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Explicit Upwind Schemes for Lossy
MTL’s with Linear Terminations

Joe LoVetri and Tibor Lapohos

Abstract—The time domain multiconductor transmission line with respect tar, hence the parameter matrices are constant.
(MTL) equations are written as a general first order system of \We also assume that the MTL is perfectly shaded from any
partial differential equations and a characteristic decomposition external electromagnetic field and thus andi; are zero. All

is used to obtain first order and second order accurate upwind h ted herei b tended. i imol
differencing schemes. Linear boundary conditions in the form of SCN€MES presented herein can be exiended, in a simpie way,

generalizedThéveninequivalent sources are incorporated into the 10 the case of nonzero external field. _
scheme. These schemes are compared with the standard time- The boundary conditions are represented as generalized
space centered second order accurate leapfrog scheme whereThéveninsources with internal resistance matricBg,, and

the current and voltage variables are interlaced in space and Ry, for the near- and far-end, respectively. THbévenin

time. For any general explicit numerical scheme, for a given | ified d d
MTL, only the fastest propagating TEM mode can be solved VOItdge sources are specifie ag,(t) and vy (t). Base

for at the Courant limit of the scheme. This causes the other 0N Kirchhoff's and Ohm'’s law, we can write
slower modes to disperse. The results of our comparisons, show

that at the Courant number both upwind schemes produce less vo + Rynio = v, 2
numerical dispersion for the slower propagating modes than the R ein = 3
standard leapfrog scheme under the same conditions. In addition, VN = BrflN = Vr§. (3)

the Courant number of the second order upwind scheme is twice
that of the leapfrog scheme. These advantages make the upwind The partial differential equations in (1), together with

schemes better tools to model inhomogeneous MTL's with linear poundary conditions (2) and (3), have been previously solved
terminations. using a time-space centered second order accurate leapfrog
Index Terms—Boundary value problem, initial value problem, scheme where the location of the discretized current vector is

leapfrog, MTL, upwind differencing. interlaced with the location of the discretized voltage vector
in both time and space [5], [6].
. n+1/2 er/ -
|_ INTRODUCT|ON Thus, Iett|nglji—l//2 ~ 1((] =+ 1/2)A.’L’, (71 =+ 1/2)At) al’ld

- . v = v(jAz,nAt) represent the interlaced current and
HE EQUATIONS describing the quasi-TEM mode Ofvoltage vectors on an MTL which is discretized M cells

r ion [1] in multicon r transmission lin n- . .
sistin% %a?\?[aiol IEn]es calrJ1 tbcg rg;fetge;tae dsasss ° es co of length Az, the leapfrog update equations are written as

. . L R\ '[{L R\.._

Liy+ Ri+v,=v sntl/2 Lo I L B\im-1y2

{cvt—t+av+im:ifc @ 2 T At At 2 )l
1

; 1 -
(v Y L ont1/2 n—1/2
whereR, G, L, C are theM x M per unit length resistance, Az (Vﬂ+1 VJ) + 2 (ij+1/2 + ij+1/z)} 4)
conductance, inductance, and capacitance parameter matrices,
respectivelyy(z,t) andi(z, t) are the line voltage and currentfor current atj = 0,---, N — 1, and

vectors whereas ;(x,t) andi;(z,¢) are the per unit length
. L. . . -1
source terms representing the incident electromagnetic field it = <£ G) K C G)v"

coupling (subscripts andz denote differentiation with respect i T \at 2 At 2)9

to those variables). 1 g1z ongiyzy - Liomat o on
Although important from a physical point of view [2], [3], - E(lj-i—l//Q - lj—l//Q) + §(lfj+ +1fj):| ()

the frequency-dependence of the losses is neglected and only

DC type losses are considered in this paper. The reason figf voltage atj = 1,---, N — 1. At the near-end boundary,

this is to ease the design of the numerical schemes and mgke voltage is updated using
possible a good understanding of their properties. The addition
of frequency-dependent losses should be straightforward [4]. - <C aQ R;i)* [Rill( -

n
Furthermore, the lines are assuntide invariantanduniform Voo =\ Ar + 9 + Az Agp WViIn + VTn)
C G Rp 2,
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and at the far-end boundary whereu(z, t) is the generalized solution vector, defined as

_1y 1 v

Cc G R R-L u= < )

n+1l __ Tf Tn n+1 n
= (G 1) [ o) i
e and the matricesi and B are identified as
¢ @ Tf) n 2 412 -1 -1
<At 2 Az Az / A= -1 o B = 0 I-1p )
+3 ({5 + 1}})} . (7)  Letting A be the diagonal matrix consisting of the eigenval-

ues of A. It can be split up into two other matrices [7], [11],

Although these update equations are simple to use, theé@ch containing only the positive and negative eigenvalues
require a large number of points per wavelength in order to A=A +At 9)
accurately represent the solution of the problem. Our intention
is to develop explicit update schemes that can work with coansbere
space and time grids. Furthermore, for efficiency, it is very _

. , _ _(x 0 +_ (0 0

important for us to be able to run these schemes at their own AT = o o) AT = 0 A/

stability limit. The accuracy is very much related to the choice

of At/Az = o at which the scheme is run. ThHeourant Each eigenvalue ofi represents a mode velocity in which

stability limit of the leapfrog scheme is given by waves are propagating to the right and left, right being the
positive direction.
OVUmax < 1 Let ® and ¥ denote the right and left eigenvector matrices

of A, respectively, so thall = &~!, ¥ A® = A. From these
wherevy,,y is the maximum velocity of energy propagation omelations, A can be split as
the MTL. In case of a lossy MTL, the maximum velocity,

_ -1
must be taken as the greatest mode velocity oretiévalent A= QAP
losslessline. =®(A” +AT)P!
It is well known that at the rhagic’ time step [6] where —OA P! L OATH !

ov = 1 the above leapfrog scheme gives the exact solution

for lossless homogeneolises where all modes propagate at

the same velocity. For this unique case, even a perfectly A new characteristic variabley(z, t), can be defined as

square wave can be exactly propagated on the grid using a

relatively sparse discretization [6]. W= <W_> + < 0 ) — Tu (11)
For lossless inhomogeneous lines there is more than one 0 w

speed for the propagating modes and thusQberantlimit or  \yhere we also have

“magic time step can be reached only for the mode traveling

with the maximum velocity. In this case, the leapfrog scheme u=9ow (12)

requires a fine discretization for an accurate solution. The = n _ .

slower modes tend to propagate with a significant amount §fdw~ andw™ represent the left and right propagating wave

numerical dispersion [7]. For lossy lines, different frequenciegr“"‘r"’_‘ae”s’tIC vanables,. respectively. i

even in the same mode, propagate at different velocities, buPS'”g thesg new variables, the MTL equation (8) can be

the stability limit of the leapfrog scheme is still governed b)\;vrltten in partially decoupled form as

=A" + AT (10)

the r_naxi_mum possipleelocity on the Iing which, as mentioned w, + Aw, = —UBdw (13)
earlier, is the velocity on the same line when the losses are
set to zero. whereas in terms of the original solution vector we can write

In this paper, we derive first and second order accurate _ i _
upwind schemes which allow a coarser grid to be used. This u + (A7 + AT)u, = —Bu. (14)

is of great advantage when one requires these schemesqigg |ast equation, in which the positive and negative “fluxes”
solving MTL networks containing many MTL's [8]. In fact, 4y gpit, is the appropriate form which we will discretize using

the computer resource question only becomes an issue {g8{ind differencing techniques. The characteristic equation
large networks, but the efficient solution of large network(slg) will be used for the boundary conditions.
is becoming increasingly important in the industry [9], [10].

Ill. UPWIND SCHEMES

Il CHARACTERISTIC DECOMPOSITION OR*FLUX” SPLITTING In this section, first order and second order accurate upwind
In order to derive the new upwind schemes, the MTdifferencing techniques are presented. The general theory
equations in (1) can be written as related to the consistency, convergence and stability of generic

upwind numerical schemes can be found in [12]-[14] and is
u; + Au, +Bu=0 (8) not treated here.
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A. First Order Scheme Another difficulty arises in the formulation of the boundary

A first order scheme is obtained by simply discretizing (yﬁonditions since the numerical stencil is 5 nodes wide in space.
: : i +1
such that for the left and right propagating waves forward afid otherT:/vords in order to calculate™" the scheme makes
backward spatial difference operators are applied, respectivél§® Ofuj,; where: = —2,.., 2. Modifications in order to
At the same time, for the loss terfu the trapezoidal rule is incorporate Thévenin boundary conditions and increase the
employed. We letr = At/Az and obtain accuracy of modeling the loss terBu will now be discussed.

1
Wit = u? _ U(A"'Vu? + A—Au;?) _ §AtB(u? +u?+1) IV. INCORPORATION OFBOUNDARY CONDITIONS

! 15 The accurate discretization of the boundary conditions given
in which V and A denote backward and forward spatiaPy (2) and (3) for incorporation into both upwind schemes
difference operators. By expanding the spatial operators aiftf now be discussed. The resulting formulation is exact
rearranging the above equation, we arrive at the expliéit the case of chomogeneous lossleise and it is a good

scheme given by approximation in the case ddssytransmission lines.
-1 A. First Order Scheme
u*tl = <1 + ﬁf;) {(1 - gB)u? , L . . .
/ 2 2 By making use of the characteristic variatie defined in

Section I, we can write (2) at time step+ 1 as
(1 Rp,)@witt = vt (19)
Note that in this scheme the discretized voltage and currgiere v+l is known.
n

vectors arecollocatedat each grid point andot interlaced Letting
Also note that this is a one time-step scheme haviG@gparant

- ol o ) 4w - w)] [ as)

stability limit of ovpa, < 1. ©n =1 Rrn)®=(On On) (20)
where ©,,, and ©,, are M x M matrices, we can rewrite
B. Second Order Scheme (19) as
Warming and Beam [13] modified the corrector of the On, Wy 40, wi = vt (21)

well known MacCormack scheme so that the whole sche%e ing f that the t ission line liss| d
becomes second order accurate. This scheme was furfhgrtmng for now that the rans_m|SS|_on Inelassiessan
= 1, we have the exact relationship

developed by Steger and Warming [11] by incorporating tH&”

flux splitting technique. wy =wi (22)
Steger and Warming’s procedure is a two step, predictor- )

corrector scheme. Applying it to the MTL equation (14) bnd we can write

simply employing the trapezoidal rule for the lossy term in War”“ =0;! (V;z:;l - @nlwl—”)_ (23)

both the predictor and corrector, we find

(W = — o [A+Vup + A= Auw]
—3BAt(u} +ujt)

W = g )

The characteristic variabler; ~ is related tou} by
Wl_n = (\Ifll \Iflg)llrf (24)

whereW¥;; and ¥, are block matrices found from

J — 17)
—ZAT(Vujtt — V2ur) = @11 il’z) =oL. (25)
_% = (Au?"'l — AQU?) 21 22
n+1
{ —3AtB(ujt +u}). At the boundary, once the characteristic variaplg” " is

O(i:cllculated using (23) the voltage and the current can then be

If we rearrange these two equations we arrive at the fobtaine d from the transformation

lowing explicit scheme et .
(  ntl L -1 z n ntl = (I) WO n = (I) W]31 26
W= (144871 3B wtmo(The ) =e(jEe) e
o4 (uj_l_ uf ) + A7 (ufy, —up)]} or, more explicitly
W= (14 408) (g + w )
+ (i nt+L n+l n n n n+l _ wy "
—cA (0 —u T —ul, +2u  —u? n
(Wi~ —JAthQBu’? _’H i) wherew] s given by (24).
¥ / (18) At the far-end similar equations can be found. These are
The advantage of this scheme is that eurantnumber o7l (vt o, wt”
. . . . . . . n f: y—
is 2, i.e. in order to maintain the stability the condition uitt = ‘1’< n wa w N 1)> (28)
N-1

Umax0 < 2 mMust be satisfied. However, the accuracy obtained "
with this simple use of the trapezoidal rule to take care of thehere we have used the fact thatf; = w}_, and
loss term is not very good and a slight modification is require®; = (0, ©.) = (1 — Ry;)®.
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The first order upwind method consists of updating all 2) Use (27) and (28) to determing]*/? and uy"'/?,

interior points of the MTL using (16) and updating the end respectively.
points using (27) and (28). Although (27) and (28) do not 3) Employ (34) to find the exact values’*"/?, j €
include contributions due to losses, numerical experiments {12, N —2 N — 1}.

have shown the effect to be negligible. 4) Use (27) and (28) to determing ™! andu’y™, respec-
tively, sinceu} /% andu’s+Y/* are now known.

B. Second Order Scheme—Lossless Lines 5) Determineu;“’l, j € {1,N — 1} using the predictor of
As it has been pointed out in Section IlI-B, the second (18) and (34).

order scheme (18) uses}_,,---,uj,, to calculateu}“rl. 6) Finally, use the corrector of the second order scheme

Since at the near-end boundawy, and u”; and, at the (18) to calculate the rest of tha?*l, ie. forj =

far-end,uy,; anduy , are “nonexistent,” we make use of 2, ,N =2

the boundary condition formulation (27) and (28) as follows. This scheme works well folosslessines and is in fact exact

First, calculateup ™%, ul™/2, wttY/? and u™/?, and for lossless homogeneolisies. Unfortunately, this method

then, we can calculatat! andu’i+! from w2, uxjr_ll/Q does not work wellif the line is lossy That is, by simply
using the boundary conditions again. The interior vaIu@tl addin.g loss terms using the trapez_oida! rule, the scheme does
andu;t, are determined using the predictor equation of tHeot give good results. In order to fix this problem, we create
scheme and field values at time stept+ 1/2. Once again, another slightly modified algorithm which is presented in the

the formulation is exact, but only in tHeomogeneous losslessnext section.

case.
First, let us take a look at homogeneous losslefige in V. SECOND ORDER UPWIND SCHEME—LOSSY LINES
which the MTL equations are written as Numerical results have shown that the previously mentioned

u, + Au, = 0. second order scheme has problems with the integration of the
_ _ _ lossy term. Therefore the following scheme has been derived
The “fluxes” can be split so that (see Section Il) we obtain which handles lossy lines as well. Let us consider the Steger

w, + (AT + A )u, = 0. and Warming [11] scheme in case of a lossless line, i.e.,
The predictor of the Steger and Warming method [11] is “?H =uj - U[A+_V“? + A~ Auf]
written as witt = L (] + u}“rl)_1 (35)
— n n a n+ n
W = - o[ V(E) + AET)] (29) = AT (V™ - Vi)
_ — ZAT(Aultt — A%un).
wherefT = Atu andf~ = A~u are the “fluxes.” We rewrite 2 J J
(29) as From (35) and (34) this scheme can be written as
oy n 7 _n 7 _n n+1/2 — a n — n
Wit =+ o [S_(£7) -S4 (f7) - £ +£7] (30) “L_‘_%;g@ﬁVW+Azmﬂ
n+1l _ n n
where the finite difference shift operators are defined as u = 2u, Lo - _ (36)
u}”’l = u?"’ /2 _ AT (Vu?"'l - V2u})

| S_(VJ) =V;_1 and S+(Vj) = Vjt1. _ %A_ (AUF _ AQUZL)
It is not difficult to show that Now we add the loss term using the trapezoidal method to

—f 7 = — A} (31) arrive at
and that, therefore, (30) can also be written as 'U?H/Q =uj - %(AJrvu? + A_Au?)
n+l 4+ _n _ %%B(u,’? + u,’”’l/Q)
wH = w4 o [S_(E7) - SL(67) - [Aw}]. (32) T e ity
. . . J - ey ) o
The exact solution at + 1/2 is given by = u?+1/2 _ At (Vo - vRu) (37)
n o . _n o A= ( AgTH n
VAR S1S-(67) = 54(67)] (33) — A~ (Au T - A?un)
L _ l&B(un—l—l + ur}-l-l/?)
wherevAt/Az = 2. Now, from (32) and (33) we conclude 22 Y Y
that and rearrange these to get
wi = w4 2w oug (W = (14 48) " [(1- 4B
= —u’ +2u" 2 (34) _ —5(4 Vui 44 Au?)]
’ ’ wt = ot t/2 _yn
By making use of this final result the following method is el (1J+ MB)_f[(l At )y (38)
found to deal with the boundary conditions (2) and (3). W= i = - 42& b
1) CaIcuIateu}“rl, j=1,---,N —1 using the predictor - 34 (VuJ_H - VQUJ)
of (18). L — AT (AufT — A?u})].

~
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Since at theCourantstability limit of 2 of this scheme the First, we present the solutions to an initial value problem,
relationship betweer\t and Az is where the initial condition has been set to a centered trape-
At 9 zoidal voltage pulse along the line with an amplitude of 1 V,
— = . (39) rising- and falling-edge as wide as oder, i.e. 35.5719 mm
AT VUmax and a total width o6Az. The initial line current has been set
It follows that, under the same spatial discretization condition®, zero everywhere along the line. Under these circumstances,
the underlyingAt in (38) is double the value of that in (27)the wave splits up. The schemes are run atGbarantlimit,
or (28). Therefore, we rewrite (27) and (28) in order to refle¢te. At = 0.299 ns for the leapfrog and first order upwind
this fact schemes, and\t = 0.599 ns for the second order upwind
scheme. Fig. 1 zooms in on the left propagating wave after
w2 = <I>< P n ) (40) 3.599995 ns. We note thtite differences between the leapfrog,
O ( Tn = O Wi ) first order, (16), and second order, (38), upwind solutions are
and due to the lossy characteristic of the line, since in the lossless
1/ ntl/2 4 case there are no differences since all schemes give the exact
w2 = <1><@f1 (vry J; OpwWr_1) ) (41) solution The solution given by the first order upwind scheme
differs from that of the leapfrog scheme in an overshoot at the
front of the wave and undershoot at the trailing of the wave.
These differences are not as severe in the case of the second
€rder upwind scheme. However, there is another discrepancy
between the second order upwind and leapfrog solutions,

n

Wn_1

in which w;"  is defined similarly tow; "~ which in turn is
given by (24). Another needed form of (40) and (41) is wh
we write them to calculatey ™ anduy™. These are

w2 namely the low amplitude oscillations left behind the wave.
uptt = ‘1>< Cfna _nt1/2 ) (42) For the same transmission line a boundary value problem
O (VTn = Om Wy ) is presented next. The spatial discretization is the same as
and before, i.e. 34 cells4z = 35.5719 mm). Initial conditions
oL (yn+l e are set to zero and the near—en_d Ioad_ resistance_ is replaced
wit = <I>< A (VTf _n(?f;zzWN_l )) (43) with a Théveninvoltage source with an internal resistance of
w}_l Ry, = 50 Q. The Théveninvoltage source is a trapezoidal
pulse with a 1 V amplitude2At (At = 0.299 ns) rise and
in which w"""* is defined as fall-time and is 12 ns long. From Fig. 2 we can see that the
e ntl/2 first order upwm_d metho_d_ returns the same type of over- _ar_1d
W] =V VYioug . (44) undershoots as in the initial value problem. Furthermore, it is

) ) o ) ) to be noted that in the second order upwind case the over- and
Equation (38) in combination with (40)-(43) constitute thgnqershoots disappear but, due to the low resolution and the
update equations of the second order upwind scheme. |oggless line formulation of the boundary conditions, the wave

The final algorithm becomes the following. amplitude is a bit above its real value. These inaccuracies are
1) Use (38a) to determina}‘*l/Q, j=1,---,N—1,and peculiar to applying upwind to a single line and disappear
use (40) and (41) to determim%‘*l/Q and u;\fjrl/Q_ when applying the schemes to generiﬁl—,condu_ctor MTL's.
2) Now thatu*/2 is known for allj, use (42) and (43) Ir) any case, we are not proposing to use upwind scheme for a
to determineu’+* andu”!, respectively. single line where there is only one mode of propagation and

i ) — the leap-frog scheme suffices.
o _
3) Employ (38b) to find the predicted valueg™, j = It is interesting to see, that even at low resolution, all these

L, N = 1. differences among the three solutions vanish in the case of
4) Finally, uEle _the corrector of (38) to calculate th? "RTL's with more than two conductors. For example, in the
of thle wi™, e forj =2,...,N -2 and determine ..o of 5 homogeneous lossy line with the parameters
u;*t, j e {1,N — 1} using (38a).
Length=1m
VI. NUMERICAL RESULTS 7 — (07474635 0.5070094 LHIm
. . . 0.5070094 1.014018
All the previously described numerical schemes have been
thoroughly tested. In the following we will show the most = < 22.494 —11-247> pF/m
important results we found by numerical testing. Throughout —11.247  16.581
our MTL testing the lines were not necessarily matched and R= 10 5 a/m
attention was placed on solving real life problems. A5 10
The very first case we present is a single 1.209445 m long 0 0
lossy line, resolved into 34 cella\i) giving usAz = 35.5719 G= <0 0) S/m

mm. The line parameters ark = 0.805969 H/m, C =

88.2488 pF.,k = 86.207¢}/m andG = 0 S/m, and the line is
terminated on both ends iRr,, = Rr; = 5012 pure resistive the Courantlimit gives usA¢ = 0.166 ns for the leapfrog and
loads. first order upwind schemes, adt = 0.333 ns for the second

Az =5 cm, (20 cells)
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Fig. 1. Initial value problem: two-conductor line, wave propagating to the left.
Far end
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Fig. 2. Boundary value problem: two-conductor line, far end voltage.

order upwind scheme. We choose fhi@veninsources to be and

RTn

VTn

50 0
=By = <0 50) @

-

t, =1ty = 0.334 n§
t, =12.5ns and Peak=1V
ov

}

0
vVry = <0> V

(¢, ty and ¢, denote the rise-, fall- and peak-time of the
trapezoidal pulse, respectively). The far-end cross-talk is found
to be almost exactly the same by all three techniques (see
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Far end, passive line
M T T T v
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Fig. 3. Boundary value problem: three-conductor homogeneous lossy line.

Fig. 3). It is very important to note that, in all cases presenteshd

so far there has been only one modal velocity attdchemes N 0 Vv

have been run at their Courant limit 7= \o
The reason the upwind methods have been developed for

solving MTL'’s is to reduce, possibly eliminate, the numericahe far-end crosstalk voltages given by the three methods are

dispersion which occurs in the leapfrog solution, when the lings shown in Fig. 4.

is inhomogeneous i.e. the different modes do not propagaterhe three methods compare in a similar fashion even if the

Let us consider a three-conductor lossless transmission Igyracteristic of

with
Length=2m Ro <10 5 ) Q/m
L (303 01) 5 10
=lo1 10)#M and
0 0
(50 =5 G = < ) S/m
C= <_5 100) pF/m 0 0

The two modes of this line propagate at the speeds—
3.16163x 10" m/s andv, = 6.32326x 10" m/s, respectively,
of which the greater value is used to find thst = 1.581463

has been added to the line of our previous example and the
same terminal conditions have been applied.

. X The differences between any two of the three methods are
ns, for the leapfrog and first order UPW'nd schemes,.;and: so obvious that they hardly need any comments. In case of
3.162925 ns, for the second order upwind scherggait= 10 the leapfrog scheme, the slower propagating modes introduce

cm (equivalent to 20 cells). We note that in this example ﬂ?ae very significant amount of numerical dispersion, which is

. e o .
d'ﬁ?reT‘Fe between the wo modal velocities is 50%, which Kot the case in any of the upwind schemes. From these
a significant value.

If the terminal conditions are given by tAdéveninsources comparative plots one can also see that the second order
. 9 y upwind scheme has a superior accuracy to that of first order
with the parameters .
upwind scheme.
. (50 0 By increasing the rise- and fall-time of the imput pulse to
Brp =Rpy = DAY . O
0 50 t. =ty = 3.2 ns, thereby making the pulse more realistic, we
t, =t;=0.8ns obtain the results shown in Figs. 6 and 7 for the lossless and
Vrn = < t, =30 ns, and Peak=1V ) lossy cases, respectively. The conclusions in these two cases
oV are the same as before.
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Far end, passive line
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Fig. 4. Boundary value problem: three-conductor inhomogeneous lossless;line ¢; = 0.8 ns).
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: J L : ‘upwind 2 oo h
B fomoee AT p -----------------------
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Fig. 5. Boundary value problem: three-conductor inhomogeneous lossytline- (t; = 0.8 ns).

It is a fascinating fact that all three schemes tend to Figs. 8-11 display the far-end cross-talk occurring in a
behave similarly as the difference between the modal velocitiggee-conductor, lossy transmission line with
vanishes. Such an example is given next (we have already
seen that, in the case of a homogeneous MTL, where we have
only one mode of propagation, the characteristics of the three 7 = (07485 0.5077%
0.5077 1.0154 )
schemes are extremely close to each other). : :

Length=2m
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Fig. 6. Boundary value problem: three-conductor inhomogeneous lossless;line ¢; = 3.2 ns).
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Fig. 7. Boundary value problem: three-conductor inhomogeneous lossytline= (t; = 3.2 ns).
37.432 —18.716 ‘=3, and
C = < ) F/m Er b
—18.716 24.982 o=10"% S/m
R= <1r0 0 ) Q/m By choosing a spatial discretization of 20 cell&s« = 10
5 10 cm), at theCourantlimit we find that for the leapfrog and the

G =

< 14.1115 —7.0558

197

S/m first order upwind schemedt = 0.3983 ns, whereas for the
—7.0558 9418 ) second order upwind scheng = 0.7966 ns. Thé&hévenin
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Far end, passive line
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Fig. 8. Comparison of boundary value problems formulated with first order upwind and leapfrog methods: three-conductor lossless ribbon cable.
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Fig. 9. Comparison of boundary value problems formulated with first order upwind and leapfrog methods: three-conductor lossy ribbon cable.

sources are

Rry, = Ry = <0

Vrn = {

50 0
50) &
t7,2tf20.8 ns
t, =30 ns, and Peak=1V
oV

}

and

0
Vry = <0> V.

The speed of the fastest propagating mode has been de-
termined to bev = 2.5166 x 10°* m/s. The slower speed
being 2.32396x 10° m/s, hence there is a relative difference
of speed of 7.655%. This quite small difference of speed is
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Far end, passive line
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Fig. 10. Comparison of boundary value problems formulated with second order upwind and leapfrog methods: three-conductor lossless ribbon cable.
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Fig. 11. Comparison of boundary value problems formulated with second order upwind and leapfrog methods: three-conductor lossy ribbon cable.

large enough for the leapfrog scheme to produce significantSatisfactory results have been obtained with the second

dispersion. This phenomenon occurs regardless of the lossyoder upwind scheme also (Figs. 10 and 11). From these and

lossless nature of the MTL. several other test results we conclude that the second order
As the test results show, the first order upwind schenupwind scheme follows more accurately the leapfrog solution

works very well for both lossless (Fig. 8) and lossy (Fig. 9hile causing less dispersion. However, at very low resolution
inhomogeneous lines. a tiny offset can be noticed in the amplitude of the waves which
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essentially is due to the integration method of the line losseg] D. Mardare and J. LoVetri, “The finite-difference time-domain solu-
and partially is due to the approximate formulation of the tion of lossy MTL networks with nonlinear junctionsJEEE Trans.

L. hi b b db . th Electromag. _Compat.vol. 37, pp. 252-259, May 1995. )
boundary Co_nd|t|0n- This can be o served by comparing th@) a. k. Goel, High-Speed VLSI Interconnections: Modeling, Analysis and
lossy (see Fig. 10) and lossless (see Fig. 11) solutions of this Simulation New York: Wiley, 1994.

scheme. Once again, a bit higher spatial resolution eliminat@dl T- K. Tang and M. S. Nakhla, “Analysis of high-speed VLSI inter-
this problem connects using the asymptotic waveform evaluation technid&gE
| .

Trans. Computer-Aided Desigmol. 11, pp. 341-352, Mar. 1992.

[11] J. L. Steger and R. F. Warming, “Flux vector splitting of the invicid
gasdynamic equations with applications to finite-difference methods,”
J. Comput. Phys.vol. 40, pp. 263-293, 1981.

. . . . [12] K. W. Morton and D. F. MayersiNumerical Solution of Partial Differ-
As it has been pomted out In [7] already’ the upwmél ential Equations Cambridge, U.K.: Cambrigde Univ. Press, 1994.

schemes have the advantage of producing significantly lgs% R. F. Warming and R. M. Beam, “Upwind second-order difference

dispersion than the leapfrog scheme. In addition to the for- Schemes and applications in aerodynamic flowsAA J, vol. 14, no.
lati f the initial val bl qi 9, pp. 1241-1249, Sept. 1976.

mulation of the Initial value problem presented in [7], 814] B. Gustafsson, H. O. Kreiss, and J. Olig&ime Dependent Problems

good approximation of the boundary value problem has been and Difference Methods New York: Wiley, 1995.

successfully formulated and implemented. Many test cases

have been analyzed for the numerical schemes and the ma-

jority have shown the superiority of the upwind schemes in

many respects (speed, numerical dispersion). An “intelligent”

algorithm, which would select the most appropriate methc

to solve the differential equations based on the nature of t

VII. CONCLUSION
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