source method and ray tracing
methods. These are high-frequency techniques which model
the propagation of sound as rays, cones, or images, and gen-
erally do not include diffraction effects. That is, they do not
directly model the wave nature of sound. More advanced ray
tracing techniques do exist which approximate the diffraction
phenomenon.1,2 In order to investigate low-frequency phe-
nomena, scale models are sometimes used. The main prob-
lem with these models is the expense and time required to
obtain accurate results. Thus, it would be valuable to have a
computer modeling technique which can efficiently model
the correct physics of room acoustics based on the governing
partial differential equations.

The partial differential equations governing acoustic
phenomena can be cast in the frequency domain or the time
domain. An important advantage of solving the time-domain
equations is that the complete frequency response, in the
band of frequencies contained in the excitation, can be ob-
tained in one simulation. Furthermore, transient effects are
easily observed in the time-domain approach. Therefore, in
this paper we solve the time-domain partial differential equa-
tions which govern the propagation of acoustic waves.

Two general computational techniques for solving these

partial differential equations are the finite-difference and
finite-element methods. Both provide accurate solutions to
the acoustic equations, but when dealing with room acoustics
the main difficulty in applying either of these methods is the
large amount of computer resources required to obtain useful
results. This is mainly due to the size of the problems en-
countered in room acoustics. In general, finite-element tech-
niques tend to be more computationally demanding due to
the fact that irregular grids, with their associated large com-
putational overhead, can be used to discretize the problem.
Of course, the conforming of grids to object boundaries is a
big advantage in terms of accuracy, but this advantage is not
clear for time-domain problems. This is due to the fact that
irregular grids tend to distort the propagation of acoustic
energy and reduce the accuracy gained by better modeling of
the object boundaries. The overhead required in finite-
element programs generally makes them more demanding on
memory and processing time than finite-difference tech-
niques. Formulating finite-difference methods on irregular
grids is, of course, possible, but it shares many of the same
advantages and disadvantages over simple cubical grid
finite-difference time-domain methods.

Finite-difference techniques which use uniform cubical
grids are more computationally efficient than finite-element
methods. They can be used to solve any of the various forms
of time-domain equations which govern the acoustic field
~i.e., second-order wave equation, first-order Newton and
continuity equations, etc.!.3,4 In this paper we choose to solve
the first-order equations using a second-order accurate differ-
encing scheme which is time–space centered. This time–
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space centering is in the spirit of the Yee algorithm used
extensively in time-domain electromagnetic calculations.5,6

A similar technique to the one presented in this work was
recently derived independently of ours and presented in Ref.
7.

Even for finite-difference techniques the modeling of an
entire concert hall would require more computer resources
than are typically available on engineering workstations. On
the other hand, many low-frequency phenomena which occur
in concert halls can be modeled with modest computer re-
sources. One such phenomena which we investigate in this
study is the seat dip effect which occurs in concert halls.10

I. FINITE-DIFFERENCE TIME-DOMAIN SOLUTION OF
ACOUSTIC EQUATIONS

A. The acoustic equations: Total and scattered field
formulations

If we consider a gas having negligible viscosity, and
assume that perturbations from rest conditions of the field
variables, that is, velocity and pressure of the gas, are small,
then the equations which govern the motion of the gas are
Newton’s equation3

d0 ] tu52“p, ~1!

and the continuity equation

] tp52d0c
2
“–u, ~2!

where the notation]t denotes partial differentiation with re-
spect to time,d0 is the density of the gas at rest,p0 is the
pressure of the gas at rest,g is the ratio of specific heat at
constant pressure to that at constant volume~g51.4 for air at
normal temperature and pressure!, u is the gas particle ve-
locity, andp is the excess pressure~difference between ac-
tual pressure andp0!. The wave velocity is given by

c25g~p0 /d0!. ~3!

This final result can be easily seen, since by differenti-
ating ~2! with respect tot and using~1! we get the wave
equation

¹2p2c22 ] t
2p50 ~4!

for the excess pressure.~A similar equation can be derived
for the velocity u.! Now many numerical techniques for
acoustics start with this second-order wave equation. We
choose to solve the first-order equations~1! and~2! directly.

We first write out the first-order equations in component
form by usingu5uxax1uyay1uzaz , whereax , ay , andaz
are the unit vectors in rectangular coordinates, and we make
the substitutionq52d0

21p which we call the normalized
negative pressure to get

] tux5]xq, ~5!

] tuy5]yq, ~6!

] tuz5]zq, ~7!

] tq5c2~]xux1]yuy1]zuz!. ~8!

The interesting aspect of these equations is that the time
derivative of any velocity component is dependent only on

spatial derivatives of the pressure. Similarly, the time deriva-
tive of the pressure is only related to spatial derivatives of
the velocity. This special structure in the first-order equations
will be taken advantage of to construct a numerical scheme
wherein the velocity and pressure are interlaced in space and
time.

In problems where a known incident field in a homoge-
neous region impinges on physical scatterers, it is more con-
venient to use the scattered field formulation.3,4 In this for-
mulation the total field is split up as the sum of the incident
and scattered field. For example,q5qi1qs, where thei and
s superscripts denote the incident and scattered field, respec-
tively. In the homogeneous region surrounding the scatterers,
the scattered field will satisfy the same equations as the total
field, i.e., Eqs.~5!–~8!. On the other hand, inside simple
penetrable objects, which can be modeled by imposing a
different speed of sound inside the object, or at the bound-
aries of perfectly hard or soft objects, the scattered field will
be coupled to the incident field. For the case of simple pen-
etrable objects, the coupling of the two fields occurs within
the differential equations, whereas for the case of perfectly
hard or soft objects the coupling occurs in the boundary con-
ditions. Thus, for instance, inside a body made of a material
in which the speed of sound within it is given asc1, the
continuity equation for the scattered field becomes

] tq
S5c1

2~]xux
S1]yuy

S1]zuz
S!1~c1

22c2!

3~]xux
i 1]yuy

i 1]zuz
i !, ~9!

where now, since the incident field is given, the second term
on the right-hand side acts as a source term for the scattered
field. Newton’s equations for the scattered field may be
handled by a similar procedure when the density of the scat-
terer,d0, is different than the surrounding medium.

Acoustically hard objects are defined by imposing the
condition that the velocity normal to the boundary goes to
zero. On the other hand, the pressure at the boundaries of
acoustically soft objects goes to zero. Mathematically we
imposen–u50, wheren is the normal to the boundary of
acoustically hard objects, and we imposep50 at the bound-
ary of acoustically soft objects. Note that at the boundary of
stationary hard objects we can equivalently write
n–“p5]np50 from Newton’s law. In the scattered field for-
mulation these simply becomen–us52~n–ui!, ps52pi , and
]np

s5]np
i , where on the boundary the incident field values

ui , andpi would be specified.

B. The finite-difference time-domain scheme

In what follows we approximate the first-order deriva-
tives in equations~5!–~8! by the second-order centered dif-
ference form given by

]j f ~j!uj5j1Dj/25
f ~j1Dj!2 f ~j!

Dj
1O~Dj2!, ~10!

and use the notation

f n~ i , j ,k!5 f ~ iDx, jDy, kDz, nDt ! ~11!

for the grid functionf n( i , j ,k) defined on a grid with space–
time cell sizeDx3Dy3Dz3Dt. We define the grid func-
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tion for negative pressure at the center of a cell and grid
functions for the velocities normal to the faces of the cells.
This configuration is depicted in Fig. 1. If the second-order
finite-difference approximation given in Eq.~10! is used to
approximate the time and space derivatives in Eqs.~5!–~8!,
then we can write

ux
n11~ i !5ux

n~ i !1~Dt/Dh!@qn11/2~ i11/2!

2qn11/2~ i21/2!#, ~12!

uy
n11~ j !5uy

n~ j !1~Dt/Dh!@qn11/2~ j11/2!

2qn11/2~ j21/2!#, ~13!

uz
n11~k!5uz

n~k!1~Dt/Dh!@qn11/2~k11/2!

2qn11/2~k21/2!#, ~14!

qn11/25qn21/21~Dt/Dh!c2~ux
n~ i11!2ux

n~ i !

1uy
n~ j11!2uy

n~ j !1uz
n~k11!2uz

n~k!!, ~15!

where all missing spatial indices are 1/2 indices. For ex-
ample,

qn11/2~ i11/2!⇒qn11/2~ i11/2,j11/2,k11/2!, ~16!

uz
n11~k!⇒uz

n11~ i11/2,j11/2,k! ~17!

and we have chosen a cubical grid such thatDx5Dy5Dz
5Dh.

The above interlaced leapfrog scheme is conditionally
stable with Courant number 1/), which means that the sta-
bility condition

cDt/Dh<1/) ~18!

must be satisfied. The numerical dispersion of this scheme
has been investigated previously.6,7

With the above scheme it becomes a simple matter to
model acoustically hard boundaries where the velocity nor-
mal to the boundary goes to zero and acoustically soft
boundaries where the pressure at the boundary goes to zero.
We align soft boundaries with cell centers and set the pres-
sure there to be zero. We align hard boundaries with cell
faces and either set the normal velocity at that cell face to
zero or we use the condition that the normal derivative of the
pressure be zero. Referring to Fig. 2, the soft boundary is
modeled by setting

qn11/2~ i11/2!50, ~19!

and the hard boundary is modeled by setting

ux
n~ i !50 or qn11/2~ i11/2!5qn11/2~ i21/2! ~20!

for all time stepsn.
Although we do not consider herein specific numerical

examples of simple inhomogeneous materials, wherein the
sound velocity is a function of position, these materials can
be modeled simply by spatially discretizing the velocity pa-
rameterc as c( i11/2,j11/2,k11/2), and the density as
d05d0( i11/2,j11/2,k11/2). Slightly more complicated
formulations would be required for modeling materials ex-
hibiting absorption ~i.e., lossy materials!, but the finite-
difference method could be applied in a similar manner to
those formulations.

C. Absorbing boundary conditions

Since the basic leapfrog scheme is space centered, nu-
merical boundary conditions are required at the boundaries
of the grid. The purpose of these numerical boundary condi-
tions is to absorb the acoustic energy impinging on the
boundaries from all angles, and therefore these conditions
are sometimes called absorbing boundary conditions
~ABCs!. Much research has been performed on absorbing
boundary conditions for wave-type equations.6–9Some of the
characteristics used in judging the performance of ABCs are:
~1! their ability to absorb energy at all angles of incidence;
and~2! their ability to absorb at low as well as high frequen-
cies.

Normally acoustic energy scattered from arbitrary ob-
stacles will impinge on the outer boundary at arbitrary angles
and thus it is important to have boundary conditions which
have good absorption at all angles of incidents. Also, the
point of using a time-domain technique is to obtain wideband
information with one run of the algorithm, and therefore it is
also important that the ABCs absorb well over the whole
range of frequencies which are of interest.

We have implemented both first- and second-order Mur
absorbing boundary conditions which were initially devel-
oped for the Maxwell equations.9 Numerical tests with these
ABCs in the acoustics case generally reveal a better perfor-
mance of the second-order conditions over the first. Of
course the ABCs are not perfect and small numerical reflec-
tions are observed and must be accounted for in numerical
results. A brief review of these absorbing boundary condi-
tions as they are applied to the present acoustic wave case
follows. The details can be found in Mur’s original paper as
well as many other expositions.6,9

FIG. 1. Space-time interlacing of pressure and velocity in the numerical
grid.

FIG. 2. Imposition of boundary conditions for acoustically hard and soft
boundaries.
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If we consider any scalar field~or component of a vector
field!,W, which satisfies the second-order wave equation~4!,
then at the boundaryx50 the Mur first-order and second-
order boundary conditions are

~]x2c21 ] t!Wux5050, ~21!

and

@c21 ]xt
2 2c22 ] t

22 1
2 ~]y

21]z
2!#Wux5050, ~22!

respectively.
These equations are discretized using second-order cen-

tered differences. If we consider one side of our mesh to be
terminated by the planex50, corresponding to the index
i50, where only normal components of the velocity vector
ux exist, then the update equations for the first- and second-
order Mur ABCs~21! and ~22!, become

ux
n11~0!5ux

n~1!1
cDt2Dh

cDt1Dh
„ux

n11~1!2ux
n~0!…, ~23!

ux
n11~0!52ux

n21~1!1
cDt2Dh

cDt1Dh
„ux

n11~1!1ux
n21~0!…

1
2Dh

cDt1Dh
„ux

n~0!1ux
n~1!…

1
~cDt !2

2Dh~cDt1Dh!
„dy

2ux
n~0!1dy

2ux
n~1!

1dz
2ux

n~0!1dz
2ux

n~1!…, ~24!

respectively, where missing spatial indices are half indices,
j11/2 andk11/2, in all terms. The finite-difference opera-
tors dy

2 anddz
2 are second-order centered differences used in

the approximations of the continuous partial derivatives]y
2

and]z
2 where, for example,

dy
2ux

n~0!5ux
n~0,j13/2,k11/2!22ux

n~0,j11/2,k11/2!

1ux
n~0,j21/2,k11/2!, ~25!

dz
2ux

n~1!5ux
n~1,j11/2,k13/2!22ux

n~1,j11/2,k11/2!

1ux
n~1,j11/2,k21/2!. ~26!

Similar expressions can be derived for the absorbing bound-
ary conditions on the remaining five planar sides of the
mesh. On they5constant planar boundaries we terminate
with uy velocity components, whereas on thez5constant
planar boundaries we terminate withuz velocity components.
Note that second-order Mur ABCs cannot be used on the
edges of the mesh due to terms such as those given in~25!
and ~26!. Thus, on the edges we always use first-order Mur
ABCs.

II. EVALUATION-POINT SOURCE IN AN INFINITE
HOMOGENEOUS SPACE

Although the numerical scheme described above can
model various source excitations, from a practical point of
view, in room acoustics it is typical to model sources of
acoustic energy originating from a small sphere or a quasi-
point source. In order to evaluate the leapfrog scheme and

determine the performance of the absorbing boundary condi-
tions for this type of source, we compare the numerical re-
sults of imposing the pressure at a single point in a homoge-
neous mesh to the analytic solution of a small spherical
source radiating in an infinite homogeneous space where the
speed of sound is 343 m/s.

The excess pressure everywhere in a homogeneous infi-
nite space produced by a pressure point-source satisfies the
inhomogeneous second-order wave equation~4!. If we im-
pose the excess pressure as a function of time, sayf (t), on a
small sphere of radiusr 0 centered at the origin, then the
pressure outside this sphere is given by

p~r ,t !5~r 0 /r ! f @ t2~r2r 0!/c#, ~27!

wherer is the radial direction in the mesh.
For our test problem we imposed a time varying pres-

sure at a single point in the grid. We used a grid of size
50350350 havingDx5Dy5Dz55 cm, and imposed the
pressure at the center of the grid, that is, at~i525, j525,
k525!. For this and all numerical results described herein,
the time step was chosen as the upper bound of the Courant
stability limit, ~18!. Thus, for this grid the time step was set
to 84.2ms. The time variation was chosen to be the deriva-
tive of a Gaussian function, given by

f ~ t !522a~ t2b!Ae2a~ t2b!2, ~28!

and the parameters were set toa52.20 5 923106, and
b52.68 3 1831023. The mesh was truncated using the
second-order Mur ABCs and the pressure was sampled at 12
receiver points with coordinates listed in Table I. The geom-
etry of the problem with the 12 receiver locations are shown
in Fig. 3. The time-domain waveform of the imposed pres-
sure is shown in Fig. 4 and the calculated waveforms at the
points P2, P6, and P10~see Table I for the coordinate loca-
tions and distances from the source!, are shown in Fig. 5.
Note the relatively small numerical reflections in the time
range 0.010–0.015 s originating at the mesh boundaries.
These reflections increase in size relative to the size of the
primary waveform as we sample at points closer to the mesh
boundaries. It is thus important to keep the grid boundaries
sufficiently far away from measurement points in order to
reduce the effect of these reflections. The performance of the
Mur ABCs is better for source waveforms having a lower-
frequency content; that is, the magnitude of the reflected
wave would be smaller for a source waveform having the
same amplitude but slower rise and fall times. Better and
more efficient ABCs have been and are continually being
developed by researchers solving wave-type problems.7,9

As well as giving us insight into the performance of the
Mur ABCs for acoustics, our test problem serves to evaluate
how well the algorithm models spherical waves produced by
a transient point source in the mesh. We see from Table I
that a numerical speed equal to the correct speed of 343 m/s
is achieved only along diagonal 2 and only for the positive
peak of the waveform. It is well known that this direction in
the grid gives the best dispersion characteristics when using
the leapfrog scheme.6 The fact that the negative peak seems
to travel at a slightly higher speed is probably due to the fact
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that slower high-frequency waves from the positive peak
have merged with the negative peak and as a result have
broadened it slightly.

The 1/r attenuation of the wave inherent in spherical
waves, as shown in Eq.~27!, can also be checked for the
positive and negative peaks of the waveforms using Table I.
A simple check on the accuracy of the algorithm can be
made by defining the percent error in the attenuation of the
pressure between any two points as

%Error5SR2P2

R1P1
21D100, ~29!

whereR1 andR2 are the distances from the source of the first
and second point, respectively, andP1 andP2 are the calcu-
lated pressures at these points. For example, if we assume
that the source has zero radius then the percent error between
points P9 and P11 can be calculated as 0.169% for the posi-
tive peak. We can also define a numerical radius,r 0, of the

FIG. 4. Imposed pressure at the grid point~25,25,25! in a mesh of size
50350350.

TABLE I. Peak pressures and velocities for a point source in homogeneous medium.

Point

Grid
coordinates
~Dh55 cm!

Distance from
source
~cm!

Pressure~N/m2!
positive peak
negative peak

Time ~ms!
positive peak
negative peak

Avg. Vel. ~m/s!
positive peak
negative peak

Ref. ~25,25,25! 0
126 939 2.188 206 9 -

2126 939 3.198 148 5 -

Horizontal

P1 ~30,25,25! 25
7848.39 2.861 501 3 371.31

28005.88 3.871 442 9 371.31

P2 ~35,25,25! 50
3878.91 3.618 957 5 349.47

23990.01 4.628 899 1 349.47

P3 ~40,25,25! 75
2561.78 4.376 413 7 342.75

22683.02 5.302 193 5 356.46

P4 ~46,25,25! 100
1896.72 5.133 869 9 339.48

22030.26 6.059 649 7 349.47

Diagonal 1

P5 ~30,30,25! 25&
5677.21 3.198 148 5 350.07

25683.99 4.123 928 3 381.90

P6 ~35,35,25! 50&
2823.81 4.208 090 1 353.55

22855.40 5.218 031 7 350.07

P7 ~40,40,25! 75&
1876.94 5.302 193 5 340.61

21916.52 6.227 973 4 350.07

P8 ~45,45,25! 100&
1410.33 6.312 135 2 342.93

21446.74 7.237 915 0 350.07

Diagonal 2

P9 ~30,30,30! 25)
4683.97 3.450 633 9 343.00

24679.53 4.376 413 7 367.50

P10 ~35,35,35! 50)
2345.38 4.713 060 9 343.00

22343.73 5.638 840 7 354.83

P11 ~40,40,40! 75)
1563.96 5.975 487 9 343.00

21562.22 6.901 267 8 350.80

P12 ~45,45,45! 100)
1176.99 7.237 915 0 343.00

21158.60 8.163 694 8 348.81

FIG. 3. Validation problem consisting of a point source radiating in a ho-
mogeneous medium and the points at which the numerical results were
sampled in time.
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point source by imposing that the percent error be zero from
r 0 to another point in the mesh. For example, if we assume
that the percent error is zero at point P11, then we must have

r 05
75)~1563.96!

12 6939
51.6 cm. ~30!

All the points in Table I predict anr 0 of approximately 1.6
cm. Thus, our numerical point source can be thought of as
occupying a sphere having a diameter of about 3.2 cm within
a 5-cm cubical cell of the mesh.

III. SIMULATION OF THE SEAT DIP EFFECT IN A
CONCERT HALL

As an example of a practical room acoustics application
of the finite-difference time-domain method; we examine the
seat dip effect which is frequently found to occur in concert
halls. In 1964, the independent studies of Schultz and
Watters10 and Sessler and West11 demonstrated that sound
waves passing over rows of theatre seats at grazing incidence
are subject to selective attenuation of the low frequencies.
This dip in the low frequencies can be up to 15 or 20 dB and
generally occurs in the frequency range from about 80 to 200
Hz. Both groups concluded that the frequency of the dip is
determined primarily by a vertical resonance in the gaps be-
tween the rows. A horizontal resonance between the rows
was believed to have only a secondary effect. Sessler and
West further concluded that a broadband absorption at fre-
quencies from 80 to 400 Hz results from diffraction of the
sound waves around the upper edges of the seats. More re-
cently, Ishida12 conducted a time-domain experimental in-
vestigation of the seat dip effect using a simplified physical
model. He concluded that the seat dip attenuation was caused
by interference between the direct sound wave and a nega-

tive pressure wave. The negative pressure wave was shown
to be due to the diffraction around the tops of the seat backs.

As such, the underlining mechanisms which create the
seat dip effect make it unsuitable for analysis by ray tracing
or image source methods. Conversely, the seat dip effect
lends itself ideally to analysis by the finite-difference time-
domain method since it is a low-frequency wave phenom-
enon, and it primarily affects the direct sound; so the re-
sponse of the entire concert hall does not need to be
modeled. Therefore, as further validation of our model, we
report the results of simulations conducted to demonstrate
how the finite-difference time-domain method can accurately
predict the various aspects of the seat dip effect.

There have been several previous studies wherein the
seat dip effect has been modeled using theoretical~rather
than scale model measurements! approaches. Andoet al.13

simulated a plane wave passing over a periodic boundary of
infinite length. The authors of that study concluded that the
severity of the seat dip effect could be reduced by using
absorbing floor surfaces. More recently, Terai and Kawai14

used boundary element methods to model various seating
configurations in both two and three dimensions and com-
pared their results to measurements made using scale mod-
els. However, the results predicted by their theoretical model
diverge significantly from the results of their scale model
measurements.

In the present study, two simulations were conducted. In
the first simulation, an omnidirectional point source,S, was
located in the center of the stage at a height of 100 cm above
the floor. In the second simulation the source was set to a
height of 250 cm above the floor. All other parameters were
held constant between the two simulations. A total of 18
receiver locations were distributed throughout the 16 rows of
seats, as shown in Fig. 6. Receiver heights of 110, 200, and
300 cm were used. A detailed view of how the rows were
placed in the finite-difference grid is shown in Fig. 7. The
scattered field formulation was used and an incident pressure
field originating at the source point,S, was assumed with a
time-domain variation given by the derivative of a Gaussian
function.

The cubical grid size used in the simulations was 5 cm,
giving an upper frequency limit of about 1400 Hz. The grid
dimensions were 490370385 for a total grid size of
2 915 500 cells. A time step of 8.41 61831025 s was used in
the simulations which were run for 1500 time steps. There-
fore, the first 126 ms or so of the impulse responses were
calculated. The results of the simulations are shown in Figs.
8, 9, and 10. A very modest smoothing~approximately
1/10th octave! was applied to the curves in these figures and
their levels have been normalized. This was done solely to
improve visual clarity and to make it easier to identify the
center frequency of the dips.

Figure 8 illustrates the effects of the distance from the
source to the receiver on the seat dip effect. The figure shows
the transfer functions from the source to six receiver points
located at different locations among the rows of seats. The
distance from the source to the first receiver was 7 m while
the distance to the last receiver was 18.9 m. The transfer
functions were obtained by taking the Fourier transforms of

FIG. 5. Pressures as a function of time at points P2, P6, and P10 on the
horizontal and diagonal directions.

2209 2209J. Acoust. Soc. Am., Vol. 100, No. 4, Pt. 1, October 1996 LoVetri et al.: Modeling of the seat dip effect



the impulse responses derived from one of the simulations
~source height5250 cm!. The figure clearly shows a dip in
each of the transfer functions in the frequency range between
about 80 and 200 Hz as anticipated.

The figure also shows that the low-frequency dip be-

comes more pronounced~deeper! as the sound wave travels
over more and more rows of seats. This result is in exact
agreement with the findings of both Schultz and Watters, and
Sessler and West. It can be further seen from Fig. 8 that the

FIG. 6. Plan and section views of the 16 row plus stage model used in the simulations showing the source,S and the 18 receiver positions,Rxx. Two source
heights~100 cm and 250 cm! were modeled. Receivers were placed at 110 cm, 200 cm, and 300 cm.

FIG. 7. Rows of chairs modeled in the finite-difference grid. Distance be-
tween rows is 75 cm. The seat thickness is 10 cm and the row height is 75
cm. The receivers which are shown are at a height of 110 cm. Cubical cells
5 cm in size were used.

FIG. 8. Transfer functions from the source to six receiver positions, illus-
trating the effect of distance~or grazing angle! on the seat dip. R12 is
nearest to the source while R62 is furthest from the source.
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frequency of the dip increases as the distance between the
source and the receiver increases. Another way of viewing
this is to note that the frequency of the dip increases as the
grazing angle is decreased. Also, the curves of the figure
show that the dip becomes narrower as the grazing angle is
increased. These related results were found by Schultz and
Watters and by Bradley15 for both scale model measurements
and measurements in real concert halls. Therefore, the com-
puter model using the finite-difference time-domain method
is able to successfully model the seat dip phenomenon and
these three effects due to the source–receiver distance. Inter-
estingly, the theoretical analysis by Andoet al. failed to pre-
dict any dependence of the dip frequency on the grazing
angle even though they simulated a 20° range of grazing
angles~see Fig. 5, Ref. 13!.

In both of the 1964 studies the effect of the receiver
height was examined and it was found that the depth of the

low-frequency dip decreases as the height of the receiver is
increased. Schultz and Watters conducted a more detailed
analysis and their results further show that the frequency of
the dip decreases as the height of the receiver is increased
above the rows of seats. Therefore, the effect of the receiver
height was also examined in the present study. Figure 9
shows the transfer functions from the source to the three
receiver points, R61, R62, and R63 derived from our com-
puter simulations. All three receivers are located in the last
row of seats with R61 at a height of 110 cm, R62 at a height
of 200 cm, and R63 at a height of 300 cm. The simulation
with the source set to a height of 250 cm was used for this
analysis. The curves of Fig. 9 clearly show the depth of the
low-frequency dip decreasing as the receiver height is varied
from 110 cm to 300 cm. Also seen in the figure is the down-
ward shift in the frequency of the dip as the height of the
receiver is increased. These results demonstrate that our
computer model is able to correctly predict these two effects
due to receiver height.

As a final verification of our model’s ability to accu-
rately simulate the various components of the seat dip effect,
we examined the effect of the height of the source. It should
be noted that a change in the source height can be viewed
equivalently as a change in the grazing angle of the sound.
Both Schultz and Watters and Bradley conducted tests to
specifically examine this parameter. In those studies it was
found that an increase in the height of the source resulted in
a decrease in the frequency of the dip. Figure 10 shows the
results of the present study examining the effect of the height
of the source. The solid curve of the figure shows the transfer
function to the receiver point, R61, with the source set to a
height of 250 cm, while the dashed curve is the transfer
function to the same receiver but with the source set to 100
cm. As can be seen from the figure, increasing the height of
the source has resulted in a lowering of the frequency of the
dip. Specifically, the frequency of the dip has gone from
about 175 Hz down to about 150 Hz. Therefore, the effect of
the source height has been correctly predicted by the com-
puter model.

In his 1991 study, Bradley,15 made measurements in a
concert hall to find the relation between the seat dip effect
and the height of the source. He did this for several receiver
positions in the hall. Bradley found that the results for all the
receiver positions could be collapsed into a single trend by
plotting the frequency of the main dip versus the grazing
angle of the direct sound~see Fig. 2, Ref. 15!. The results
from our simulations~receiver height 110 cm! were therefore
plotted in terms of the frequency of the main dip versus the
grazing angle of the direct sound to see if this trend could be
replicated. Figure 11 shows that the results of the present
simulations do indeed display a trend which is very similar
to that found experimentally by Bradley.

The results of the computer simulations demonstrate that
the finite-difference time-domain method was able to suc-
cessfully and accurately predict various aspects of the seat
dip effect. None of these effects can be modeled using either
ray tracing or the image source method. While the intent of
this section was not to contribute new work to the under-

FIG. 9. Transfer functions from the source to three receiver positions, illus-
trating the effect of the height of the receiver on the seat dip.

FIG. 10. Transfer functions from two different source locations to receiver
R61, illustrating the effect of the height of the source on the seat dip.
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standing of the seat dip effect, it is clear that the finite-
difference time-domain method could serve as a valuable
tool in such an effort. The method is useful in the analysis of
any low-frequency phenomenon where the true wave nature
of the propagation of sound in a room is required.

IV. CONCLUSIONS

In this paper a finite-difference time-domain solution of
the acoustic wave equations was derived including expres-
sions for material boundary conditions and absorbing bound-
ary conditions. Second-order Mur absorbing boundary con-
ditions were used and the resulting limitations were
described and demonstrated. The implications of these im-
perfect absorbing boundary conditions were discussed. The
model was validated using the analytical solution of a free
space pressure point source.

Computer simulations of the well-known seat dip effect
in concert halls were conducted using the finite-difference
time-domain method. The results of the computer simula-
tions were compared with the findings of previous studies
where measurements had been made on scale models and in
real concert halls. It was shown that the computer model
successfully predicts the effects of the source–receiver dis-
tance, the height of the receiver, and the height of the source.
The results of the simulations provide further confirmation of

the validity of the model and demonstrate the usefulness of
the method in the analysis of a practical room acoustics
problem. The finite-difference time-domain method is a use-
ful tool in the analysis of low-frequency room acoustic phe-
nomenon where the true wave nature of sound must be ac-
curately modeled.
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