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Microwave Biomedical Imaging Using
the Multiplicative Regularized
Gauss—Newton Inversion

Puyan Mojabi and Joe LoVetri, Senior Member, IEEE

Abstract—The weighted L,-norm total variation multiplicative
regularized Gauss—Newton inversion method, recently developed
for inversion of low-frequency deep electromagnetic geophysical
measurements, is used for microwave biomedical imaging. This in-
version algorithm automatically adjusts the regularization weight
and provides edge-preserving characteristics. The accuracy of
this method is demonstrated by inverting experimental data of a
human forearm and synthetic data taken from brain and breast
models, both assuming two-dimensional (2D) transverse magnetic
illumination.

Index Terms—Biomedical imaging, Gauss—Newton method, in-
verse problems, microwave imaging (MWI), regularization.

I. INTRODUCTION

N MICROWAVE IMAGING (MWI), one tries to infer
I the dielectric profile of an object of interest (OI) using
microwave scattering measurements collected outside the OI.
There are several important potential biomedical applications
for MWI, such as breast cancer imaging [1] and brain imaging
(2].

The inverse problem associated with microwave imaging
is nonlinear and ill-posed. The nonlinearity of the problem is
usually handled by optimizing an appropriate cost-functional
using various iterative techniques, and the ill-posedness is
usually treated by employing different regularization tech-
niques. Two iterative techniques, the Gauss—Newton inversion
(GNI) and the contrast source inversion (CSI) methods, have
seen extensive use in the literature for microwave biomedical
imaging (e.g., see [1]-[6]). As far as the regularization of the
problem is concerned, the weighted Ls-norm total variation
multiplicative regularization (MR) in conjunction with the CSI
method [5], known as the MR-CSI method, has been one of the
most successful techniques to date. The two main advantages of
this regularization are: 1) its edge-preserving characteristic, and
2) providing adaptive regularization where the weight of the
regularization is automatically adjusted during the optimization
by the algorithm itself. On the other hand, most proposed
regularization techniques that have been used with the GNI
method do not have the edge-preserving characteristic and
require ad hoc techniques for determining the regularization
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weight. Recently, this specific multiplicative regularization
has been used with the GNI method to invert low-frequency
(from frequencies below 1 to a few hundred Hz) cross-well and
controlled-source electromagnetic measurements to reconstruct
the conductivity profile in geophysical applications [7], [8].

In this letter, we use this recently formulated multiplicative
regularized Gauss—Newton inversion (MR-GNI) method for
microwave biomedical imaging assuming the two-dimensional
(2D) transverse magnetic (TM) illumination. The data sets
against which the MR-GNI is tested include measurement data
for a human forearm provided by the Universitat Politécnica
de Catalunya (UPC), Barcelona, Spain, [9] and synthetic data
taken from brain and breast models.

II. PROBLEM STATEMENT

Consider a bounded imaging domain D C R? and a measure-
ment domain S C R? outside D. Let p and q denote position
vectors in R?, and assume p € S and g € D. The imaging do-
main is immersed in a known background having relative per-
mittivity €, which contains a nonmagnetic OI with unknown
complex relative permittivity ¢, (q). The electric contrast func-
tion, defined as x(q) = (e-(q) — €) /€, is to be found using the
measured electric field on S.

The OI is illuminated by some known incident electric field
E™<, and the measured scattered field on S is then used to re-
construct the OL. Denoting £™¢** (p) as the measured scattered
field on S and E***(p, x) as the simulated scattered field on S
due to a predicted contrast y, the inverse problem may be for-
mulated as the minimization over x of the following cost-func-
tional:

1
f[’S(

X) 5 HEscat(p-/ X) _ fmeas (p)HZ (l)

[[Emeas (p)lls

where ||.|| g denotes the Ly-norm on S. For the 2D TM case, the
predicted scattered field E5°**(p, x) can be found as

E**(p,x) = k?/Dg( .0)E(q)x(q)dq 2)

where g (p, q) is the known 2D scalar Green’s function for the
background medium and k; is the wavenumber of the back-
ground medium. Note that E5* (p, x) is a nonlinear function
with respect to x (g) because the total field, F (q), is a function
of x (¢g) which may be expressed as

E(q) = E™ (q)+k§/pg(q,q’)E(q')x(q’) dg'. (3

1536-1225/$25.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITY OF MANITOBA. Downloaded on July 14, 2009 at 15:29 from |IEEE Xplore. Restrictions apply.



646

The cost-functional 7~ () is therefore also nonlinear with re-
spect to the unknown contrast. In addition, it is well known that
this cost-functional is ill-posed and requires regularization. At
the (n + 1)th iteration of the inversion algorithm, we form the
multiplicative regularized cost-functional F,, 1 (x) as [7]

Fas1(0) = FE200FT (0)- @)
The weighted Ly-norm total variation multiplicative regularizer
FME(.) is given as

1 IVx@N2+6Zd
A Jp [Vxu(g) + 62

where V denotes the spatial gradient operator with respect to
the position vector g, X, is the reconstructed contrast at the
nth iteration of the inversion algorithm, and A is the area of
the imaging domain D. The positive parameter §2 is chosen to
be F55(xn)/AA, where AA is the area of a single cell in the
uniformly discretized domain D. In the MR-GNI method, the
Gauss—Newton optimization is applied to (4); thus, the contrast
at the (n + 1)th iteration is updated as xnt+1 = Xn + UnDXn,
where Ax,, and v,, are the Gauss—Newton correction and an ap-
propriate step-length, respectively. The step-length is obtained
via an appropriate line-search method based on that described
in [7].

As opposed to the problem considered in [7], the unknown
contrast function is complex, and special care must be taken
in minimizing (4). Herein, we minimize the cost-functional
Fr+1(x) with respect to the complex function x and its
complex conjugate x*, taking them to be two independent
functions. It is shown in [10] that this procedure is equiva-
lent to minimizing F,,+1(x) over Re(x) and Tm(x), the real
and imaginary parts of x. Noting that 7% (x,) = 1, the
Gauss—Newton correction A, can be found by satisfying

2 LS 2 TMR

gL|X:Xn +_7:£3(Xn)a}-—n+1

X*Ox Ix*Ix

OFES
- " |X:Xn _]:L$<Xn)

FiR(x) =

®)

|X:Xn (Axn) =
OF T
ox*

|X:Xn : (6)

In the discrete domain, with the contrast function  discretized
into a complex vector x using pulse basis functions and the mea-
sured data stored in a complex vector 5™, satisfying (6) is
equivalent to solving

(JTI;IJn + fLS(Kn)Ln) AKn — _JTI;I (E:lcat _ Emeas)
—F5S(x, ) Lnx,, (D

—n

where J,, is the Jacobian matrix containing the Fréchet deriva-
tive of £°°*(p, x) with respect to y evaluated at x [11], and
E>°* is the complex vector containing the simulated scattered
field at the observation points corresponding to the predicted
contrast x . The regularization operator L,, is the discrete form
of the operator —V - (b, V), where b7 = A(|Vxy(q)|* + 62)
[7].

As can be seen in (7), the weight of the regularization
operator, determined by F“®(x ), changes automatically
throughout the iterations. That is, as the inversion algorithm
gets closer to the true contrast via minimizing the discrepancy
between the measured and simulated data, the regularization
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weight is lessened, thus providing an adaptive regularization
[12].

The regularization operator, £,,, is capable of providing an
edge-preserving regularization as defined in [13]. This can be
explained as follows. Assuming that one specific region of x,,
is homogeneous, the weight b,, will be almost constant for that
part, and the regularization operator £,,, when applied to that
region, will be approximately —b,, V2. The Laplacian operator
favors smooth solution, and therefore, the smoothness will be
preserved in that region. On the other hand, if there is a large
gradient in x,, (e.g., an edge in the image) in some part of the
imaging domain, the corresponding b,, for that region will be
small. Thus, the steep gradient will not be smoothed out, but
will be preserved [13].

In our implementation, we have used a five-point stencil to
calculate the gradient part of £,,. The inversion algorithm ter-
minates if one of the following four empirically chosen condi-
tions is satisfied: 1) the data misfit 7~ () is less than a pre-
scribed error (set to 1073); 2) the difference between two suc-
cessive data misfits becomes less than a prescribed value (set to
10~%); 3) the difference between two successive reconstructed
contrasts becomes less than a prescribed value (set to 107°); or
4) the total number of iterations exceeds a prescribed maximum
(set to 50). From our experience with the MR-GNI method, the
first three termination criteria are very important as the MR-GNI
method may distort the reconstructed contrast if it proceeds after
reaching the noise level of the measured data or after converging
to a contrast.

III. EXPERIMENTAL RESULT

We first show that the MR-GNI algorithm is capable of
inverting the experimental data collected by the UPC Barcelona
group [9]. These data sets were collected using a near-field
2.33-GHz microwave scanner system that consists of 64
water-immersed antennas equispaced on a 12.5-cm-radius
circular array [9]. In their system, for each case of using one
of the 64 antennas as a sole transmitter, field data is collected
using only the 33 antennas positioned in front of the transmit-
ting antenna. The measured data is then calibrated such that a
line source perpendicular to the imaging domain can be used
to model the incident field inside D (2D-TM assumption).
The data collection tank is filled with a background solution
of water, with the relative permittivity ¢, = 77.3 4+ 58.66 at
2.33 GHz. Herein, we invert the data collected from a human
forearm (data file: BRAGREG.ASC). The inversion results are
constrained to lie within the region defined by 0 < Re(e,.) < 80
and 0 < Tm(e,) < 20, as in [5].

We consider the imaging domain D to be a0.094 m x 0.094 m
square discretized into 60 x 60 pulse basis functions and start
the MR-GNI algorithm with xy = 0. The reconstruction of this
target after 13 iterations is shown in Fig. 1(a) and (b). The
overall structure of the forearm can be seen in the images of
the real and imaginary parts of the complex permittivity. The
MR-GNI inversion is very similar to the MR-CSI reconstruc-
tion of this target [5]. The expected relative permittivities are
approximately 54 + j11 for muscle and 12 + 52.5 for bones at
f = 2.33 GHz, according to [14]. Similar to MR-CSI recon-
struction of this target [5], the expected complex permittivity
of the muscle is reconstructed well. However, the reconstructed
real and imaginary parts of the bone complex permittivity
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Fig. 1. Reconstructed relative complex permittivity of a real human forearm
(BRAGREG data set) using (a), (b) MR-GNI; (c), (d) GNI with the additive-
multiplicative L, -norm regularizer; (e), (f) GNI with the additive L -norm reg-
ularizer; (g), (h) GNI with identity Tikhonov regularizer; and (i), (j) GNI with
Krylov subspace regularization.

are higher than their expected values due to the low dynamic
range of the collected data [3], [5] as well as the use of the
2D-TM approximation for what is really a three-dimensional
(3D) problem. It should be noted that the contribution to the
measured scattered field arising from within the bones is very
small due to the high reflection coefficient at the bone-muscle
boundary. Considering the low dynamic range of the system,
information arising from scattering within the bones may be
buried in the noise, resulting in an underestimated contrast for
the bones—i.e., —0.54 4+ 50.013, as opposed to the expected
value —0.84 + 50.015.
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Fig. 2. Brain test case: (a), (b) true model; (c), (d) reconstructed permittivity.

The reconstruction of this target using GNI in conjunc-
tion with some other regularization techniques—namely,
additive-multiplicative Lo-norm [11], additive Ls-norm [15],
identity Tikhonov [4], and Krylov subspace [1] regularizers—is
shown in Fig. 1(c)-(j). Comparing the GNI reconstructions of
this target using different regularization methods, the edge-pre-
serving characteristic of the utilized MR can clearly be seen.

IV. SYNTHETIC DATA RESULTS

In this section, we show the performance of the MR-GNI al-
gorithm against synthetically derived data for simplified brain
and realistic breast models. In both cases, the data is generated
on a grid that is different than the one used in the inversion algo-
rithm. Also, 3% noise was added to the collected scattered field
on the measurement domain according to the relation given in
[16]. In these two cases, we start the MR-GNI algorithm with
the initial guess y = 0.

A. Brain Model

The 2D brain model is based on the model presented in [2]
and [6], which consists of a layer of skin followed by bone,
cerebral spinal fluid (CSF), gray matter, white matter, and an
area of stroke; see Fig. 2(a) and (b). The frequency of opera-
tion is chosen to be 1 GHz. The relative complex permittivities
of the different parts of the model are taken from [14] and are
given as €, skin = 46 + j15, €, bone = 12.8 + j2.4, €, csF =
69.3 + j42.8, €y gray = 52.8 + j16.9, €, white = 38.6 + 59.0,
and €, stroke(blood) = 61.1 4 728.5. The relative permittivity of
the background medium is chosen to be ¢;, = 45 + j13. The
synthetic scattering data, which includes 32 transmitters with
32 receivers per transmitter, is generated on a grid of 100 x 100
square pulsesin a0.22 m x 0.22 m square. Both transmitters and
receivers are located on a circle of radius 0.15 m. The imaging
domain is chosen to be a 0.2 m x 0.2 m square that is discretized
into 79 x 79 square pulses. The reconstruction of this model is
shown in Fig. 2(c) and (d), where the stroke region is clearly
visible. Although the bone and CSF region is not reconstructed,
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Fig. 3. Breast test case: (a), (b) true model; (c), (d) reconstructed permittivity.

the reconstructed permittivities of the white matter, gray matter,
and stroke are close to the expected values.

B. Breast Model

The 2D breast model is taken from the University of Wis-
consin-Madison breast model repository, which provides
anatomically realistic MRI-derived 3D breast models [17].
The complex permittivities of different tissues in these models
are based on the studies reported in [18]. The utilized breast
model, shown in Fig. 3(a) and (b), is a 2D slice of the scattered
fibroglandular model to which an elliptically-shaped tumor was
added. The complex permittivity of the tumor region was taken
from the 75th percentile group given in [18]. The frequency of
operation is chosen to be 1 GHz, at which the complex permit-
tivity of the background medium is 23.4 + 51.13. The breast
model is illuminated by 32 transmitters, and the simulated scat-
tered data is collected using 32 receivers per transmitter. The
simulated data is generated on a grid of 95 x 100 square pulses
in a 0.13 m x 0.14 m rectangle. The receivers and transmitters
are located on a circle of radius 0.1 m. The imaging domain
is a 0.12 m x 0.13 m rectangle that is discretized into 77 x 83
pulses. The inversion result is shown in Fig. 3(c) and (d), where
the overall structure of the breast can be easily seen. Although
the complex permittivity of fatty tissues has been reconstructed
well, the complex permittivity of the tumor has been underes-
timated. This is probably due to the fact that the algorithm has
averaged out the permittivities of transitional tissues and the
tumor region as it was unable to resolve these two regions at
the selected frequency.

V. CONCLUSION

In all the cases considered herein, the MR-GNI method has
provided meaningful reconstructions of experimental and syn-
thetic biomedical data. The main advantage of the MR-GNI
method, compared to other forms of Gauss—Newton inversion, is
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that the MR-GNI algorithm automatically provides an adaptive
regularization, and the user does not need to choose a regular-
ization parameter for the inversion algorithm. It also provides an
edge-preserving regularization through its use of the weighted
Lo-norm total variation MR.
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