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in Fig. 4 for the normal incidence. The agreement is quite good. For
the gridded-square array, over 20-dB attenuation is achieved at the
second harmonic (4.9 GHz), and for the double-square array, over
10-dB attenuation are achieved at both the second (4.9 GHz) and third
harmonics (7.35 GHz). The insertion loss at 2.45 GHz for both the
gridded- and double-square arrays is less than 0.5 dB. The gridded-
square array was also tested with a rectenna array. The efficiency
of the rectenna decreases approximately 1% when the FSS is added,
and the second-order harmonic (4.9 GHz) from the rectenna array is
reduced approximately 10–15 dB, depending on the distance between
the rectenna and FSS arrays. There are two ways to simultaneously
suppress the second- and the third-order harmonics. One is to use
two gridded-square arrays with their center frequencies at 4.9 and
7.35 GHz, respectively, and another is to merely use a double-square
array. Taken into account the reduction of the rectenna efficiency,
due to the insertion loss of the FSS at 2.45 GHz, it may be better
to merely use a double-square FSS array for suppressing both the
second- and third-order harmonics.

The frequency response of a gridded-square array for oblique
incidence were also measured. The measured frequency response are
shown, in Fig. 5 for oblique incidence of a TE- or TM-polarized
plane wave, and in Fig. 6 for oblique incidence when the transmitter
is a circularly polarized conical-spiral antenna and the receiver is
a linearly polarized horn antenna. As expected from the theory, the
response are sensitive to the incident angle for a TE- or TM-polarized
incident wave, but relatively insensitive for a circularly polarized inci-
dent wave. Thus, for effectively suppressing the harmonics radiation
by the FSS array, it is hoped that the circularly polarized wave is
used for microwave power transmission.

IV. CONCLUSIONS

By using an equivalent-circuit model, the gridded- and double-
square FSS arrays have been designed and measured for microwave
power transmission systems, where the pass of 2.45 GHz and the
rejection of 4.9 and/or 7.35 GHz are required. When the FSS was
added, over 10 dB of attenuation of the second harmonic (4.9 GHz)
radiated from the rectenna array is obtained and the conversion
efficiency of the rectenna decreases approximately 1%. It is also
found that, for a combination of TE- and TM-polarized waves or
a circularly polarized wave, the angular sensitivity of the FSS arrays
could be improved.

ACKNOWLEDGMENT

The authors acknowledge the advice and assistance regarding
experiments given by T. Miura and H. Kono.

[1] T. K. Wu and S. W. Lee, “Multiband frequency selective surface with
multiring patch elements,”IEEE Trans. Antennas Propagat., vol. 42,
pp. 1484–1490, Nov. 1994.

[2] J. Shaker and L. Shafai, “Removing the angular sensitivity of FSS
structures using novel double-layer structures,”IEEE Microwave Guided
Wave Lett., vol. 5, pp. 324–325, Oct. 1995.

[3] J. O. McSpadden, T. Yoo, and K. Chang, “Theoretical and experimental
investigation of a rectenna element for microwave power transmission,”
IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2359–2366, Dec.
1992.

[4] G. Zarrillo and K. Aguiar, “Closed-form low frequency solutions for
electromagnetic waves through a frequency selective surfaces,”IEEE
Trans. Antennas Propagat., vol. AP-35, pp. 1406–1417, Dec. 1987.

[5] J. Jin and J. L. Volakis, “Electromagnetic scattering by a perfectly
conducting patch array on a dielectric slab,”IEEE Trans. Antennas
Propagat., vol. 38, pp. 556–563, Apr. 1990.

[6] R. J. Langley and E. A. Parker, “Equivalent circuit model for arrays of
square loops,”Electron. Lett., vol. 18, pp. 294–296, 1983.

[7] , “Double-square frequency selective surfaces and their equivalent
circuit,” Electron. Lett., vol. 19, pp. 675–676, 1983.

[8] C. K. Lee and R. J. Langley, “Equivalent-circuit models for frequency-
selective surfaces at oblique angles of incidence,”Proc. Inst. Elect. Eng.,
vol. 132, pt. H, no. 6, pp. 395–399, June 1985.

[9] M. I. Sobhy, M. H. A. El-Azeem, K. W. Royer, R. J. Langley, and
E. A. Parker, “Simulation of frequency selective surfaces (FSS) using
3D-TLM,” in Proc. Comput. Electromag., Apr. 1996, 352–357.

[10] I. Anderson, “On the theory of self-resonant grids,”Bell Syst. Tech. J.,
vol. 54, no. 10, pp. 1725–1731, Dec. 1975.

[11] M. J. Archer, “Wave reactance of thin planar strip gratings,”Int. J.
Electron., vol. 58, pp. 187–230, 1985.

Comparison of the Transmission-Line Matrix and
Finite-Difference Time-Domain Methods for a
Problem Containing a Sharp Metallic Edge

Neil R. S. Simons, Riaz Siushansian, Joe LoVetri, and Michel Cuhaci

Abstract—We compare Yee’s finite-difference time-domain (FDTD)
and symmetric condensed-node transmission-line matrix (SCN–TLM)
solutions for a cavity containing a metallic fin. Differential equation-
based numerical methods are known to produce inaccurate results for
this type of problem due to the rapid spatial variation of the field
distribution in the vicinity of the singularity at the edge of the metal fin.
This problem is relevant to the analysis of structures of practical interest
such as microstrip and coplanar waveguides. Based on simulations, it is
determined that for identical discretizations, SCN–TLM is more accurate
than FDTD for this problem. We interpret this result as an indication
that the symmetric condensed representation of fields (used within the
SCN–TLM) lends itself to a more accurate algorithm than the distributed
representation used by Yee. We estimate that the FDTD method requires
3.33 times more cells for a given three-dimensional problem than the
transmission-line matrix (TLM) method (1.49 times more cells per linear
dimension of the problem) in order to achieve the same accuracy. If
we consider the requirements to update and store a single TLM or
FDTD cell, we find the SCN–TLM algorithm is more efficient than
the Yee FDTD algorithm in terms of both computational effort and
memory requirements. Our conclusions regarding computational effort
and memory requirements are limited to problems with homogeneous
material properties.

Index Terms—Electromagnetic fields, electromagnetic transient analy-
sis, FDTD methods, finline, transmission-line matrix methods.

I. INTRODUCTION

The finite-difference time-domain (FDTD) and symmetric
condensed-node transmission-line matrix (SCN–TLM) methods are
numerical techniques capable of determining an approximate solution
of time-dependent Maxwell’s equations in the presence of complex
environments [1], [2].
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Fig. 1. Cross section of a perfectly conducting cavity possessing sharp
metallic edges.

In this paper, we investigate the relative accuracy of the Yee
FDTD and SCN–TLM [3] methods for problems that contain sharp
metallic edges. The accuracy of solutions to this problem is relevant
to practical applications such as the modeling of microstrip and
coplanar-waveguide structures. The specific problem we examine
is a perfectly conducting cavity with metal fins. For this problem,
the transmission-line matrix (TLM) method is known to shift the
frequency-domain characteristics of the solutions [4]–[6]. As will be
shown in this paper, these errors also occur in FDTD simulations.
These errors are due to the inability of both methods to accurately
model the rapid spatial variation of the field distribution in the
vicinity of the singularity at the edge of the metal fin. Both TLM
and FDTD are second-order methods. Although the geometry of this
problem is simple, it isolates the error caused by the metallic edge,
referred to ascoarseness error, from other sources of error. Dispersive
errors have been investigated in [7], where a comparison of different
finite-difference algorithms is provided.

Methods have been proposed for overcoming the inaccuracies
described above. In [4], the structure was analyzed for a few different
mesh sizes, and the resultant solutions extrapolated to the limit of
an infinitely fine mesh. In [5], a local mesh modification scheme
is provided that eliminates the error from the solution. In [6], a
comparison of local mesh modifications and mesh refinement using
a graded mesh are presented. Other approaches include the use of
an unstructured mesh in order to increase the physical discretization
in the region surrounding the metallic edge. This allows the second-
order approximation to be applied over shorter physical lengths and,
therefore, obtain a more accurate fit to the field distribution. The
FDTD [8, Ch. 11] and TLM [9] methodologies are compatible with
unstructured meshes. Higher order algorithms would more accurately
predict the rapidly varying field distribution [10]–[13].

Given that FDTD and TLM do not solve this problem accurately,
an opportunity exists to compare their relative accuracy for problems
containing sharp field discontinuities. The purpose of this paper is,
therefore, to quantitatively determine the relative accuracy of the
two methods and, based on this quantitative assessment, compare
computational resources.

In Section II, we describe the specific geometry investigated, and
our approach to obtaining a benchmark solution to the problem. In
Section III, we compare the accuracy of the TLM and FDTD methods
and, in Section IV, perform a detailed comparison of the computa-
tional resources for this problem. A discussion and conclusions follow
in Section V.

II. A B ENCHMARK SOLUTION

The cross section of the geometry of the problem is provided in
Fig. 1. This cross section lies in thex–y-plane. The boundaries are
perfectly conducting, with free-space material assumed within the
cavity ("o; �o; � = 0). We consider the specific casea = 32 mm,
b = 16 mm and various gap sizesd. Solutions for the cutoff frequency
of the waveguide defined by the cross section of Fig. 1 are examined.
The fields do not vary in thez-direction at cutoff and, therefore,
magnetic walls are placed on the minimum and maximumz surfaces.

TABLE I
TLM AND FDTD SOLUTIONS FOR THE RATIO b=� FOR THE

VARIOUS GAP AND CELL SIZES

TABLE II
TLM AND FDTD PREDICTION OF b=� FOR�l ! 0 AND THE

BENCHMARK SOLUTION FOR VARIOUS GAP SIZES

In the simulations, a few cells are used to model thez-direction of
the problem; the solution being independent of the number of cells.
This specific geometry has been previously investigated in [4]–[6].

In order to obtain benchmark solutions for the resonant frequency
for various gap sizes, we analyze the problem using both methods
on increasingly finer meshes. We consider cubical mesh sizes of
�l = 1:0; 0:5, 0:25, and0:125 mm for both thex- andy-directions.
The simulations for these mesh sizes run for 8000, 16000, 32000, and
64 000 time steps, respectively. The FDTD algorithm is run at the
limit of stability. The predictions forb=�, where� is the wavelength
corresponding to the first resonance of the cavity, for all of the above
mesh sizes are provided in Table I. For each gap size, we fit a linear
function, using a least-squares linear regression, to the data points
corresponding to the values ofb=� versus cell size. They-intercept
of these linear functions is an estimate of the solution forb=� as
�l ! 0, an infinitely fine discretized problem. Higher order curve
fitting to these data points was also performed, where only a slight
change in the predicted�l ! 0 solutions was observed. Shih and
Hoefer have utilized a similar strategy [4]. These estimated values
are provided in Table II. We found that the difference between the
�l ! 0 solution provided by the TLM and FDTD simulations is
less than 0.16% for all cases. We chose the benchmark solution to
the problem as the average of the TLM and FDTD estimates. For
the two specific gap sizes common to both our investigation and
that of Shih and Hoefer [4], our benchmark solution is identical to
that provided by the transverse resonance method [4] (data in [4] is
provided for four significant figures).
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Fig. 2. Comparison of the percentage difference of TLM and FDTD solu-
tions for b=� from the benchmark solutions versus mesh discretization�l.
Data provided for various gap sizesd. TLM (FDTD) data points are connected
with solid (dashed) lines.

TABLE III
SLOPES OF THELINES OF FIG. 3 FOR VARIOUS GAP SIZES

III. COMPARISON OFFDTD AND TLM SOLUTIONS

A comparison of the FDTD and TLM solutions with the benchmark
solution will allow a measure of the relative accuracy of the methods
to be determined. The goal of this comparison is to determine the�l

required by both methods in order to achieve the same accuracy. In
Fig. 2, the percent difference between the FDTD and TLM solutions
and the benchmark solutions are provided versus�l for various gap
sizes. It is noticed that error decreases as gap size increases. For large
gap sizes, the problem approaches that of a simple two-dimensional
waveguide cross section. For the case of a simple two-dimensional
waveguide cross section, the error in the solution is due only to
numerical dispersive errors. The inverse of the discretization ratio
�=�l is always greater than 64 in our calculations and, therefore,
these errors are minimal.

For all�l considered, TLM is more accurate than FDTD since the
percent error in the TLM solution is always less than that of the FDTD
solution. The curves for the smaller gap sizes (corresponding to the
larger error) appear to be linear. In order to obtain a relative measure
of the TLM and FDTD accuracy, we fit a straight line to these curves
using a least-squares linear regression, and compare the slopes of
the fitted lines. The slopes of these lines represent the increase in
solution error for a given increase in�l. The slopes along with their
ratios are provided in Table III. The slopes are greater for the FDTD
method, indicating a larger increase in solution error for the same
increase in�l. Note that the data points, as presented in Fig. 2,
are connected with straight line segments. The lines obtained from
the linear regression are not provided. They-intercepts of the fitted
linear functions are very small for all gap sizes (less than 0.066).
This indicates the fitted linear functions intersect the point (0, 0),
indicating the error reduces to zero as�l ! 0.

The ratio of the slopes is equivalent to�lFDTD=�lTLM, the ratio
of cell sizes required by each method to obtain the same accuracy

TABLE IV
COMPUTATIONAL REQUIREMENTS OF THETLM AND FDTD ALGORITHMS,

AS GIVEN IN [8, pp. 64–71]AND [14]

*not including overhead required for the transfer operation (see discussion in Section IV)

of solution. We expect these ratios to be indicative of the relative
accuracy of the two methods for problems containing sharp metallic
fins and, therefore, independent of specific problem details such as
gap size. As shown in Table III, the ratios do not vary from the
average value by more than�11% to+6%. The average value of
the ratio is 1.49, indicating the FDTD method requires (1.49)3 or
3.33 times more cells for a given three-dimensional field problem
than the TLM method (1.49 times more cells per linear dimension
of the problem).

IV. COMPARISON OFFDTD AND TLM COMPUTATIONAL

REQUIREMENTS

Following [8, pp. 70–71] and [14], the computational requirements
of the two algorithms for a homogeneous problem are provided in
Table IV. We require a modification of the computational resources
from [14] to include the computational costs of the TLM transfer
operation. Numerical simulations using our TLM simulation program
on the geometry under study indicate an 11% central processing
unit (CPU) time cost for the transfer event. Therefore, the relative
number of operations is given byNT

OPS = 1:11NF
OPS. The TLM

algorithm requires two times the number of real variables per cell,
NT
BYTES = 2NF

BYTES. These per-cell comparisons along with the
data in Table III enable a comparison of the resources of the methods
as they are applied to a problem possessing sharp metallic edges.

Consider a generic problem, the physical shape of which is a cube
of sizeDx by Dy by Dz meters, which will be simulated forDt

seconds. In the previous section, we determined that if we analyze
the problem using the TLM algorithm with a cell size of�lTLM,
we will require a FDTD cell size of�lFDTD = �lTLM=1:49 to
obtain similar accuracy. The maximum TLM and FDTD time steps
are given, respectively, by

�tTLM =
1

2

�lTLM
c

and �tFDTD =
1p
3

�lFDTD
c

:

The number of cells,NT
� in the � dimension(� 2 fx; y; z; tg)

required by the TLM algorithm, isD�=�lTLM;�: The computational
effort and memory required by the FDTD algorithm is given by

CEFDTD =NF
t N

F
x N

F
y N

F
z N

F
OPS

MFDTD =NF
x N

F
y N

F
z N

F
BYTES

and for the TLM algorithm is given by

CETLM =NT
t N

T
x N

T
y N

T
z N

T
OPS

MTLM =NT
t N

T
x N

T
y N

T
z N

T
BYTES:

Comparing the requirements given the�lFDTD = �lTLM=1:49 ratio
determined in the previous section, we obtain

CEFDTD =

p
3

2 � (1:11) (1:49)
4CETLM = 3:84CETLM

MFDTD =
(1:49)3

2
MTLM = 1:65MTLM:
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This indicates that the TLM algorithm is more efficient than the
Yee FDTD algorithm in terms of both computational effort and
memory requirements for a problem involving homogeneous material
properties and containing a sharp metallic edge.

V. DISCUSSION AND CONCLUSIONS

A comparison of the TLM and FDTD algorithms for the analysis
of a perfectly conducting cavity possessing sharp metallic edges has
been provided. The accuracy of the methods for this geometrically
simple problem is relevant to practical applications such as modeling
of microstrip and coplanar-waveguide structures. The shift in resonant
frequency observed in the solutions to this problem is due to the
inability of the methods to accurately model the rapid spatial variation
of the field distribution in the vicinity of the singularity at the edge of
the metal fin. We obtain a benchmark solution from which to compare
our calculations by extrapolating the solutions on meshes of different
cell size to the limit of an infinitely fine mesh. It is interesting to
note that the convergence of both the TLM and FDTD methods for
this problem appears to be first order and not second order, as would
normally be expected.

Comparison of the TLM and FDTD predictions of resonant fre-
quencies indicates that in order to achieve the same accuracy, the
FDTD mesh must be 1.49 times as fine as the TLM mesh (per
spatial dimension of the problem). Including the computational costs
of the algorithms, the FDTD algorithm requires 1.65 times as much
memory, and 3.84 times as much computational effort in order to
achieve the same accuracy as the corresponding TLM simulation.

We do not interpret our result as an indication that, in general, TLM
is more accurate than FDTD. It is possible to develop FDTD or TLM
algorithms for a variety of different spatial cells. We interpret our
results as an indication that the symmetric condensed representation
of fields used within SCN–TLM is a more accurate representation
than the distributed representation used in the Yee FDTD algorithm.
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A New Global Time-Domain Electromagnetic Simulator
of Microwave Circuits Including Lumped Elements

Based on Finite-Element Method

K. Guillouard, M. F. Wong, V. Fouad Hanna, and J. Citerne

Abstract—This paper proposes an extension of the finite-element
time-domain method for the global electromagnetic analysis of complex
inhomogeneous microwave distributed circuits, containing linear or non-
linear lumped elements. This technique combines Maxwell’s equations
and circuit equations, directly using SPICE software for the lumped
part. Its validation is performed through the study of a strongly coupled
two-element active antenna.

Index Terms—FDTD methods, finite-element method, hybrid tech-
niques, nonlinear circuits, time-domain analysis.

I. INTRODUCTION

Time-domain numerical methods based on Maxwell’s equations
have been widely used to solve transient or wide-frequency-band elec-
tromagnetic (EM) problems. Recently, efforts have been devoted to
adapt these full-wave analyses to the characterization of complex and
highly integrated microwave devices, including distributed as well as
lumped circuits. Among these solutions, the finite-difference time-
domain (FDTD) and the transmission-line matrix (TLM) extensions
are the most commonly proposed [1]–[4]. These techniques depend
on the types of studied lumped elements, as they have to develop the
appropriate current–voltage model of the elements. Another solution
consists in combining a rigorous time-domain EM simulator with
a circuit software to directly take advantage of the vast choice of
component models provided by the circuit software libraries [5]–[7].
However, to our knowledge, few investigations have been published
concerning such an extension using the finite-element time-domain
(FETD) method [8].

Thus, in this paper, a new time-domain technique combining the
FETD method and SPICE software is presented. In fact, our technique
extends, in the time domain, the concept of the coupling between
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