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Abstract—For 2D transverse magnetic (TM) microwave in-
version, multiplicative-regularized contrast source inversion
(MR-CSI), and the distorted Born iterative method (DBIM) are
compared. The comparison is based on a computational resource
analysis, inversion of synthetic data, and inversion of experimen-
tally collected data from both the Fresnel and UPC Barcelona
data sets. All inversion results are blind, but appropriate physical
values for the reconstructed contrast are maintained. The data sets
used to test the algorithms vary widely in terms of the background
media, antennas, and far/near field considerations. To ensure
that the comparison is replicable, an automatic regularization
parameter selection method is used for the additive regularization
within the DBIM, which utilizes a fast implementation of the
L-curve method and the Laplacian regularizer. While not used
in the classical DBIM, we introduce an MR term to the DBIM in
order to provide comparable results to MR-CSI. The introduction
of this MR term requires only slight modifications to the classical
DBIM algorithm, and adds little computational complexity. The
results show that with the addition of the MR term in the DBIM,
the two algorithms provide very similar inversion results, but with
the MR-CSI method providing advantages for both computational
resources and ease of implementation.

Index Terms—Biomedical electromagnetic imaging, electromag-
netic scattering inverse problems, inverse problems.

I. INTRODUCTION

T HE microwave inverse scattering problem has been of in-
terest for many years and research into this field has led

to the development of many inversion algorithms. The ability
to exploit previously unutilized tissue contrast mechanisms, as
well as the ability to perform quantitative imaging of the com-
plex permittivity, make microwave imaging a strong contender
to complement other biomedical imaging modalities. Signifi-
cant progress in microwave imaging has been accomplished in
the last decade, with experimental prototypes having been used
for the imaging of excised pigs legs [1], a canine heart, [2], and
breast cancer [3].

The greatest challenge in using microwaves for imaging
purposes is the fact that direct-ray models and other linear
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scattering models, used in most other imaging modalities, do
not sufficiently approximate the actual physics. Essentially, at
the wavelengths of the microwave radiation being used, the
electromagnetic waves scatter multiple times, refract through
and diffract around the object of interest, and generally do
not follow simple paths within the imaging region. Research
on biomedical microwave imaging that has made use of lin-
earizing assumptions about the wave-propagation within the
breast, e.g., [4]–[7], shows that using direct-ray and linear
scattering models that ignore higher order effects, while pro-
viding some useful qualitative images, cannot quantitatively
reconstruct the bulk-electrical parameters. Thus, accurate quan-
titative microwave imaging (MWI) requires the use of the full
nonlinear inverse problem formulation, which is an ill-posed
mathematical problem. Such problems are notoriously difficult
to solve because of the nonuniqueness and lack of stability of
the solution: more than one solution exists to the formulated
mathematical problem and a small change in the data may
result in a drastically different solution [8]. Thus, some regu-
larization technique (i.e., selecting one of the infinite number
of possible solutions) is required to come up with the correct
(or approximate) physical solution. Many of these techniques
require that a regularization parameter be chosen and the final
solution and computational effort can be very sensitive to the
value of this regularization parameter.

In recent years, techniques have been developed to solve the
full nonlinear inverse problem and these techniques have been
used to give successful quantitative reconstructions of biological
materials from experimentally collected data at limited (even
single) frequencies. These inversion techniques offer a quan-
titative reconstruction of the contrast but are mathematically
more complicated than the linearized techniques, and usually
take more computational resources to solve. Broadly speaking,
there are two different approaches that have been successfully
used to solve the inverse scattering problem [9]. The two ap-
proaches are distinguished by their use (or lack of use) of a
forward solver, as well as the selection of the objective func-
tion that is minimized. The first approach, known as the con-
ventional type, formulates the objective function based solely
on the scattered data outside the object of interest (OI) and uses
repeated calls to a forward solver during the iterative minimiza-
tion. Methods falling under the conventional class include the
distorted Born iterative method (DBIM) [10], Modified Newton
type minimizations [3], [9], and global optimization techniques,
e.g., genetic algorithms [11]. The second class of approaches,
which are distinguished by the absence of a forward solver and
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the use of an objective function based on both scattered fields
outside the OI and total fields inside the OI, is known as the
modified gradient type. Examples of these inversion techniques
include the modified gradient method (MGM) [12] and the con-
trast source inversion (CSI) method [13], [14].

In this paper we consider and compare an example of each of
these two types of inversion techniques, working blindly with a
wide range of scattering data collected from multiple imaging
systems. The modified gradient type is represented by the
multiplicative regularized-contrast source inversion (MR-CSI)
method [13], [14] and the conventional type by the DBIM [10].
Both are applied to the 2D transverse magnetic (TM) inverse
problem. While both conventional and modified gradient types
of inversion algorithms have provided successful microwave
imaging results, the relative performance of these two groups
of algorithms, in terms of inversion quality, regularization
needs, and computational resources, has not been investigated.
Although it is clear that the absence of a forward solver makes
each iteration of the modified gradient type method significantly
more efficient at each iteration, the exact computational burden
comparison has not, to the best of our knowledge, been com-
pleted. In addition, many more iterations are needed in order to
obtain convergence using modified gradient type inversion.

Of key importance is that for the basic data misfit cost-func-
tional, associated with the inverse problem, some type of reg-
ularization is required, as the solution of this functional is ill-
posed. In the (non-MR) CSI method, this regularization is pro-
vided by adding a second term to the data misfit functional,
based on the domain/object equation, which effectively regular-
izes the inverse problem in many cases, e.g., [13] (this is some-
times called the Maxwell regularizer [15]). Additional regular-
ization and improved inversion results may be achieved with the
use of an MR term [16]. For both the Maxwell and multiplica-
tive regularizers, the (MR) CSI algorithm automatically selects
the regularization parameters.

For the conventional type algorithms, e.g., DBIM, which only
use the data misfit cost-functional, there is a choice as to when
the regularization is applied. The data misfit cost-functional may
be regularized before the optimization process [9], [17], or the
cost-functional may be regularized at each step of the optimiza-
tion process (once the problem has been linearized) [3], [10].
In this paper, we consider the second type of conventional al-
gorithm which regularizes the problem after linearization (as in
DBIM).

Generally, for DBIM, Tikhonov regularization has been used,
which requires the choice of a regularization parameter. The
regularization parameter is typically selected via considerable
numerical experimentation, or knowledge of the noise level in
the measured data (i.e., the discrepancy principle [18]). The
lack of a consistently used method in the selection of a regular-
ization parameter for DBIM clouds the direct comparison be-
tween these two classes of inversion algorithm. It also makes
blind inversion, defined as inversion of microwave scattering
data without any prior knowledge, difficult with the DBIM al-
gorithm. In addition, the significant time and effort needed to
determine the regularization parameter is left out of published
computational times, which again makes a direct comparison
problematic.

However, recent advances in regularization parameter choice
methods have made it possible to compare these types of al-
gorithms and their performance in blind inversion problems.
In this work, we make use of an automatic parameter choice
method [19] where the regularization parameter in DBIM is au-
tomatically set to the optimal value (in the sense of the L-curve
method [20]) at each iteration of the inversion process, without
user input or advance knowledge of the noise level, system con-
figuration, or other information about the scatterer. The use of
such an automatic parameter choice method for DBIM makes
the results reproducible and allows for a fair comparison be-
tween these two techniques.

In addition, motivated by the success of multiplicative regu-
larization (MR) in the CSI method, and the desire to make a fair
comparison between the MR-CSI and DBIM techniques, in this
paper we modify the DBIM with an MR term. This modified
DBIM still requires additive regularization at each iteration and
we utilize the MR term after the Tikhonov regularization has
been applied. The MR term enhances the inversion results due
to its edge-preserving properties.

The paper is organized as follows. Section II discusses the
basic formulation of the inverse problem, Section III presents
the MR-CSI method and Section IV presents the DBIM and
our MR modification. In Section V we present a computational
cost analysis, as well as the inversion results from synthetic and
experimental data. In Section VI we provide conclusions.

II. FORMULATION OF THE PROBLEM

We approximate the electromagnetic scattering problem with
a 2D TM scalar approximation. We assume inversion targets
to be arbitrary inhomogeneous 2D objects in the plane.
Consider now an imaging domain containing these
objects and a measurement surface outside of as
depicted in Fig. 1. Let and denote position vectors in the

plane and define the complex electric contrast as

(1)

where is the complex permittivity of the background medium.
The permittivities are taken to be complex so as to allow the
modelling of both polarization and conductive losses. With an
assumption of an time-dependency, the complex permit-
tivity of an object may be written as

(2)

where is the effective conductivity at frequency .
For the TM case, the electric field can be represented as

, and the scattered electric field as , where
denotes the incident field. All material properties are taken to be
nonmagnetic and therefore the permeability is taken as that of
free-space, , throughout the analysis. The wavenumber of the
background medium is given by
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Fig. 1. Basic geometrical model of microwave tomography.

The integral formulation of the so-called data equation can
be written as

(3)

where the data operator is defined as

(4)

and is the Greens function for the background medium.
In the case of a homogeneous background, the Greens function
is the standard 2D scalar Greens function

(5)

where is the zeroeth order Hankel function of the second
kind.

The measurements give us an approximation for
from which and are to be

found. But, given that is a compact integral operator, the
data equation is an ill-posed nonlinear integral equation for the
unknowns and . These two unknowns are
also nonlinearly related through the so-called domain equation:
taking the observation point, , inside the imaging domain ,
the domain equation is written as

(6)

where the domain or object operator is defined as

(7)

Assuming that for each set of measurements, numbered from
, the object is illuminated by the incident field,

, the inverse scattering problem can be formulated as the
following minimization:

(8)

where denotes the -norm on the measurement surface
.

III. THE MR-CSI METHOD

The MR-CSI algorithm formulates the inverse problem in
terms of the contrast, , and contrast sources,

, defined as

(9)

Using the contrast sources, the domain equation is rewritten

(10)

The core of the CSI method is an objective function based on (8),
but is written in terms of the contrast and the contrast sources

(11)

where denotes the -norm on . The normalization
terms in the denominators are used to balance between the data
and domain equation errors.

In the CSI method, the objective function, (11), is minimized
via the formation of two interlaced sequences of the unknowns:
a sequence of estimates of the contrast, which is interlaced
with a sequence of estimates of the contrast sources
where represents the iteration number. For every step of the
CSI method, each sequence is updated via the a single step of
the CG minimization algorithm while assuming that the other
unknown is a constant. The iterative process is continued until a
desired minimum of the objective function is reached. Details of
the CSI method are left to the references (see, e.g., [13], [14]).

While the CSI method alone is sometimes sufficient to suc-
cessfully invert data [13], the CSI method may be further en-
hanced through the use of various multiplicative regularizers
[14], [21]. It is possible to add these regularizers without the
use of an external selection of a regularization parameter. In this
work, we utilize a weighted -norm total variation regularizer.
The inclusion of this term allows the MR-CSI method to blindly
invert complicated data sets (e.g., [14], [22], [23]). With the in-
clusion of this multiplicative regularizer, the MR-CSI objective
function becomes

(12)

The multiplicative regularizer is given as

(13)

where is the area of the imaging region . The steering pa-
rameter is chosen to be where is the
second term of the CSI objective function, see (11), evaluated
at and is the length of a side of a single cell in
the discretized domain. That is, represents the reciprocal
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of the area of a single cell area of the domain . For example,
on a rectangular grid . The minimization of
the MR objective function becomes slightly more complicated
than the nonregularized case. While the MR term is a constant
with respect to the contrast sources, an additional updating step
for the contrast is required. The exact details of this step are out-
lined in [13], [16].

In this paper, operators and are evaluated by dis-
cretizing the inversion domain with pulse basis functions,
utilizing a basic MoM integration, and application of the dis-
cretized operator is accelerated via the FFT [24]. Key in the
CSI method is that the operators, and , do not need to be
inverted at each iteration.

IV. DISTORTED BORN ITERATIVE METHOD

The DBIM, originally proposed by Chew and Wang [10],
tries to solve the nonlinear minimization problem given in
(8) through an iterative procedure by alternately updating the
guesses of the contrast, , and the field, , inside the imaging
domain . Briefly, the DBIM may be summarized as follows.

1) (Initialization) Born approximation: assume that the total
field in is the incident field, .

2) (Initialization) Solve for the contrast, , by minimizing the
data (3).

3) Use the new estimate of the contrast as the input to a for-
ward solver and generate a new estimate of the total field,

.
4) Check convergence of the algorithm, based on the relative

data equation error. That is, if the term

(14)

is below a set threshold, the algorithm is stopped. Here,
the data error is given by
where is the predicted contrast at the th iteration of
the algorithm and is the total field inside the imaging
domain corresponding to th transmitter in the presence
of .

5) Compute the distorted Greens function operator, written as

(15)

where , is the wavenumber of the inhomoge-
neous background with respect to , and is the dis-
torted Greens function of the inhomogeneous background

. In order to compute we use the forward solver once
for each receiver location [10].

6) Utilizing the distorted Greens operator, and the fields from
step 3, update the contrast in the form of

where is obtained by solving the minimization
problem:

(16)

7) Go back to step 3.

Note that (16) is similar to the initial minimization of the data
equation, but is different in the critical respects that it is solving
for a relative change in the permittivity and that the operator

is the distorted operator. To enhance the convergence of
DBIM, we employ a line search algorithm similar to [17]: if the
error in the data equation due to the correction increases,
the contrast is updated in the form of
where is the appropriate step size. The details of the utilized
line search algorithm are not presented here but are available in
[17].

A. DBIM and Gauss-Newton Optimization

An often utilized microwave imaging method [3], [9] is the
Gauss-Newton optimization technique. As was shown in [25],
the DBIM is equivalent to the Gauss-Newton technique. Briefly,
the Gauss-Newton method [26] seeks the solution to the mini-
mization of the data error

(17)

by approximating the calculated scattered field, , with a first
order Taylor expansion around the current contrast ,

(18)

where is the Jacobian matrix containing the Fréchet deriva-
tive of with respect to evaluated at . Utilizing this ex-
pansion, the Gauss-Newton method seeks the solution

(19)

which is equivalent to solving the problem
(which requires regularization). The equivalence of DBIM and
the Gauss-Newton optimization method lies in the fact that the
Jacobian matrix operating on the update, , is equivalent to
[27]:

(20)

With this equivalence, the minimization problem for the Gauss-
Newton method (19) is identical to that of the DBIM (16).

B. The DBIM Inverse Solver: Regularization and
Regularization Parameter Selection

1) Additive Regularization With Laplacian Regularizer: The
linearized inverse problem, (16), while simpler than the full non-
linear inverse problem, is still ill-posed, as the integral operator
is continuous and forms a Fredholm integral equation of the first
kind [28]. There are some different approaches to stabilize the
problem associated with (16). Herein, we use Tikhonov, or ad-
ditive regularization, [29] which minimizes the cost-functional:

(21)
where is the regularization operator, and is the regulariza-
tion parameter determining the weight of the regularization. In
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this paper, we use the Laplacian regularizer, (except
for a single case, in Fig. 7). With the additive regularization,
the null-space of the additive regularizer intersects trivially with
the that of the ill-posed operator ensuring a unique solution for
the minimization [30]. The value of the regularization param-
eter , which is a real positive number, plays an important role in
the overall success of the DBIM. There are different approaches
for finding a good regularization parameter in the framework of
a Tikhonov functional: for example, the discrepancy principle
[18], generalized cross validation (GCV) [31], the -curve [20],
the normalized cumulative periodogram (NCP) [32], [33] and
some empirical methods (e.g., [1], [3]).

While all these methods are capable of regularization param-
eter selection, the discrepancy principle requires knowledge of
the noise level in the data, GCV requires that the noise is nor-
mally distributed with zero mean, and NCP requires the noise to
be additive white noise. However, the -curve method does not
require any information about the noise level, and is generally
more robust against different kinds of noise [20]. Herein, the
regularization parameter is chosen using a computationally effi-
cient form of the -curve method which does not need the sin-
gular value decomposition (SVD) of the ill-posed matrix. The
method is based on the Lanczos bidiagonalization algorithm,
and this algorithm iteratively computes the upper and lower
bounds of the curvature of the -curve. The iterations of the al-
gorithm continue until the bounds are guaranteed to be close. In
this technique, the matrix operator is only utilized via matrix-
vector multiplication making the -curve method feasible for
large-scale inverse problems. This fast -curve method requires

operations as opposed to the standard -curve, i.e.,
using SVD, which requires operations if

or when . The details of the algo-
rithm are not presented here, but are available in [19].

As the standard implementation of the fast -curve method
is only valid with the identity regularizer the fast -curve
method requires some modifications. In particular, we need to
change the Laplacian form of Tikhonov regularization to the
standard identity-form Tikhonov regularization via the solution
of an auxiliary equation, where is the discretized
form of the Laplacian operator and is a dummy variable [30].
The matrix is a block Toeplitz matrix with Toeplitz blocks
(BTTB), and the calculation of can be done using the
CG-FFT algorithm [30]. This extra computational cost is bal-
anced by the superior regularizing properties of the Laplacian
operator. After finding an appropriate regularization parameter,
(21) can be solved using standard iterative techniques such as
the CG method.

2) Multiplicative Regularization: After the DBIM in con-
junction with the utilized additive regularization converges to
the contrast , this contrast is further regularized using the
multiplicative regularization. Thus, we minimize the multiplica-
tively regularized cost-functional

(22)

where is given in (13). This system is minimized via the
CG method, and the initial guess is given by . The field

is the total field inside the imaging domain corresponding to the
th transmitter in the presence of . The gradients are given

in [34]. While a general solution of (22) requires many iterations
of the CG algorithm, the number of iterations is significantly
reduced due to the accurate initial guess of . Note that this
particular regularizer (13) has edge-preserving characteristics
[34].

C. Forward Solver

In each iteration of the DBIM, the forward solver is used
to find the total electric field inside the imaging domain for a
given contrast corresponding to different incident fields and to
find the distorted Greens function for the inhomogeneous back-
ground. Our forward solver is a method of moments (MoM)
solver on a pulse-basis which utilizes the conjugate gradient
solution method with matrix multiplication accelerated by the
fast Fourier transform [24]. Integrals involved with the MoM
are solved using Richmonds method [35].

V. RESULTS

In order to test the blind inversion capabilities of these
algorithms, we present inversion results from three different
data sets: synthetic data, the Fresnel Institute scattering data,
and the UPC Barcelona data set. Each data set has different
levels and types of noise, has different background media,
and different data collection types (analytic, free-space broad
band antennas, and water-submerged narrow band antennas).
In all cases presented below, the data were blindly inverted,
and all regularization parameters were automatically selected
by the algorithm. The only constraints utilized were to keep the
permittivity values within physical values (i.e., and

).
Unless otherwise noted, all DBIM reconstructions shown in

this section are generated with the Laplacian regularizer and
MR.

A. Synthetic Leg Data Results

While the ultimate test of any inversion algorithm must in-
volve experimentally collected scattering data, it is very useful
for comparison purposes to have a synthetic data set where the
exact, “ideal” contrast is known. Towards this end, we have
created a synthetic model of a leg, shown in parts (a) and (b)
of Fig. 2. Permittivity values for the model were taken from
published values on human tissue [36]. The model consists of
a bone (comprised of a marrow core, sur-
rounded by cortical bone, ), which is inside of
a large mass of muscle , surrounded by skin

. Data were generated for the model based
on a frequency of 1.5 GHz, with 30 transmitters and 30 receivers
evenly spaced on a circle of radius 15 cm. The forward solver
utilizes a grid of 100 100 cells on a 10 10 cm grid. The
inversions are performed on a grid of 100 100 cells on a 10.2

10.2 cm grid (thus avoiding the inverse crime). The “leg” was
immersed in a lossless background medium with . To
every measurement, 3% white noise was artificially added using
the formula

(23)
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Fig. 2. Synthetic leg data set. (a),(b) the exact permittivities; (c),(d) the
MR-CSI reconstruction; (e),(f) the MR-DBIM reconstruction with Laplacian
regularizer; (g),(h) a 1D cross section along � � � of the ideal (black dash-dot
line), MR-CSI (red dashed line) and DBIM (blue solid line). The frequency
used was � � ��� ���.

where and and are zero-mean random num-
bers between 1 and 1. The MR-CSI reconstruction is shown
in part (b) of Fig. 2, and the DBIM reconstruction is given in
part (c). A 1D cross section of the line for all three
plots is shown in part (d). The two reconstructions are remark-
ably similar, which can be seen particularly clearly in the 2D
cross section plots. Neither algorithm accurately resolves the
skin, which is not surprising because the skin is approximately
1.5 mm, or . The only significant differences be-
tween the two results are in the marrow core of the bone, where
the CSI algorithm seems to “find” an inhomogeneity associated
with the marrow bone, while the DBIM reconstruction provides
only a smooth region for the whole bone. However, the permit-
tivity values obtained by the CSI method are not correct, and the
DBIM values are closer to the true values.

B. Fresnel Data Results

The DBIM and MR-CSI methods were tested on the 2005
Fresnel data set [37].Thesedatawerecollected in free-spaceover
a broad frequency range utilizing double-ridged horn antennas,
at a distance of 1.67 meters away from the center of the imaging
region. Two antennas and a mechanical positioning system
are utilized to collect the data. The scatterers are 2D objects
elongated enough in the direction so that the objects and fields
may be accurately modelled as 2D [37]. To calibrate these data,
we utilize the same process as outlined in [23]. Here, we present
results from the FoamTwinDiel and FoamMetExt data sets.

1) FoamTwinDiel: This data set was collected for 18 trans-
mitters, 241 receivers per transmitter, and 9 frequencies from
2–10 GHz in 1 GHz steps. The scatterer, shown in part (a) of
Fig. 3, consists of two smaller cylinders of permittivity

where one of the smaller cylinders is embedded in a larger
cylinder with . As the cylinders are very low loss
over the frequency range of interest, we restrict the inversion to

in this case. When inverting multi-frequency data,
we utilize a ‘marching-on-frequency’ approach for the DBIM
method [38]. That is, we invert the data at the lowest frequency,
then use the result from that frequency as the first guess for
the second frequency (and so on). The MR-CSI utilizes a si-
multaneous multi-frequency inversion, in that the data from all
frequencies is utilized simultaneously. We have implemented a
simultaneous multi-frequency inversion for the DBIM, but the
marching-on-frequency method provides significantly better re-
sults possibly due to the fact that the initial Born approximation
used in the DBIM is poor at high frequencies.

Several reconstructions of this object, on a grid of 60 60
cells, are shown in Fig. 3. Part (b) shows the reconstruction at
a single frequency of 2 GHz, (c) at a frequency of 6 GHz, and
(d) the full data reconstruction from 2–10 GHz. In all cases, the
reconstructions are quite similar. Overall, the DBIM overshoots
the maximum permittivity of 3 in all three reconstructions, but
otherwise the reconstructions are hard to tell apart.

2) FoamMetExt: This data set is collected for 18 transmitters,
each with 241 receivers, over seventeen 1 GHz steps in the fre-
quency range of 2–18 GHz. The 2D schematic of the scatterers
is shown in Fig. 4(a). In this case, the scatterers consist of a small
(radius of 1.55 cm) cylindrical copper rod, next to a weakly scat-
tering dielectric cylinder of radius 4 cm with .

The reconstructions on a grid of 60 60, at a frequency
of 6 GHz, are shown in Fig. 4. Part (b) shows the MR-CSI
method and (c) the DBIM method. Again for this data set,
the reconstructions are very similar. In this case, the MR-CSI
method gives some oscillations inside the larger scatterer which
the DBIM does not. There are some differences inside the
copper cylinder, but as there are no fields inside the cylinder
(and thus no information about the inside of the scatterer), these
differences are not relevant. The full frequency (2–18 GHz)
reconstruction is shown in Fig. 5. Part (a) shows the MR-CSI
reconstruction, while part (b) shows the DBIM reconstruction.
In this case, the two are very similar, with the only significant
differences being inside the copper cylinder.

C. UPC Barcelona Data Set

The UPC Barcelona data set [39] is a collected from a near-
field single frequency scanner, pictured in [40]. There are 64
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Fig. 3. Reconstruction of Fresnel data set FoamTwinDiel. DBIM with MR and
the Laplacian regularizer reconstructions are on the left, and MR-CSI recon-
structions are on the right. (a) Schematic of the scattering cylinders; (b),(c) re-
constructions at 2 GHz; (d),(e) reconstructions at 6 GHz; (f),(g) full-frequency
reconstructions 2–10 GHz.

transmitters, and 33 active receivers for each transmitter (64
total receiver positions). The data were collected at a frequency
of 2.33 GHz. The data collection tank was filled with a back-
ground solution of water, with permittivity
at 2.33 GHz. We consider two different data sets: a biomedical
phantom, FANTCENT and a real human forearm, BRAGREG.
In all inversions in this section, the inversion results were re-
stricted to lie within and
after each iteration, as the targets do not have permittivities
higher than water.

1) Data Set FANTCENT: We utilize this data set to display
the results from all different types of regularization for both the
(MR)-CSI and DBIM algorithms. The FANTCENT set consists
of a water and ethyl-alcohol based phantom. The schematic of
the phantom, with the constituent materials and their permit-
tivities is shown in Fig. 6(a). The reconstructions for the CSI

Fig. 4. Single frequency reconstructions of Fresnel Data set FoamMetExt. (a)
Schematic of the scattering cylinders; (b),(c) MR-CSI reconstruction at 6 GHz;
(d),(e) DBIM reconstructions at 6 GHz.

Fig. 5. Full-frequency reconstruction of Fresnel data set FoamMetExt. (a),(b)
MR-CSI reconstructions from 2–18 GHz data; (b),(c) DBIM reconstructions
from 2–18 GHz data. In this case, the differences between the images are pri-
marily inside the copper rod, where no fields exist. In order to see the weakly
scattering object, all images have been limited to a maximum pixel intensity.

and MR-CSI methods are shown in Fig. 7(a),(b) and (c),(d), re-
spectively. The inversion results for the DBIM with the identity
Tikhonov regularizer are shown in Fig. 7(e),(f), the results for
DBIM with the Laplacian Tikhonov regularizer in Fig. 7(g),(h)
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Fig. 6. The schematic of the 2D FANTCENT scatterer.

and the results for the DBIM with MR and the Laplacian regu-
larizer are shown in Fig. 7(i),(j).

In this series of images, we can see the results of utilizing
the different regularization schemes, and note the improvement
in the both algorithms when MR is utilized. Qualitatively,
the results for the CSI reconstruction lie somewhere between
the DBIM-Identity and DBIM Laplacian results. However,
we note that with the inclusion of the MR term that both
methods provide qualitatively very similar, high quality, results
[Fig. 7(c),(d) and (i),(j)].

It is hard to determine which inversion method provides the
better result in this case. Both algorithms do not reconstruct
the imaginary part of the permittivity very well, although there
seems to be fewer oscillations in the MR-CSI reconstruction.
However, the DBIM reconstruction obtains a closer result for
the permittivity of the inner cylinder, particularly for the real
part of the permittivity, where it reaches a value of ,
when the actual value should be . The MR-CSI al-
gorithm reaches approximately .

We note here that two other groups [40], [41] were unable to
blindly reconstruct this scatterer with the DBIM using Tikhonov
regularization with the identity regularizer. We suspect that we
were able to passably reconstruct this scatterer with the DBIM-
identity algorithm due to the use of the -curve to select the
additive regularization parameter, which underlines the impor-
tance of regularization parameter selection.

2) Data Set BRAGREG: The final data set of the paper is
the inversion of scattering data taken from a human forearm, or
data set BRAGREG. The inversion results for the MR-CSI and
DBIM are shown in Fig. 8. The expected relative permittivities
at this frequency are approximately for muscle,

for skin, for bone marrow, and
for bone.

In this case it is difficult to determine which is a better recon-
struction, due to the fact that there is no ideal case to compare
the reconstructions with. In both cases, the overall structure of
the arm may be seen in both the real and imaginary part of the
reconstructions. The one advantage of the DBIM method is that
it reaches closer to the expected value for the real part of the per-
mittivity of the bones. However, we again note that the DBIM
reconstruction with the identity regularizer (not shown) did not
provide satisfactory results, emphasizing the importance of the
Laplacian regularizer.

D. Computational Cost Evaluation

The computational costs of the two algorithms are outlined
in Tables I and II, where the following conventions are used:
the number of transmitters is given by , the total number of

Fig. 7. Inversion of FANCENT data set: (a),(b) The inversion with the CSI
method (no MR); (c),(d) the results of the MR-CSI method. (e),(f) The results
for the DBIM with identity regularizer; (g),(h) DBIM with Laplacian; (i),(j)
DBIM with MR and Laplacian regularizers. Qualitatively, (c),(d) and (i),(j) are
quite similar.

unique receiver positions is represented by , the number of
active receivers for each transmitter is , the number of dis-
cretized elements in the mesh is given by , and the number
of steps in a Newton-type optimization, . Each of these
techniques also utilizes the conjugate-gradient (CG) algorithm
(in the case of the DBIM, it is repeatedly utilized). In prac-
tice, the number of iterations required for the CG algorithm to
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Fig. 8. Human forearm inversions: (a),(b) Results of the MR-CSI method.
(c),(d) Results for the DBIM method with MR and Laplacian regularizer after
9 iterations.

TABLE I
COMPUTATIONAL COST OF MR-DBIM ALGORITHM

TABLE II
COMPUTATIONAL COST OF MR-CSI ALGORITHM

converge varies widely depending on the particular problem.
Thus, we introduce 4 different variables to be able to account
for the different applications of the CG algorithm: we denote the
number of iterations required for the main optimization loop in
the CSI algorithm by , the average number of iterations
of the CG algorithm required to solve the Tikhonov functional
(21) is denoted as , the number of iterations required to
solve the auxiliary system for the Laplacian regularizer (i.e., the
system ) as , and the average number of itera-
tions required for the Distorted-Born forward solver as .
The number of Lanczos bidiagonalization algorithm iterations
is denoted as . For both DBIM and MR-CSI algorithms,
we have ignored any operations which are proportional to ,
which includes the MR operations for both algorithms.

Given the analysis in Tables I and II, the ratio of the DBIM
to MR-CSI computational cost, , is given in (24)

(24)

The exact value of this ratio will depend highly on the number
of transmitters and receivers, as well as the exact conjugate gra-
dient iteration numbers for each algorithm. The variations of
the parameters are both wide and problem dependent, which
makes a generalized computational cost comparison very dif-
ficult. For example, the parameter may vary from 10 to
higher than 100, all on the same data set. We can, however,
present the numbers we encountered for our data sets.

For example, in the FoamTwinDiel Fresnel data-set for the
2 GHz reconstruction, , , and ,

. The iteration numbers encountered were ,
, , , and

. Using these numbers, , and we thus
expect the MR-CSI method to be slightly more efficient than the
DBIM method. Our exact computation times were 29 minutes
for the DBIM reconstruction, and 10 minutes for the MR-CSI
reconstruction. However, we note that the DBIM was run as a
highly optimized Matlab script running on quad core 2.66 GHz
machine, while the CSI method was implemented in C++ and
run as an executable on a single-core 1.73 GHz machine, so the
exact computational times may be misleading.

As a second example, for the UPC Barcelona FANCENT
data set, , , and .
The iteration-specific parameters were , ,

, , and .
In this case, the computational ratio comes out to ,
and we thus expect the MR-CSI method to be faster than the
DBIM. Our exact computation times for these two data sets
were 50 minutes for the DBIM and 16 minutes for the MR-CSI
method. While some differences in the computational burden
of these two algorithms exist, they are roughly on the same
order of computational complexity. However, the CSI method
holds an edge for all the cases we tested herein, and the fact
that DBIM is at all competitive is based on utilizing well opti-
mized stopping criteria for the multiple CG loops in the DBIM
algorithm. While the selection of these stopping criteria is still
done “blindly” if the number of iterations in each CG algo-
rithm are allowed to increase even a small amount, the DBIM is
much less efficient. We note that several methods of reducing
computation time in the DBIM are available, such as adding
a “marching-on-in-source-position” technique [38], which may
decrease the average number of forward solver iterations, ,
low enough that the DBIM is competitive with the MR-CSI. Ad-
ditionally, in the case where the positions of the transmitters and
receivers are the same, as in the FANCENT test case, we note
that the DBIM inversion may be made significantly more effi-
cient. This can be accomplished because the computation of the
distorted Greens function, (the loop over in Table I) may
be eliminated, as the forward solver results in for the transmitter
cases provide the identical results. However, these optimizations
are problem dependent, and hard to predict in the general case.
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VI. DISCUSSION AND CONCLUSION

Using an example of each of the two major classes of non-
linear inversion techniques, the MR-CSI and DBIM methods,
we have blindly inverted a wide-range of data sets: noisy syn-
thetic data, free-space far field data, and near-field water-sub-
merged data. In these cases, the inversion results are remarkably
similar. The exact computational burden for each algorithm is
data-set dependent, but the MR-CSI method holds an advantage
for computation time.

While the final images of the two algorithms are very similar,
we note that the DBIM has many parameters which require the
user to select before the inversion process begins: the accuracy
of the Tikhonov solution, the accuracy of the Lanczos bidiag-
onalization to find the corner of the L-curve, the desired accu-
racy of the forward solver, the accuracy solution for the auxil-
iary system for the Laplacian regularizer, as well as the stopping
condition for the main optimization loop. The particular selec-
tion of these parameters has significant impacts on the compu-
tational cost of the DBIM algorithm. For the MR-CSI method,
the user only needs to select the stopping condition for the main
optimization loop.

We also note that, from our experience, if the main optimiza-
tion loop stopping condition of the DBIM is not selected appro-
priately, the algorithm may converge below the noise level in the
data, and in this case provides oscillatory results. The MR-CSI
method does not suffer from this problem, and remains stable
even if the stopping condition is set well below the noise level.

The use of both (i) the Laplacian regularizer (instead of the
identity regularizer), and (ii) MR in the DBIM were very impor-
tant in the success of DBIM. While these modifications do add
complications to the implementation of the algorithm, without
either of these regularization changes the DBIM provided re-
sults which were not competitive with the MR-CSI algorithm.
This can be seen in the FANTCENT example (Fig. 7). We note
that if researchers have extant inversion codes which rely on
the DBIM with the identity regularizer, it is relatively simple to
add the Laplacian regularizer and MR to the algorithm, and this
should provide results which are qualitatively very similar to the
MR-CSI algorithm.

As can be seen from the results shown in this paper, the
primary differences between these two inversion methods for
TM data lie not in the inversion results, but in the implemen-
tation and computational complexity. In both of these metrics,
MR-CSI is better than the DBIM, particularly in the ease of
implementation.
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