
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 39, NO. 3, AUGUST 1997 189

Explicit Upwind Schemes for Lossy
MTL’s with Linear Terminations

Joe LoVetri and Tibor Lapohos

Abstract—The time domain multiconductor transmission line
(MTL) equations are written as a general first order system of
partial differential equations and a characteristic decomposition
is used to obtain first order and second order accurate upwind
differencing schemes. Linear boundary conditions in the form of
generalizedThéveninequivalent sources are incorporated into the
scheme. These schemes are compared with the standard time-
space centered second order accurate leapfrog scheme where
the current and voltage variables are interlaced in space and
time. For any general explicit numerical scheme, for a given
MTL, only the fastest propagating TEM mode can be solved
for at the Courant limit of the scheme. This causes the other
slower modes to disperse. The results of our comparisons, show
that at the Courant number both upwind schemes produce less
numerical dispersion for the slower propagating modes than the
standard leapfrog scheme under the same conditions. In addition,
the Courant number of the second order upwind scheme is twice
that of the leapfrog scheme. These advantages make the upwind
schemes better tools to model inhomogeneous MTL’s with linear
terminations.

Index Terms—Boundary value problem, initial value problem,
leapfrog, MTL, upwind differencing.

I. INTRODUCTION

T HE EQUATIONS describing the quasi-TEM mode of
propagation [1] in multiconductor transmission lines con-

sisting of lines can be represented as

(1)

where are the per unit length resistance,
conductance, inductance, and capacitance parameter matrices,
respectively, and are the line voltage and current
vectors whereas and are the per unit length
source terms representing the incident electromagnetic field
coupling (subscripts and denote differentiation with respect
to those variables).

Although important from a physical point of view [2], [3],
the frequency-dependence of the losses is neglected and only
DC type losses are considered in this paper. The reason for
this is to ease the design of the numerical schemes and make
possible a good understanding of their properties. The addition
of frequency-dependent losses should be straightforward [4].
Furthermore, the lines are assumedtime invariantanduniform
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with respect to , hence the parameter matrices are constant.
We also assume that the MTL is perfectly shaded from any
external electromagnetic field and thus and are zero. All
schemes presented herein can be extended, in a simple way,
to the case of nonzero external field.

The boundary conditions are represented as generalized
Théveninsources with internal resistance matrices and

for the near- and far-end, respectively. TheThévenin
voltage sources are specified as and . Based
on Kirchhoff’s and Ohm’s law, we can write

(2)

(3)

The partial differential equations in (1), together with
boundary conditions (2) and (3), have been previously solved
using a time-space centered second order accurate leapfrog
scheme where the location of the discretized current vector is
interlaced with the location of the discretized voltage vector
in both time and space [5], [6].

Thus, letting and
represent the interlaced current and

voltage vectors on an MTL which is discretized in cells
of length , the leapfrog update equations are written as

(4)

for current at , and

(5)

for voltage at . At the near-end boundary,
the voltage is updated using

(6)
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and at the far-end boundary

(7)

Although these update equations are simple to use, they
require a large number of points per wavelength in order to
accurately represent the solution of the problem. Our intention
is to develop explicit update schemes that can work with coarse
space and time grids. Furthermore, for efficiency, it is very
important for us to be able to run these schemes at their own
stability limit. The accuracy is very much related to the choice
of at which the scheme is run. TheCourant
stability limit of the leapfrog scheme is given by

where is the maximum velocity of energy propagation on
the MTL. In case of a lossy MTL, the maximum velocity
must be taken as the greatest mode velocity on theequivalent
losslessline.

It is well known that at the “magic” time step [6] where
1 the above leapfrog scheme gives the exact solution

for lossless homogeneouslines where all modes propagate at
the same velocity . For this unique case, even a perfectly
square wave can be exactly propagated on the grid using a
relatively sparse discretization [6].

For lossless inhomogeneous lines there is more than one
speed for the propagating modes and thus theCourantlimit or
“magic” time step can be reached only for the mode traveling
with the maximum velocity. In this case, the leapfrog scheme
requires a fine discretization for an accurate solution. The
slower modes tend to propagate with a significant amount of
numerical dispersion [7]. For lossy lines, different frequencies,
even in the same mode, propagate at different velocities, but
the stability limit of the leapfrog scheme is still governed by
themaximum possiblevelocity on the line which, as mentioned
earlier, is the velocity on the same line when the losses are
set to zero.

In this paper, we derive first and second order accurate
upwind schemes which allow a coarser grid to be used. This
is of great advantage when one requires these schemes for
solving MTL networks containing many MTL’s [8]. In fact,
the computer resource question only becomes an issue for
large networks, but the efficient solution of large networks
is becoming increasingly important in the industry [9], [10].

II. CHARACTERISTIC DECOMPOSITION OR“FLUX” SPLITTING

In order to derive the new upwind schemes, the MTL
equations in (1) can be written as

(8)

where is the generalized solution vector, defined as

and the matrices and are identified as

Letting be the diagonal matrix consisting of the eigenval-
ues of . It can be split up into two other matrices [7], [11],
each containing only the positive and negative eigenvalues

(9)

where

Each eigenvalue of represents a mode velocity in which
waves are propagating to the right and left, right being the
positive direction.

Let and denote the right and left eigenvector matrices
of , respectively, so that . From these
relations, can be split as

(10)

A new characteristic variable, , can be defined as

(11)

where we also have

(12)

and and represent the left and right propagating wave
characteristic variables, respectively.

Using these new variables, the MTL equation (8) can be
written in partially decoupled form as

(13)

whereas in terms of the original solution vector we can write

(14)

This last equation, in which the positive and negative “fluxes”
are split, is the appropriate form which we will discretize using
upwind differencing techniques. The characteristic equation
(13) will be used for the boundary conditions.

III. U PWIND SCHEMES

In this section, first order and second order accurate upwind
differencing techniques are presented. The general theory
related to the consistency, convergence and stability of generic
upwind numerical schemes can be found in [12]–[14] and is
not treated here.
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A. First Order Scheme

A first order scheme is obtained by simply discretizing (14)
such that for the left and right propagating waves forward and
backward spatial difference operators are applied, respectively.
At the same time, for the loss term the trapezoidal rule is
employed. We let and obtain

(15)
in which and denote backward and forward spatial
difference operators. By expanding the spatial operators and
rearranging the above equation, we arrive at the explicit
scheme given by

(16)

Note that in this scheme the discretized voltage and current
vectors arecollocatedat each grid point andnot interlaced.
Also note that this is a one time-step scheme having aCourant
stability limit of .

B. Second Order Scheme

Warming and Beam [13] modified the corrector of the
well known MacCormack scheme so that the whole scheme
becomes second order accurate. This scheme was further
developed by Steger and Warming [11] by incorporating the
flux splitting technique.

Steger and Warming’s procedure is a two step, predictor-
corrector scheme. Applying it to the MTL equation (14) by
simply employing the trapezoidal rule for the lossy term in
both the predictor and corrector, we find

(17)

If we rearrange these two equations we arrive at the fol-
lowing explicit scheme

(18)
The advantage of this scheme is that theCourant number

is 2, i.e. in order to maintain the stability the condition
must be satisfied. However, the accuracy obtained

with this simple use of the trapezoidal rule to take care of the
loss term is not very good and a slight modification is required.

Another difficulty arises in the formulation of the boundary
conditions since the numerical stencil is 5 nodes wide in space.
In other words in order to calculate the scheme makes
use of where . Modifications in order to
incorporateThévenin boundary conditions and increase the
accuracy of modeling the loss term will now be discussed.

IV. I NCORPORATION OFBOUNDARY CONDITIONS

The accurate discretization of the boundary conditions given
by (2) and (3) for incorporation into both upwind schemes
will now be discussed. The resulting formulation is exact
in the case of ahomogeneous losslessline and it is a good
approximation in the case oflossytransmission lines.

A. First Order Scheme

By making use of the characteristic variabledefined in
Section II, we can write (2) at time step as

(19)

where is known.
Letting

(20)

where and are matrices, we can rewrite
(19) as

(21)

Assuming for now that the transmission line islosslessand
, we have the exact relationship

(22)

and we can write

(23)

The characteristic variable is related to by

(24)

where and are block matrices found from

(25)

At the boundary, once the characteristic variable is
calculated using (23) the voltage and the current can then be
obtained from the transformation

(26)

or, more explicitly

(27)

where is given by (24).
At the far-end similar equations can be found. These are

(28)

where we have used the fact that and
.
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The first order upwind method consists of updating all
interior points of the MTL using (16) and updating the end
points using (27) and (28). Although (27) and (28) do not
include contributions due to losses, numerical experiments
have shown the effect to be negligible.

B. Second Order Scheme—Lossless Lines

As it has been pointed out in Section III-B, the second
order scheme (18) uses to calculate .
Since at the near-end boundary and and, at the
far-end, and are “nonexistent,” we make use of
the boundary condition formulation (27) and (28) as follows.
First, calculate , , and , and

then, we can calculate and from ,
using the boundary conditions again. The interior values
and are determined using the predictor equation of the
scheme and field values at time step . Once again,
the formulation is exact, but only in thehomogeneous lossless
case.

First, let us take a look at ahomogeneous losslessline in
which the MTL equations are written as

The “fluxes” can be split so that (see Section II) we obtain

The predictor of the Steger and Warming method [11] is
written as

(29)

where and are the “fluxes.” We rewrite
(29) as

(30)

where the finite difference shift operators are defined as

and

It is not difficult to show that

(31)

and that, therefore, (30) can also be written as

(32)

The exact solution at is given by

(33)

where . Now, from (32) and (33) we conclude
that

(34)

By making use of this final result the following method is
found to deal with the boundary conditions (2) and (3).

1) Calculate using the predictor
of (18).

2) Use (27) and (28) to determine and ,
respectively.

3) Employ (34) to find the exact values
.

4) Use (27) and (28) to determine and , respec-
tively, since and are now known.

5) Determine using the predictor of
(18) and (34).

6) Finally, use the corrector of the second order scheme
(18) to calculate the rest of the , i.e. for

.

This scheme works well forlosslesslines and is in fact exact
for lossless homogeneouslines. Unfortunately, this method
does not work wellif the line is lossy. That is, by simply
adding loss terms using the trapezoidal rule, the scheme does
not give good results. In order to fix this problem, we create
another slightly modified algorithm which is presented in the
next section.

V. SECOND ORDER UPWIND SCHEME—LOSSY LINES

Numerical results have shown that the previously mentioned
second order scheme has problems with the integration of the
lossy term. Therefore the following scheme has been derived
which handles lossy lines as well. Let us consider the Steger
and Warming [11] scheme in case of a lossless line, i.e.,

(35)

From (35) and (34) this scheme can be written as

(36)

Now we add the loss term using the trapezoidal method to
arrive at

(37)

and rearrange these to get

(38)
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Since at theCourantstability limit of 2 of this scheme the
relationship between and is

(39)

It follows that, under the same spatial discretization conditions,
the underlying in (38) is double the value of that in (27)
or (28). Therefore, we rewrite (27) and (28) in order to reflect
this fact

(40)

and

(41)

in which is defined similarly to which in turn is
given by (24). Another needed form of (40) and (41) is when
we write them to calculate and . These are

(42)

and

(43)

in which is defined as

(44)

Equation (38) in combination with (40)–(43) constitute the
update equations of the second order upwind scheme.

The final algorithm becomes the following.

1) Use (38a) to determine , and

use (40) and (41) to determine and .
2) Now that is known for all , use (42) and (43)

to determine and , respectively.

3) Employ (38b) to find the predicted values
.

4) Finally, use the corrector of (38) to calculate the rest
of the , i.e. for , and determine

using (38a).

VI. NUMERICAL RESULTS

All the previously described numerical schemes have been
thoroughly tested. In the following we will show the most
important results we found by numerical testing. Throughout
our MTL testing the lines were not necessarily matched and
attention was placed on solving real life problems.

The very first case we present is a single 1.209445 m long
lossy line, resolved into 34 cells ( ) giving us 35.5719
mm. The line parameters are 0.805969 H/m,
88.2488 pF, 86.207 /m and 0 S/m, and the line is
terminated on both ends in 50 pure resistive
loads.

First, we present the solutions to an initial value problem,
where the initial condition has been set to a centered trape-
zoidal voltage pulse along the line with an amplitude of 1 V,
rising- and falling-edge as wide as one , i.e. 35.5719 mm
and a total width of . The initial line current has been set
to zero everywhere along the line. Under these circumstances,
the wave splits up. The schemes are run at theCourant limit,
i.e. 0.299 ns for the leapfrog and first order upwind
schemes, and 0.599 ns for the second order upwind
scheme. Fig. 1 zooms in on the left propagating wave after
3.599995 ns. We note thatthe differences between the leapfrog,
first order, (16), and second order, (38), upwind solutions are
due to the lossy characteristic of the line, since in the lossless
case there are no differences since all schemes give the exact
solution. The solution given by the first order upwind scheme
differs from that of the leapfrog scheme in an overshoot at the
front of the wave and undershoot at the trailing of the wave.
These differences are not as severe in the case of the second
order upwind scheme. However, there is another discrepancy
between the second order upwind and leapfrog solutions,
namely the low amplitude oscillations left behind the wave.

For the same transmission line a boundary value problem
is presented next. The spatial discretization is the same as
before, i.e. 34 cells ( 35.5719 mm). Initial conditions
are set to zero and the near-end load resistance is replaced
with a Théveninvoltage source with an internal resistance of

50 . The Théveninvoltage source is a trapezoidal
pulse with a 1 V amplitude, ( 0.299 ns) rise and
fall-time and is 12 ns long. From Fig. 2 we can see that the
first order upwind method returns the same type of over- and
undershoots as in the initial value problem. Furthermore, it is
to be noted that in the second order upwind case the over- and
undershoots disappear but, due to the low resolution and the
lossless line formulation of the boundary conditions, the wave
amplitude is a bit above its real value. These inaccuracies are
peculiar to applying upwind to a single line and disappear
when applying the schemes to general,-conductor MTL’s.
In any case, we are not proposing to use upwind scheme for a
single line where there is only one mode of propagation and
the leap-frog scheme suffices.

It is interesting to see, that even at low resolution, all these
differences among the three solutions vanish in the case of
MTL’s with more than two conductors. For example, in the
case of a homogeneous lossy line with the parameters

Length m

H/m

pF/m

/m

S/m

cm (20 cells)

theCourant limit gives us ns for the leapfrog and
first order upwind schemes, and ns for the second
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Fig. 1. Initial value problem: two-conductor line, wave propagating to the left.

Fig. 2. Boundary value problem: two-conductor line, far end voltage.

order upwind scheme. We choose theThéveninsources to be

ns
ns and Peak V

V

and

V

( and denote the rise-, fall- and peak-time of the
trapezoidal pulse, respectively). The far-end cross-talk is found
to be almost exactly the same by all three techniques (see
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Fig. 3. Boundary value problem: three-conductor homogeneous lossy line.

Fig. 3). It is very important to note that, in all cases presented
so far there has been only one modal velocity andall schemes
have been run at their Courant limit.

The reason the upwind methods have been developed for
solving MTL’s is to reduce, possibly eliminate, the numerical
dispersion which occurs in the leapfrog solution, when the line
is inhomogeneous i.e. the different modes do not propagate
with the same speed. These examples will be considered next.

Let us consider a three-conductor lossless transmission line
with

Length m

H/m

pF/m

The two modes of this line propagate at the speeds
3.16163 10 m/s and 6.32326 10 m/s, respectively,
of which the greater value is used to find that 1.581463
ns, for the leapfrog and first order upwind schemes, and
3.162 925 ns, for the second order upwind scheme if 10
cm (equivalent to 20 cells). We note that in this example the
difference between the two modal velocities is 50%, which is
a significant value.

If the terminal conditions are given by theThéveninsources
with the parameters

ns
ns and Peak V

V

and

V

the far-end crosstalk voltages given by the three methods are
as shown in Fig. 4.

The three methods compare in a similar fashion even if the
line is lossy. Such a case is displayed in Fig. 5, where a lossy
characteristic of

m

and

S/m

has been added to the line of our previous example and the
same terminal conditions have been applied.

The differences between any two of the three methods are
so obvious that they hardly need any comments. In case of
the leapfrog scheme, the slower propagating modes introduce
a very significant amount of numerical dispersion, which is
not the case in any of the upwind schemes. From these
comparative plots one can also see that the second order
upwind scheme has a superior accuracy to that of first order
upwind scheme.

By increasing the rise- and fall-time of the imput pulse to
3.2 ns, thereby making the pulse more realistic, we

obtain the results shown in Figs. 6 and 7 for the lossless and
lossy cases, respectively. The conclusions in these two cases
are the same as before.
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Fig. 4. Boundary value problem: three-conductor inhomogeneous lossless line (tr = tf = 0.8 ns).

Fig. 5. Boundary value problem: three-conductor inhomogeneous lossy line (tr = tf = 0.8 ns).

It is a fascinating fact that all three schemes tend to
behave similarly as the difference between the modal velocities
vanishes. Such an example is given next (we have already
seen that, in the case of a homogeneous MTL, where we have
only one mode of propagation, the characteristics of the three
schemes are extremely close to each other).

Figs. 8–11 display the far-end cross-talk occurring in a
three-conductor, lossy transmission line with

Length m

H/m
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Fig. 6. Boundary value problem: three-conductor inhomogeneous lossless line (tr = tf = 3.2 ns).

Fig. 7. Boundary value problem: three-conductor inhomogeneous lossy line (tr = tf = 3.2 ns).

pF/m

/m

S/m

and

S/m

By choosing a spatial discretization of 20 cells ( 10
cm), at theCourant limit we find that for the leapfrog and the
first order upwind schemes 0.3983 ns, whereas for the
second order upwind scheme 0.7966 ns. TheThévenin
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Fig. 8. Comparison of boundary value problems formulated with first order upwind and leapfrog methods: three-conductor lossless ribbon cable.

Fig. 9. Comparison of boundary value problems formulated with first order upwind and leapfrog methods: three-conductor lossy ribbon cable.

sources are

ns
ns and Peak V

V

and

V

The speed of the fastest propagating mode has been de-
termined to be 2.5166 10 m/s. The slower speed
being 2.323 96 10 m/s, hence there is a relative difference
of speed of 7.655%. This quite small difference of speed is
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Fig. 10. Comparison of boundary value problems formulated with second order upwind and leapfrog methods: three-conductor lossless ribbon cable.

Fig. 11. Comparison of boundary value problems formulated with second order upwind and leapfrog methods: three-conductor lossy ribbon cable.

large enough for the leapfrog scheme to produce significant
dispersion. This phenomenon occurs regardless of the lossy or
lossless nature of the MTL.

As the test results show, the first order upwind scheme
works very well for both lossless (Fig. 8) and lossy (Fig. 9)
inhomogeneous lines.

Satisfactory results have been obtained with the second
order upwind scheme also (Figs. 10 and 11). From these and
several other test results we conclude that the second order
upwind scheme follows more accurately the leapfrog solution
while causing less dispersion. However, at very low resolution
a tiny offset can be noticed in the amplitude of the waves which
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essentially is due to the integration method of the line losses
and partially is due to the approximate formulation of the
boundary condition. This can be observed by comparing the
lossy (see Fig. 10) and lossless (see Fig. 11) solutions of this
scheme. Once again, a bit higher spatial resolution eliminates
this problem.

VII. CONCLUSION

As it has been pointed out in [7] already, the upwind
schemes have the advantage of producing significantly less
dispersion than the leapfrog scheme. In addition to the for-
mulation of the initial value problem presented in [7], a
good approximation of the boundary value problem has been
successfully formulated and implemented. Many test cases
have been analyzed for the numerical schemes and the ma-
jority have shown the superiority of the upwind schemes in
many respects (speed, numerical dispersion). An “intelligent”
algorithm, which would select the most appropriate method
to solve the differential equations based on the nature of the
problem and the results shown in this paper is proposed. This
would have the result of minimizing the number of spatial
discretization points required and would lead to a much more
efficient solution for MTL networks. As future work, in terms
of improving the upwind schemes, the inclusion of external
field coupling to transmission lines is proposed.
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