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in Fig. 4 for the normal incidence. The agreement is quite good. FO6] R. J. Langley and E. A. Parker, “Equivalent circuit model for arrays of

the gridded-square array, over 20-dB attenuation is achieved at the square loops,Electron. Lett, vol. 18, pp. 204-296, 1983. _

second harmonic (4.9 GHz), and for the double-square array, ov }] — ”Double-square frequency selective surfaces and their equivalent
. . ., circuit,” Electron. Lett. vol. 19, pp. 675-676, 1983.

10-dB attenuation are achieved at both the second (4.9 GHz) and thifg{ ¢ . Lee and R. J. Langley, “Equivalent-circuit models for frequency-

harmonics (7.35 GHz). The insertion loss at 2.45 GHz for both the = selective surfaces at oblique angles of incidenBegt. Inst. Elect. Eng.

gridded- and double-square arrays is less than 0.5 dB. The gridded- vol. 132, pt. H, no. 6, pp. 395-399, June 1985.

square array was also tested with a rectenna array. The efficienél '\E"L 'SD‘;?LZ; Mslinliﬁlﬁt'ioil-ngrzgde}r(ﬁ: )\/Ns.eilqe?tlit\alré Eurféctgn(%'gé) i”s‘ijng

. 0 : LA ,

of the rectenna decreases approxmately 1% when the FSS is addt_ad, 3D-TLM,” in Proc. Comput. ElectromagApr. 1996, 352-357.

and the second-order harmonic (4.9 GHz) from the rectenna array1g] |. Anderson, “On the theory of self-resonant gridB&ll Syst. Tech. ,J.

reduced approximately 10-15 dB, depending on the distance between vol. 54, no. 10, pp. 1725-1731, Dec. 1975.

the rectenna and FSS arrays. There are two ways to simultaneodél} M. J. Archer, “Wave reactance of thin planar strip gratingsit. J.

suppress the second- and the third-order harmonics. One is to use E/€ctron. vol. 58, pp. 187-230, 1985.

two gridded-square arrays with their center frequencies at 4.9 and

7.35 GHz, respectively, and another is to merely use a double-square

array. Taken into account the reduction of the rectenna efficiency,

due to the insertion loss of the FSS at 2.45 GHz, it may be better
to merely use a double-square FSS array for suppressing both the Comparison of the Transmission-Line Matrix and

second- and third-order harmonics. , Finite-Difference Time-Domain Methods for a
The frequency response of a gridded-square array for oblique Problem Containing a Sharp Metallic Edge
incidence were also measured. The measured frequency response are

shown, in Fig. 5 .for .obllque |nc.|den(;e .Of a TE- or TM'pma”Z?q\leil R. S. Simons, Riaz Siushansian, Joe LoVetri, and Michel Cuhaci
plane wave, and in Fig. 6 for oblique incidence when the transmitter

is a circularly polarized conical-spiral antenna and the receiver is

a linearly polarized horn antenna. As expected from the theory, théypciract—we compare Yee's finite-difference time-domain (FDTD)

response are sensitive to the incident angle for a TE- or TM-polarizggy symmetric condensed-node transmission-line matrix (SCN—TLM)
incident wave, but relatively insensitive for a circularly polarized incisolutions for a cavity containing a metallic fin. Differential equation-

dent wave. Thus, for effectively suppressing the harmonics radiatiBased numerical methods are known to produce inaccurate results for

P : : is type of problem due to the rapid spatial variation of the field
by the FSS array, it is hoped that the circularly polarized wave 1idt%stribution in the vicinity of the singularity at the edge of the metal fin.

used for microwave power transmission. This problem is relevant to the analysis of structures of practical interest
such as microstrip and coplanar waveguides. Based on simulations, it is
IV. CONCLUSIONS determined that for identical discretizations, SCN-TLM is more accurate

) ) . ) than FDTD for this problem. We interpret this result as an indication
By using an equivalent-circuit model, the gridded- and doubleénat the symmetric condensed representation of fields (used within the

square FSS arrays have been designed and measured for microvishé-TLM) lends itself to a more accurate algorithm than the distributed

power transmission systems, where the pass of 2.45 GHz and ?fggesentation used by Yee. We estimate that the FDTD method requires

L . .33 times more cells for a given three-dimensional problem than the
rejection of 4.9 and/or 7.35 GHz are required. When the FSS Wehsmission-line matrix (TLM) method (1.49 times more cells per linear

added, over 10 dB of attenuation of the second harmonic (4.9 GHfihension of the problem) in order to achieve the same accuracy. If
radiated from the rectenna array is obtained and the conversiee consider the requirements to update and store a single TLM or
efficiency of the rectenna decreases approximately 1%. It is algBTD cell, we find the SCN-TLM algorithm is more efficient than

found that, for a combination of TE- and TM-polarized waves d e Yee FDTD algorithm in terms of both computational effort and
! memory requirements. Our conclusions regarding computational effort

a circularly polarized wave, the angular sensitivity of the FSS arraygy memory requirements are limited to problems with homogeneous
could be improved. material properties.

Index Terms—Electromagnetic fields, electromagnetic transient analy-
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TABLE |
I y TLM AnD FDTD SOLUTIONS FOR THE RATIO b/ X FOR THE
b d I . VARrious Gap AND CELL SizES
| Gap Size, d (mm) | Al (mm) TLM FDTD
< > z 12 1.0 0242158 0.241394
a=2b 12 0.5 0.243048 0.242621
) ) ) ) ) 12 0.25 0.243225 0.243198
Fig. 1. Cross section of a perfectly conducting cavity possessing sharp 1 0125 0243603 0243501
metallic edges.
10 1.0 0.233557 0.232428
10 0.5 0.234811 0.234224
In this paper, we investigate the relative accuracy of the Yee 10 0.25 0.235278 0.235085
FDTD and SCN-TLM [3] methods for problems that contain sharp 10 0.125 0.235526 0.235569
metallic edges. The accuracy of solutions to this problem is relevant 8 1.0 0.221736 0.220270
to practical applications such as the modeling of microstrip and 8 0.5 0.223341 0.222639
coplanar-waveguide structures. The specific problem we examine 8 0.25 0.224134 0.223799
is a perfectly conducting cavity with metal fins. For this problem, 8 0.125 0.224283 0.224354
the transmission-line matrix (TLM) method is known to shift the 6 1.0 0.206632 0.204856
frequency-domain characteristics of the solutions [4]-[6]. As will be 6 0.5 0.208656 0.207795
shown in this paper, these errors also occur in FDTD simulations. 6 0.25 0.209766 0.209254
These errors are due to the inability of both methods to accurately 6 0.125 0.210492 0.209866
model the rapid spatial variation of the field distribution in the 4 1.0 0.187707 0.185391
vicinity of the singularity at the edge of the metal fin. Both TLM 4 05 0.190297 0.189144
and FDTD are second-order methods. Although the geometry of this 4 025 0191564 0.190952
problem is simple, it isolates the error caused by the metallic edge, 4 0.125 0.192104 0.191843
referred to agsoarseness errgfrom other sources of error. Dispersive
errors have been investigated in [7], where a comparison of different TABLE I

finite-difference algorithms is provided.

Methods have been proposed for overcoming the inaccuracies
described above. In [4], the structure was analyzed for a few different
mesh sizes, and the resultant solutions extrapolated to the limit of GapSize,d(mm) | TLM (Al —»0) | FDTD (A/—0) | Benchmark Solution

TLM AnD FDTD PREDICTION OF b/ A FOR Al — 0 AND THE
BENCHMARK SOLUTION FOR VARIOUS GAP SIZES

an infinitely fine mesh. In [5], a local mesh modification scheme 4 0.192791 0.192794 0.192792
is provided that eliminates the error from the solution. In [6], a 6 0.210921 0.210648 0.210784
comparison of local mesh modifications and mesh refinement using 8 0.224782 0.224959 0.224870
a graded mesh are presented. Other approaches include the use of —° 0.235831 0.236001 0.235926

12 0.243742 0.243806 0243774

an unstructured mesh in order to increase the physical discretization
in the region surrounding the metallic edge. This allows the second-

order approximation to be applied over shorter physical lengths arI‘ﬁl’the simulations, a few cells are used to model thdirection of

therefore, obtain a more accurate fit to the field distribution. Tl}ﬁe problem: the solution being independent of the number of cells.

FDTD [8, Ch. 11] and TLM [9] methodologies are compatible Withl’ is specific geometry has been previously investigated in [4]-[6].

unstructured meshes. Higher order algorithms would more accuratean order to obtain benchmark solutions for the resonant frequency
predict the rapidly varying field distribution [10]-[13].

. . for various gap sizes, we analyze the problem using both methods
Given that FDTD and TLM do not solve this problem accuratel gap Y P 9

. . . . Yon increasingly finer meshes. We consider cubical mesh sizes of
an opportunity exists to compare their relative accuracy for problergs, — 1.0, 0.5, 0.25, and0.125 mm for both ther- andy-directions

containing sharp field discontinuities. The purpose of this paper 'Phe simulations for these mesh sizes run for 8000, 16000, 32000, and
therefore, to quantitatively determine the relative accuracy of the 500 o steps, respectively. The FDTD algor'ithm is'run at 'the

two methods and, based on this quantitative assessment, COMpRLEE of stability. The predictions fob/ A, where) is the wavelength

colm pSu tattl_onalll resogrces:b th ii v i tigated ﬁﬁgresponding to the first resonance of the cavity, for all of the above
n ection 1, we describe the specilic geometry Investigaled, apfqy, sizes are provided in Table I. For each gap size, we fit a linear

gur?pprltl)lach to Obta'mrt]r? a benchma;l:hso_lruLt;\(/)ln t?j rgTFl)Droblethm. ction, using a least-squares linear regression, to the data points
ection Tll, we compare the accuracy otthe i an metho %rresponding to the values df \ versus cell size. Theg-intercept

and, in Section IV, perform a detailed comparison of the computgg these linear functions is an estimate of the solution ok as

tional resources for this problem. A discussion and conclusions foIIo&/] . 0, an infinitely fine discretized problem. Higher order curve

in Section V. fitting to these data points was also performed, where only a slight
change in the predicted/ — 0 solutions was observed. Shih and
Hoefer have utilized a similar strategy [4]. These estimated values

The cross section of the geometry of the problem is provided are provided in Table 1. We found that the difference between the
Fig. 1. This cross section lies in the-y-plane. The boundaries are Al — 0 solution provided by the TLM and FDTD simulations is
perfectly conducting, with free-space material assumed within thess than 0.16% for all cases. We chose the benchmark solution to
cavity (=., ito, 0 = 0). We consider the specific cage= 32 mm, the problem as the average of the TLM and FDTD estimates. For
b = 16 mm and various gap sizés Solutions for the cutoff frequency the two specific gap sizes common to both our investigation and
of the waveguide defined by the cross section of Fig. 1 are examindtht of Shih and Hoefer [4], our benchmark solution is identical to
The fields do not vary in the-direction at cutoff and, therefore, that provided by the transverse resonance method [4] (data in [4] is
magnetic walls are placed on the minimum and maximusarfaces. provided for four significant figures).

Il. A BENCHMARK SOLUTION
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TABLE IV
D et COMPUTATIONAL REQUIREMENTS OF THETLM AND FDTD ALGORITHMS,
¢ s AS GIVEN IN [8, pp. 64-71]anD [14]

S
|

P TLM* FDTD
* FITD: - gap=.from Add/Subtract 24 24
TLM: gap=4.0mm,
Multiplication 6 6
FDID:  gap=8.0um Stored Coefficients 0 0
T s dn Real Variables 12 6

FDTD: gap=10.0mm
TLM:  gap=8.0mm . . . . . . S .
not including overhead required for the transfer operation (see discussion in Section V)

FDTD:  gap=12.0mm
TLM:  gap=10.0mm

TLM:  gap=120mm

of solution. We expect these ratios to be indicative of the relative
] accuracy of the two methods for problems containing sharp metallic
fins and, therefore, independent of specific problem details such as
gap size. As shown in Table Ill, the ratios do not vary from the
Fig. 2. Comparison of the percentage difference of TLM and FDTD sol&verage value by more thanl11% to +6%. The average value of
tions for b/A from the benchmark solutions versus mesh discretizaidn  ine ratio is 1.49 indicating the FDTD method requires (Z48)
Data provided for various gap sizésTLM (FDTD) data points are connected 3.33 i N s f . th di . | field ) bl
with solid (dashed) lines. . imes more cells for a given three-dimensional field problem
than the TLM method (1.49 times more cells per linear dimension
of the problem).

Percentage Difference from Benchmark Solution
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TABLE Il
SLOPES OF THELINES OF FIG. 3 FOR VARIOUS GAP SIZES
IV. COMPARISON OFFDTD AND TLM COMPUTATIONAL

Gap Size, d(mm) SLOPE, SLOPE,_ SLOPE, . /SLOPE_ REQUIREMENTS
4 0.3282 0.4788 1.458 . . .
p 02573 03422 330 Following [8, pp. 70-71] and [14], the computational requirements

of the two algorithms for a homogeneous problem are provided in

8 0.1671 0.2601 1.557 . e . .
o 0.1196 0.1893 | 533 Table IV. We require a modification of the computational resources
2 0.0802 01233 1539 from [14] to include the computational costs of the TLM transfer

operation. Numerical simulations using our TLM simulation program
on the geometry under study indicate an 11% central processing
unit (CPU) time cost for the transfer event. Therefore, the relative

I1l. CoMmPARISON OF FDTD AND TLM SOLUTIONS number of operations is given b¥4ps = 1.11N&ps. The TLM

A comparison of the FDTD and TLM solutions with the benchmarl?wlgo”thm requires two times the number of real variables per cell,

T’
solution will allow a measure of the relative accuracy of the metho

%SBYTES = 2N{yris. These per-cell comparisons along with the
to be determined. The goal of this comparison is to determinethe ata in Table 11l enable a comparison of the resources of the methods
required by both methods in order to achieve the same accuracy.

a rbthey are applied to a problem possessing sharp metallic edges.
Fig. 2, the percent difference between the FDTD and TLM solution pn5|der a generic problem, the physmql shapg of which is a cube
. . . of size D, by D, by D. meters, which will be simulated fab;
and the benchmark solutions are provided ver&ddor various gap . : . .
. . : A econds. In the previous section, we determined that if we analyze
sizes. It is noticed that error decreases as gap size increases. For [arge

. . e - problem using the TLM algorithm with a cell size &ffv1.m,
gap sizes, the problem approaches that of a simple two dlmensmvr\]Ia will require a FDTD cell size of\rprn = Alria/1.49 to

wavegu!de cross sectl_on. For the case of a S|mple t\_/vo-dlmensm?% ain similar accuracy. The maximum TLM and FDTD time steps
waveguide cross section, the error in the solution is due only fo

. . . ) . o are given, respectively, b
numerical dispersive errors. The inverse of the discretization ratio 9 P Y. by
A/Al is always greater than 64 in our calculations and, therefore, Abpia = 1 Alrim and Atpprp = 1 Al
these errors are minimal. 2 ¢ V3 c

For all A7 considered, TLM is more accurate than FDTD since th’?he number of cells

percent error in the TLM solution is always less than that of the FDTP—)quired by the TLM algorithm, i©), /Al The computational
l /- M,n-

solution. The curves for the smaller gap sizes (corresponding to @ﬁ"ort and memory required by the FDTD algorithm is given by
larger error) appear to be linear. In order to obtain a relative measure

of the TLM and FDTD accuracy, we fit a straight line to these curves CErpro = Nf NENY NENSps
using a least-squares linear regression, and compare the slopes of Mrprp = NN NNy s
the fitted lines. The slopes of these lines represent the increase in
solution error for a given increase ihl. The slopes along with their @nd for the TLM algorithm is given by
ratios are provided in Table Ill. The slopes are greater for the FDTD CErin =N/ NI NTNT NG
method, indicating a larger increase in solution error for the same
increase inAl. Note that the data points, as presented in Fig. 2,
are connected with straight line segments. The lines obtained frgfBmparing the requirements given thérptp = Alpra/1.49 ratio
the linear regression are not provided. Thétercepts of the fitted determined in the previous section, we obtain
linear functions are very small for all gap sizes (less than 0.066).
This indicates the fitted linear functions intersect the point (0, 0), CFErptp = L (1.49)' C Bt = 3.84CErim
indicating the error reduces to zero a¢ — 0. 2+ (L11) '

The ratio of the slopes is equivalentAdy 1/ Alvm, the ratio e _ (1.49)°

. . . MEFDTD —

of cell sizes required by each method to obtain the same accuracy 2

Average value of SLOPE,, /SLOPE, =149

N,/ in the n dimension(n € {x,y,z,t})

1 ATl ATl AT AT
J\'[]‘LJ\/} = j\t j\r [\y _/NT;‘ —/TBYTES'

Mrtim = 1.65MTLMm.
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This indicates that the TLM algorithm is more efficient than th¢l1l] T. Deveze, L. Beaulieu, and W. Tabbara, “A fourth order scheme for
Yee FDTD algorithm in terms of both computational effort and  the FDTD algorithm applied to Maxwell's equations,” IEEE AP-S

: ; ; ; Int. Symp. Dig. Chicago IL, 1992, pp. 346-349.
memory requirements for a problem involving homogeneous mater[%] N. R.yS. Féim(ﬁs arl1d ;g’-\ Sebak “Fo?ﬁth-order in space and second-order
properties and containing a sharp metallic edge. .

in time TLM model,” IEEE Trans. Microwave Theory Techzol. 43,
pp. 437-444, Feb. 1995.
V. DISCUSSION AND CONCLUSIONS [13] G. Haussmann and M. Piket-May, “FDTD M24 dispersion and stability

) ) . in three dimensions,” inl3th Annu. Rev. Progress Appl. Comput.
A comparison of the TLM and FDTD algorithms for the analysis Electromag, Monterey CA, 1997, pp. 82-89.

of a perfectly conducting cavity possessing sharp metallic edges tig4] V. Trenkic, C. Christopoulus, and T. M. Benson, “Efficient computation
been provided. The accuracy of the methods for this geometrically ~&lgorithms for TLM,”inProc. 1st Int. Workshop TLM Modeling—Theory
simple problem is relevant to practical applications such as modeling 2"d Applicat, Aug. 1-3, Victoria, B.C., Canada, 1995, pp. 77-80.
of microstrip and coplanar-waveguide structures. The shift in resonant
frequency observed in the solutions to this problem is due to the
inability of the methods to accurately model the rapid spatial variation
of the field distribution in the vicinity of the singularity at the edge of
the metal fin. We obtain a benchmark solution from which to compar@& New Global Time-Domain Electromagnetic Simulator
our calculations by extrapolating the solutions on meshes of different of Microwave Circuits Including Lumped Elements
cell size to the limit of an infinitely fine mesh. It is interesting to Based on Finite-Element Method
note that the convergence of both the TLM and FDTD methods for
this problem appears to be first order and not second order, as wouldk. Guillouard, M. F. Wong, V. Fouad Hanna, and J. Citerne
normally be expected.

Comparison of the TLM and FDTD predictions of resonant fre-
guencies indicates that in order to achieve the same accuracy, thebstract—This paper proposes an extension of the finite-element
FDTD mesh must be 1.49 times as fine as the TLM mesh (pépe-domain method for the global electromagnetic analysis of complex

; ; ; ; ; inhomogeneous microwave distributed circuits, containing linear or non-
spatial dimension of the problem). Including the computational c:O%Eg.lear Igmped elements. This techniqgue combines Max%vell’s equations

of the algorithms, the FDTD algorithm requires 1.65 times as muéﬂd circuit equations, directly using SPICE software for the lumped
memory, and 3.84 times as much computational effort in order gart. Its validation is performed through the study of a strongly coupled
achieve the same accuracy as the corresponding TLM simulationtwo-element active antenna.
We do not interpret our result as an indication that, in general, TLM |, 4ex Terms—EDTD methods, finite-element method, hybrid tech-
is more accurate than FDTD. It is possible to develop FDTD or TLMiques, nonlinear circuits, time-domain analysis.
algorithms for a variety of different spatial cells. We interpret our
results as an indication that the symmetric condensed representation
of fields used within SCN-TLM is a more accurate representation . INTRODUCTION
than the distributed representation used in the Yee FDTD algorithm.Time-domain numerical methods based on Maxwell's equations
have been widely used to solve transient or wide-frequency-band elec-
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