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Abstract—The Gauss-Newton inversion method in conjunction
with a regularized formulation of the inverse scattering problem
is used to invert transverse electric (TE) and transverse magnetic
(TM) data. The utilized data sets consist of experimental data pro-
vided by the Institut Fresnel as well as synthetic data. The TE inver-
sion outperformed the TM inversion when utilizing near-field scat-
tering data collected using only a few transmitters and receivers.
However, very little difference was found between TE and TM in-
versions when using far-field scattering data. It is conjectured that
the reason for the better performance of the near-field TE result
is that the near-field TE data contains more information than the
near-field TM data at each receiver point. In all cases considered
herein, the TE inversion required equal or fewer iterations than
the TM inversion. The per-iteration computational complexity of
both TE and TM inversions is discussed in the framework of the
Gauss-Newton inversion method. Actual costs are consistent with
the computational complexity analysis that is given.

Index Terms—Gauss-Newton method, inverse problems, mi-
crowave imaging, remote sensing.

I. INTRODUCTION

T HE electromagnetic inverse scattering problem consid-
ered herein consists of determining the electric constitu-

tive parameters, i.e., permittivity and conductivity, of an un-
known object inside a bounded imaging domain located in a
known background medium. The inversion is obtained from
measured field data exterior to the imaging domain when it is ir-
radiated by a number of known incident fields. It is well-known
that the inverse scattering problem is ill-posed: the solution to
the mathematical problem is not guaranteed to be unique for
most measurement configurations and does not depend contin-
uously on the measured data [1]. This ill-posedness is usually
treated by employing different regularization techniques.

The other difficulty in solving the inverse scattering problem
is that it is nonlinear with respect to the unknown contrast. The
nonlinearity of the problem has led to the development of var-
ious iterative techniques during the past two decades. These it-
erative techniques attempt to minimize an appropriately con-
structed cost-functional. Two approaches based on the formu-
lation of the problem using two different cost-functionals have
been successfully used to solve the inverse scattering problem.

Manuscript received March 14, 2009; revised August 24, 2009. Date of man-
uscript acceptance October 18, 2009; date of publication January 26, 2010; date
of current version April 07, 2010. This work was supported by the Natural Sci-
ences and Engineering Research Council (NSERC) of Canada, MITACS and
CancerCare Manitoba.

The authors are with the Department of Electrical and Computer Engineering,
University of Manitoba, Winnipeg, MB R3T5V6, Canada (e-mail: pmojabi@ee.
umanitoba.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2010.2041156

The first approach, which includes the Gauss-Newton inversion
(GNI) method, uses the conventional cost-functional which is
based on the difference between the measured and predicted
scattered data for a particular choice of the material parame-
ters; see for example [2]–[13]. The conventional cost-functional
is usually augmented by various regularization techniques. The
second approach, which includes the modified gradient method
(MGM) [14] and the Contrast Source Inversion (CSI) method
[15], uses the same conventional cost-functional, formulated in
terms of contrast sources, in the case of CSI, added to an error
functional involving the domain integral equation which relates
the fields inside the imaging domain to the constitutive parame-
ters of the unknown object. This latter functional is formulated
in terms of the contrast and contrast sources.

Although researchers have developed full-vectorial 3D in-
version algorithms [5], [16], [17] (also see the papers in In-
verse Problems special section [18]), the 2D algorithms con-
sidered herein are also very important because of their use in
existing experimental systems. For example, in the microwave
biomedical imaging systems developed at Dartmouth College
for breast cancer imaging, the data is collected in seven different
planes and a 2D Transverse magnetic (TM) GNI algorithm is
used to invert the data [7]. The usefulness of this 2D assump-
tion for biomedical imaging has been verified in [19]. Various
2D TM inversion algorithms have been tested with experimental
data whereas only a few 2D Transverse Electric (TE) inversion
methods have been investigated against experimental data. The
2D TM problem can be formulated as a scalar problem for a
single electric field component. This is not the case for 2D TE
problems where both electric field components in the transverse
plane need to be taken into account in the formulation which re-
sults in a more complex (i.e., vectorial) formulation compared
to the TM case. It should be noted that TE problems can also be
formulated as scalar problems for a single magnetic field com-
ponent. However, for the TE inversion, it has been shown in [20]
that inverting the integral equation of the two electric field com-
ponents is more stable and has better performance than inverting
the integral equation of the single magnetic field component.
From a physical perspective, the TE-polarized case includes po-
larization charges at dielectric discontinuities, which are diffi-
cult to model numerically [21]. On the other hand, TE-polar-
ized data may contain more useful information about the object
of interest as it is based on two different components of the elec-
tric field as opposed to one in the TM-polarized case. Note that
these two polarizations are physically uncoupled: they provide
independent information about the object being imaged. This
fact can be used to improve the reconstruction in tomographic
configurations by either simultaneously inverting TE and TM
data [22] or using a cascaded TE-TM algorithm [23], [24].

0018-926X/$26.00 © 2010 IEEE

Authorized licensed use limited to: UNIVERSITY OF MANITOBA. Downloaded on April 06,2010 at 14:14:12 EDT from IEEE Xplore.  Restrictions apply. 



MOJABI AND LOVETRI: COMPARISON OF TE AND TM INVERSIONS IN THE FRAMEWORK OF THE GAUSS-NEWTON METHOD 1337

There are only a few reports on the inversion of TE exper-
imental data (using any method). In the special edition of In-
verse Problems dedicated to inversions of the first Fresnel data
set [25], only two papers dealt with the single TE case data that
was provided: the first one [26] was concerned with determining
the shape of the conducting u-shaped scatterer and the second
one [27] used the multiplicative regularized contrast source in-
version (MR-CSI) method to reconstruct the dielectric contrast
of this scatterer. In the second special edition from Inverse Prob-
lems dedicated to the second Fresnel data set [28], [29], which
includes TE and TM data for four targets, only two contribu-
tions addressed the TE-polarized data: the first one [30] applied
the MR-CSI method to reconstruct the constitutive parameters
of all the unknown objects in the data set and in the second
contribution [31], a TM inversion algorithm based on the Di-
agonal Tensor Approximation and the Contrast Source Inver-
sion method (DTA-CSI) was applied to invert the TE-polarized
data. This last contribution uses a calibration of the TE data in
a way that, according to the authors, allows the use of the scalar
TM inversion algorithm. In addition, a 2D TE bi-conjugate gra-
dient inversion method is used in [24] to reconstruct buried ob-
jects from experimental TE scattering data. In [32] an iterative
multi-scaling approach was applied to the single u-shaped metal
target case from the first Fresnel data set, in both TE and TM il-
luminations. Most recently, a TE stochastic inversion algorithm
which utilizes a priori information about the object of interest
has been used to reconstruct the second Fresnel data set [33].

In this paper, the GNI method is applied to a regularized for-
mulation of the inverse scattering problem for inverting the com-
plete second TE Fresnel data set which are combinations of
lossless dielectric and metallic cylinders. As the Fresnel data
contains only far-field scattering data, we also show the perfor-
mance of the TE inversion against near-field synthetic scattering
data. These TE inversions are compared with the TM inversions
of the same targets. The motivation for moving to the near-field
is that it is postulated that near-field TE data may contain more
information than near-field TM data. This does not hold in the
far-field, because in the far-field assuming , where
denotes the electric field and is shown in Fig. 1, is a good ap-
proximation for the TE case and is easily recoverable using
measurements. In the near-field such an approximation is not
valid and therefore two orthogonal field components need to be
measured independently. This is difficult in practice and is one
reason why 2D TE near-field microwave tomography systems
have not been constructed in the past. It should be noted that
the two orthogonal electric field components of TE near-field
configurations can be extracted by measuring the single mag-
netic field component and then taking the derivative thereof. To
compute an accurate derivative, magnetic field measurements
must be performed in close proximities, which can cause diffi-
culties in microwave tomography systems with co-resident an-
tenna arrays (e.g., coupling between the co-resident antennas
[34]). However, in TE far-field configurations, one can measure
the single magnetic field component and then use a plane-wave
approximation in order to extract the electric field from the mag-
netic field.

The result of the present investigation may be useful for jus-
tifying the added cost of developing such systems. The main

Fig. 1. Geometrical model of the inverse scattering problem (�� is the unit vector
pointing outside the �-� plane and �� is the unit vector in the azimuthal direc-
tion).

contribution of this paper is to provide a quantitative compar-
ison of TE and TM inversions of synthetic and experimental data
sets for various cases including near-field and far-field imaging.
This includes a comparison of computational complexity, image
quality and convergence rate.

The paper is organized as follows. The formulation of the
mathematical problem is given in Section II. Brief descriptions
of the utilized Gauss-Newton inversion method and the forward
solver used are given in Sections III and IV, respectively. A dis-
cussion of the computational complexity of the utilized algo-
rithm for the TE and TM inversions is presented in Section V.
Sections VI and VII provides the reconstruction results for all
targets in the data sets. Finally, the results will be summarized
in Section VIII.

II. PROBLEM STATEMENT

Consider a bounded imaging domain containing the
object of interest and a measurement domain outside of

(see Fig. 1). Let and denote position vectors in the
plane and define the complex electric contrast which is to be
determined as

(1)

where is the background permittivity and is the permit-
tivity inside the imaging domain at the point . In general, these
permittivities are complex to allow the modeling of lossy ma-
terial. The total electric field is represented by two rectangular
components, , in the TE case, and only one
component, , in the TM case. The scattered electric
field is then defined as where denotes the
incident field. Throughout the analysis, all material properties
are taken to be non-magnetic: the permeability is taken as that
of free-space, . The wavenumber of the background medium
is denoted by . A time factor of is
implicitly assumed in this paper where . The symbols

and represent the radial frequency and time respectively.
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The so-called data equation in terms of the unknown contrast
can be written as,

(2)

where and is the dyadic Green’s function for the
background medium. Assuming the TE case, may be
written as [35],

(3)

Here is the 2D identity dyad and is the 2D scalar
Green’s function for the homogeneous background. The symbol

represents the gradient operator which is taken with respect
to the subscript variable. For the TM case, .
Note that the data equation is nonlinear with respect to the un-
known contrast as the electric field inside the imaging domain
is a function of . That is, the electric field inside the imaging
domain is given via the domain equation,

(4)

where . The inverse scattering problem may then be for-
mulated as the minimization over of the least-squares data
misfit cost-functional,

(5)

where denotes the measured scattered field on and
denotes the -norm on .

It should be mentioned that for the TE inversion, we can also
use the magnetic field integral equation which can be derived by
taking the curl of both sides of (2) with respect to . However,
we do not use the magnetic field formulation for the inversion as
it has been shown in [20] that the TE inversion using the electric
field formulation is more stable and has better performance than
that using the magnetic field formulation.

Herein, we consider a discrete nonlinear inverse scattering
problem where the number of measured data is limited, say ,
and the imaging domain is discretized into cells using
2D pulse functions. Therefore, the measured scattered data on
the discrete measurement domain is denoted by the complex
vector and the contrast function is represented
by the complex vector . We further assume that in
the TE case the vector is ordered in such a way that
it contains the -component of the measured scattered field,

, at all observation points followed by the corre-
sponding -component, . However, in the TM
case, the vector consists only of the -component of

the measured scattered field, i.e., . The discretized in-
verse scattering problem is formulated as the minimization of
the least-squares data misfit

(6)

where represents the simulated scattered field vector
at the measurement points due to the predicted contrast and

denotes the -norm on .

III. GAUSS-NEWTON INVERSION METHOD

The Gauss-Newton Inversion (GNI) method is based
on Gauss-Newton optimization [36] where the nonlinear
cost-functional is approximated with a quadratic form at the
current iteration that ignores the second-order derivatives. The
stationary point of the quadratic model is then chosen as the
next iterate. Herein, the cost-functional to be minimized is
chosen to be an additive-multiplicatively regularized form of
the data misfit , (6), to overcome the ill-posedness of the
inverse scattering problem. That is, we apply the GNI method
to the following cost-functional [5], [37], [38],

(7)

where is the regularizer and is a small positive param-
eter which is determined by the user in an ad hoc way. The regu-
larizer is chosen to be the -norm total variation of the contrast
vector over the imaging domain. That is, is the discrete
form of the cost-functional

(8)

where is the area of the imaging domain. We then minimize
(7) using the Gauss-Newton method and the contrast vector at
iteration is updated as

(9)

Here the step-length is a real positive number which is de-
termined using a line search algorithm described below. The
Gauss-Newton correction is found as in [5] by solving

(10)

where is the simulated scattered field vector at the obser-
vation points due to the contrast . The matrix denotes the
Jacobian matrix containing the derivative of with respect
to and evaluated at . The superscript stands for the com-
plex conjugate transpose. The matrix represents the discrete
form of where represents the Laplacian operator.
Assuming that the contrast function is zero on the boundary of

, the matrix is a negative definite matrix [38]. Therefore, the
matrix represents a positive definite matrix; thus,
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ensuring a descent direction for the Gauss-Newton correction
[5], [36]. The positive parameter is calculated as

(11)

Note that the regularization weight is controlled by in (10)
and that as decreases throughout the iterations, because

is minimized, the regularization is lessened;
thus, providing an adaptive regularization [38], [39] for the
inversion algorithm. The details of the algorithm are not pre-
sented here but are available in [5].

The step-length is determined using a line search algo-
rithm and is based on that described in [8] and [10]. In this line
search algorithm, we start with the full step, i.e., , and
check whether it satisfies,

(12)

where is a small positive number (set to be ) and
is the decrease rate of at in the direction of . If

satisfies (12), we choose it as an appropriate step-length;
otherwise we reduce the step-size along until we find a

which satisfies (12). In this procedure, the function
is approximated by a quadratic expression in

terms of and a new candidate for the step-length is then found
by minimizing this quadratic form. As in [8], the minimum pos-
sible value for is set to 0.1. If the step-length becomes less
than 0.1, we choose and terminate the line search algo-
rithm.

The inversion algorithm terminates if one of the following
three conditions is satisfied: (i) the data misfit is less than
a prescribed error (set to be ), (ii) the difference between
two successive data misfits becomes less than a prescribed value
(set to be ), or (iii) the total number of iterations exceeds
a prescribed maximum (set to be 50 for the single-frequency
inversion).

IV. THE FORWARD SOLVER

In each iteration of the GNI algorithm, the forward solver is
called several times to compute the simulated scattered field at
the observation points and its derivative with respect to the cur-
rent estimate of the contrast. In addition, the line search algo-
rithm requires calling the forward solver to evaluate (12). There-
fore, having a fast forward solver is essential for this inversion
algorithm. The forward solver is concerned with solving a linear
well-posed system of equations which is solved using the Con-
jugate Gradient (CG) technique and accelerated using the Fast
Fourier Transform (FFT). This is possible because of the con-
volutionary form of the domain operator when the imaging do-
main is discretized uniformly using pulse basis functions in
the and directions. To accomplish a CG-FFT forward solver,
a procedure similar to [16] is adopted where the domain equa-
tion, (4), is formulated in terms of the so-called contrast sources,
defined as . This can be done by multiplying

(4) by the contrast and formulating the domain equation in terms
of the contrast sources as

(13)

where denotes the identity operator and is defined as

(14)

After finding the contrast sources from the discrete form of (13)
using the CG-FFT algorithm, the total field inside can be
simply calculated from

(15)

To further accelerate the forward solver, we have used the
marching-on-in-source-position technique [5], [40] where an
appropriate initial guess for the CG-FFT algorithm with respect
to a specific transmitter position is obtained via an extrapola-
tion of the fields corresponding to some previous transmitter
positions. In this paper, the initial guess for the th transmitter

to be used in the CG-FFT algorithm applied to the dis-
crete form of (13) is written as

(16)

where is the converged solution of (13) with respect
to transmitter. A closed-form expression for the co-
efficients is available such that they minimize the following
norm [5],

(17)

where denotes the -norm on . For the first three trans-
mitters, we have used a zero initial guess.

V. THEORETICAL COMPUTATIONAL COMPLEXITY ANALYSIS

A description of the per-iteration computational complexity
of the utilized TE and TM GNI algorithms is now given. The
following conventions are used: the number of transmitters is
denoted by , the total number of receiver positions by ,
and the number of receiver positions per transmitter by . The
number of CG iterations required for the TE and TM forward
solvers are denoted by and , respectively. The number
of CG iterations to find the Gauss-Newton correction in the TE
and TM cases are denoted by and , respectively. The
contrast function is discretized on a uniform grid using 2D
pulse functions , and denoted by the contrast
vector whose th component is represented by .

A. Jacobian Matrix

Each row of the Jacobian matrix will correspond to a com-
bination of the scattered field at a receiver located at, say, and
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polarized along some direction, say, and due to one trans-
mitter, say, the th transmitter. That is, one row for each indi-
vidual datum of the collected data. The ordering of the rows
will obviously depend on the ordering of this data, but the th
element in such a row will correspond to the derivative of this
scattered field with respect to . This element may be found
using an adjoint formulation [41] as [5], [8]

(18)

In the TE case, is the dyadic Green’s function for the
inhomogeneous background, which is the predicted scatterer at
the current GNI iteration, evaluated at the point due to the
source at the point (also called the distorted dyadic Green’s

function). In the TM case, where is the
2D scalar Green’s function for the inhomogeneous background.
Also, is the total field inside the imaging domain due to
the transmitter and corresponding to the predicted contrast.
For our cases, the polarization direction is considered to be
either or in the TE case and in the TM case.

Finding the distorted dyadic Green’s function for the dif-
ferent receiver positions requires calling the forward solver
times in the TE case and times in the TM case. This is due to
the fact that two different polarizations should be considered in
the TE illumination while only one polarization is needed for the
TM illumination. The computational cost for finding for
different transmitter locations is calls of the forward solver
for both TE and TM cases as the TE-polarized data is calibrated
(or synthetically created) using an infinite magnetic line source
directed in direction.

In our implementation, the elements of the matrix , as given
in (18), are not found explicitly as we only need to do the right
matrix-vector multiplication using and , see (10). There-
fore, the integration and the dot-product , as required
in (18), is computed when (or ) operates on a vector of the
proper size and will be considered in the computational com-
plexity of finding the Gauss-Newton correction.

B. The Gauss-Newton Correction

Solving in (10) using CG requires multiplying by a
vector and this requires approximately multiplications
in the TE case and multiplications in the TM case. This
can be explained as follows: in the TE case, the multiplication
of the Jacobian matrix with a vector can be written
as,

(19)

and in the TM case as

(20)

where represents the matrix form of the -component
of the distorted dyadic Green’s function. The operation
denotes the elementwise product (Hadamard product) of two

conforming vectors. Using (19) and (20), it can be concluded
that the matrix-vector multiplication requires approximately

operations in the TE case and operations in the
TM case. The same conclusion can be drawn for multiplying the
matrix by an arbitrary vector of the correct size. Therefore,
the computational cost of calculating , as required
in (10), is about in the TE case and in the TM
case.

The matrix for a rectangular imaging domain is a sym-
metric block Toeplitz matrix with Toeplitz blocks [42, p. 100],
so its multiplication with a vector can be accelerated using
the FFT; thus, the computational cost of is neglected
compared to that of . Therefore, the computa-
tional cost for finding the Gauss-Newton correction is about

for the TE case and for the
TM case. Note that each iteration of the CG algorithm requires
two matrix-vector multiplications. Assuming , the
computational complexity of finding the correction in the TE
case is almost four times more than that in the TM case.

C. The Forward Solver

The CG-FFT forward solver, applied to the discrete form of
(13), requires the definition of the operator and its
adjoint. In the TE case, this operator may be defined as [16]

(21)

and in the TM case, as

(22)

where is the component of . Also, and are defined
as

(23)

(24)

As pointed out in [16], the discrete forms of both and
can be computed by FFT routines. The discrete form of may
be computed by multiplying a symmetric block Toeplitz matrix
with Toeplitz blocks with . However, the discrete form of

can be computed by multiplying a symmetric Toeplitz ma-
trix with and . Due to the fact that the matrix-vector mul-
tiplication by a symmetric block Toeplitz matrix with Toeplitz
blocks is more expensive than that by a symmetric Toeplitz ma-
trix [43], we ignore the computational complexity of finding

compared to that of finding . Using this approximation,
the computational cost of multiplying the discrete form of

by an arbitrary vector of the correct size in the TE case
is roughly two times of that in the TM case as the TE forward
solver requires the calculation of and whereas the TM
forward solver only requires the calculation of .

Using the above approximation, it can also be shown that the
computational complexity of multiplying the discrete form of
the adjoint operator of with an arbitrary vector of
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the correct size in the TE case is also two times of that in the
TM case. Therefore, the per-iteration computational complexity
of the TE CG-FFT algorithm, utilized in the forward solver, is
roughly twice that of the TM case.

D. Line Search

The computational cost of the utilized line search algorithm
is approximately equal to that of evaluating
for the known background Green’s function and this is equal to
calling the forward solver times for both TE and TM cases.
As mentioned earlier, if the full step satisfies the condition (12),
we choose it as an appropriate step-length. From our experience
with the regularized cost functional (7), the full step mostly sat-
isfies the condition (12); therefore, very few calls to this line
search algorithm are made in the cases that we have run. This
can be explained as follows. In the Gauss-Newton optimization,
the correction may lead to an increase in the cost-func-
tional if (i) , see (10), is not positive-definite, or
(ii) the quadratic model of the nonlinear regularized cost-func-
tional at is not a good approximation to [4]. As
pointed out in Section III, the matrix is positive
definite. Moreover, due to the use of adaptive regularization, the
regularization weight is maximum at early GNI iterations
where the predicted contrast can be very far from the true solu-
tion. Thus, at early GNI iterations, the quadratic model of
is dominated by that of the regularizer. Noting that the regu-
larizer is an -norm, the quadratic model of the regularized
cost-functional has a good chance to be a good approximation
of at early GNI iterations. As the algorithm gets closer to
the true solution, the regularization weight is lessened. Thus,
the quadratic model of the regularized cost-functional is domi-
nated by that of the data misfit functional. Due to the fact that
the predicted contrast is close to the true solution, the quadratic
model of the regularized cost-functional has a good chance to
be a good approximation of . Therefore, the use of adap-
tive regularization will usually make the quadratic model of the
regularized cost-functional be a good approximation to .

VI. INVERSION RESULTS

The inversion results from both synthetic and experimental
data are now shown. To be able to compare the TE inversion with
the TM inversion, we introduce an image error cost-functional
defined as

(25)

where is the final reconstruction, is the true contrast
and denotes the -norm on . For the experimental data,

is created according to the geometrical configurations and
the average permittivity of the object being imaged. For the syn-
thetic data, as the data is generated on a different grid than the
one used in the GNI algorithm (to avoid inverse crime), the
image error cost-functional (25) is calculated by interpolating
onto a finer and finer mesh until the norm converged. For the
synthetic data sets, all parameters of the forward solver are kept
the same for TE and TM polarizations. We have also added 3%

Fig. 2. The exact contrast of the scatterer for the synthetic test case. (a)
�������. (b) �������.

RMS additive white noise to the synthetic data set using the for-
mula given in [44].

A. Synthetic Data: Concentric Squares

We consider a similar test case which has been used in [15],
[20], [45]. The scatterer consists of two concentric squares with
an inner square having dimension of ( is the wave-
length in the background medium) with a contrast of .
The inner square is surrounded by an exterior square having
sides of and contrast . The exact con-
trast profile is shown in Fig. 2. The frequency of operation is
chosen to be 1 GHz and free space is assumed for the back-
ground medium. The imaging domain consists of a square
having sides of . We consider three different scenarios for
collecting the data. In the first scenario, we choose 10 trans-
mitters and 10 receivers on the measurement
circle and in the second scenario, we choose 30 transmitters
and 30 receivers on . Therefore, the length
of the vector in the second scenario is 9 times that of

in the first scenario. In these two scenarios, the transmit-
ters and receivers are placed evenly on the measurement circle

of radius . In the third scenario, we choose
10 transmitters and 10 receivers evenly placed
on the measurement circle of radius . The
forward data is then generated on a grid of 30 30 for both
TE and TM polarizations. The transmitters for the TE and TM
cases are the magnetic line source and electric line source re-
spectively. For the TE case, and components are col-
lected at the receiver positions whereas in the TM case, the
component is collected. We will note that the synthetically col-
lected data in the first and second scenarios may be considered
as the near-field data whereas the collected data in the third sce-
nario is at far-field.

For the first scenario, the TE and TM inversions are shown in
Fig. 3. As can be seen, both TE and TM inversions provide good
reconstructions for the real part of the contrast profile. However,
the TM inversion is not successful in reconstructing the imag-
inary part of the contrast: the inner square is unresolved in the
imaginary part of the TM inversion. It should be noted that when
the number of transmitters/receivers decreased to 8, the TE in-
version also failed (not shown here) in reconstructing this target.
The TE and TM inversions for the second scenario are shown in
Fig. 4. In this case, both TE and TM inversions are successful in
reconstructing real and imaginary parts of the contrast. For the
third scenario which utilizes the same number of transmitters
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Fig. 3. Inversion of the synthetic data set (the first scenario: � � �� and
� � � � ��) (a)–(b) TE case (c)–(d) TM case (e)–(f) cross-section at � �
�. (a) �������. (b) �	�
���. (c) �������. (d) �	�
���. (e) �������. (f)
�	�
���.

and receivers as in the first scenario but located in far-field, the
TE and TM inversions are shown in Fig. 5. In this case, the TE
and TM inversions are very similar. The number of GNI itera-
tions utilized to reconstruct this target and the value of
in these three different scenarios are given in Tables I and II.

That the TE inversion outperforms the TM inversion in the
first scenario is probably due to the fact that the TE near-field
data contains more information than the TM near-field data (the
length of the vector in the TE case is twice that in the TM
case). Noting that the measurement circle is in the near-field
for this test case, it is expected that and pro-
vide non-redundant information. However, when the number
of transmitters and receivers increases in the second scenario,
the TM scattering data provides sufficient information to recon-
struct the object with a reasonable accuracy while the TE inver-
sion also provides a good reconstruction in this case. Comparing
the inversion results for the first and third scenarios, we specu-
late that the TE far-field data does not provide extra information
compared to the TM far-field data.

B. The Second Fresnel Experimental Data Set

For the second Fresnel data set [28], the transmitting and re-
ceiving antennas are both wide-band ridged horn antennas and
are located on a circle with radius 1.67 m. The targets, see Fig. 6,

Fig. 4. Inversion of the synthetic data set (the second scenario: � � �� and
� � � � ��) (a)–(b) TE case (c)–(d) TM case (e)–(f) cross-section at � �
�. (a) �������. (b) �	�
���. (c) �������. (d) �	�
���. (e) �������. (f)
�	�
���.

are all long circular cylinders and have no variations in the lon-
gitudinal direction. Both TE and TM polarizations are measured
for each target where the background medium is free space.
In the TM illumination, the -component of the total and in-
cident electric fields are collected for different transmitter po-
sitions and frequencies. In the TE illumination, the -compo-
nent of total and incident electric fields are measured (the di-
rection is depicted in Fig. 1). The scattered field is obtained by
subtracting the measured incident field from the measured total
field. The scattered field is then calibrated by approximating
the horn transmitting and receiving antennas by line transmit-
ters and receivers (electric line source for TM illumination and
magnetic line source for TE illumination). The calibration pro-
cedure adopted is that explained in [27] where a single calibra-
tion factor per transmitter is used: for each transmitter the cal-
ibration factor used is the ratio of the simulated incident field
to the measured incident field for the receiver point opposite to
the transmitter (this factor is used for all receiver points). Note
that in the TE-polarized data provided by the Fresnel group, only
one component of the electric field, i.e., , has been measured.
This component is then calibrated and converted to and
to be used by the inversion algorithm.

The FoamDielInt and FoamDielExt targets are illuminated by
8 transmitters and the measured data is collected at 9 different
frequencies from 2 GHz to 10 GHz with a step of 1 GHz at
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Fig. 5. Inversion of the synthetic data set (the third scenario: � � �� and
� � � � �� and the transmitters/receivers are located in far-field) (a)–(b) TE
case (c)–(d) TM case (e)–(f) cross-section at� � �. (a)�������. (b) �	�
���.
(c) �������. (d) �	�
���. (e) �������. (f) �	�
���.

TABLE I
NUMBER OF GNI ITERATIONS REQUIRED FOR THE CONVERGENCE

(MULTIPLE-FREQUENCY INVERSION)

241 points per transmitter. The FoamTwinDiel target is irradi-
ated by 18 transmitters and the number of receivers and frequen-
cies stays the same as two previous cases. For the FoamMetExt
target, the numbers of transmitters and receivers are the same
as those for FoamTwinDiel target but the object is illuminated
at 17 different frequencies in the range of 2 GHz to 18 GHz
with 1 GHz step. For all these targets, the imaging domain, ,
is a 15 cm 15 cm square region which is discretized into a

uniform grid. For the single-frequency inversion,
we use as the initial guess to the GNI method and for the
multiple-frequency inversions, the frequency-hopping approach
[46] is used where the reconstructed image from low-frequency

TABLE II
IMAGE ERROR COST—FUNCTIONAL����

Fig. 6. The targets of the second Fresnel data set. (a) FoamDielInt. (b)
FoamDielExt. (c) FoamTwinDiel. (d) FoamMetExt.

data is used as an initial guess for the inversion of high-fre-
quency data. For the FoamMetExt target, we have limited the
maximum value of the imaginary part to be 4 at as
otherwise the imaginary part of the metal cylinder will become
too high (on the order of 200), making the convergence of the
forward solver difficult. Therefore, if the imaginary part of the
contrast of this target becomes more than four, it is set to four.

1) Multiple-Frequency Inversion: The multiple-frequency
inversion results for the Fresnel targets are shown in Figs. 7–10.
For all these four targets, the TE and TM inversions have been
successful in reconstructing the targets with a reasonable ac-
curacy. For the FoamDielInt, FoamDielExt and FoamTwinDiel,
the reconstructed imaginary parts of both TE and TM inversions
are small which indicates that these three targets are lossless.
For the FoamMetExt target, it can be seen that the shape of the
dielectric cylinder is reconstructed well in the TE case whereas
its shape in the proximity of the metallic cylinder is not re-
constructed in the TM case. Also, for both polarizations the
reconstructed real part of the metallic cylinder is close to zero
whereas the imaginary part is indicated to be an object of high
loss. The number of GNI iterations required to reconstruct these
objects is listed in Table I which shows a faster convergence for
the TE inversion of the Fresnel targets. The value of the image
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Fig. 7. FoamDielInt reconstruction (a)–(b) TE case (c)–(d) TM case. (a)
�������. (b) �������. (c) �������. (d) �������.

Fig. 8. FoamDielExt reconstruction (a)–(b) TE case (c)–(d) TM case. (a)
�������. (b) �������. (c) �������. (d) �������.

error cost-functional for TE and TM inversions of these
targets is given in Table II which shows a relatively similar
reconstructions for the TE and TM inversions.

2) Single-Frequency Inversion: To investigate the single-fre-
quency inversion of the experimental Fresnel data for the TE
case, we show the reconstruction results of FoamTwinDiel target
at and compare it to the TM inversion at the same
frequency. In both TE and TM inversions, we start the inver-
sion algorithm with as the initial guess. The algorithm
converged after 7 iterations for the TE case and 25 iterations
for the TM case. The data misfit for the first iteration was
0.3803 for the TE case and 0.3809 for the TM case. However,
in the final reconstruction, the data misfit reduced to 0.0285 for

Fig. 9. FoamTwinDiel reconstruction (a)–(b) TE case (c)–(d) TM case. (a)
�������. (b) �������. (c) �������. (d) �������.

Fig. 10. FoamMetExt reconstruction (a)–(b) TE case (c)–(d) TM case. (a)
�������. (b) �������. (c) �������. (d) �������.

the TE case and 0.0266 for the TM case. The data misfit for dif-
ferent iterations of the inversion algorithm for both TE and TM
inversions is shown in Fig. 11. The TE inversion, Fig. 12(a)–(b),
overshoots the real part of the contrast for the external cylinder
while the TM inversion, Fig. 12(c)–(d), is very close to the true
contrast. The value of the image error cost-functional for the
single-frequency TE and TM inversions of the FoamTwinDiel is
given in Table II.

As far as the computational complexity of the TE and TM
inversions is concerned, the inversion codes have been written in
object-oriented Matlab and all the computations are performed
on a computer with a quad-core 2.66 GHz Intel processor and 2
GB of RAM. As an example, we consider the FoamDielInt target
where , , and . In the first
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Fig. 11. The data misfit � for the single-frequency inversion of the
FoamTwinDiel target at � � � ���.

Fig. 12. Single-frequency reconstruction of FoamTwinDiel at � � � ���
(a)–(b) TE case (c)–(d) TM case. (a) �������. (b) ���	���. (c) �������.
(d) ���	���.

GNI iteration at we have and
for the TE case whereas in the TM case, and

. Finding the Gauss-Newton correction took about 320 sec
for the TE case and 79 sec for the TM case. That is, finding
the correction in the TE case is about 4 times more expensive
than that in the TM case which matches the expected theoretical
ratio. Also, for each transmitter, the forward solver took about
0.99 sec in the TE case and 0.31 sec in the TM case showing that
the per-iteration computational complexity of the TE forward
solver is about 2.4 times more than that of the TM case which
is very close to the approximate theoretical ratio. Also, in the
inversion of the FoamDielInt target, the line search algorithm
was called once for each frequency in both polarizations.

The computational cost can be significantly alleviated by
using the marching-on-in-source-position technique [5], [40]
which essentially reduces and . For example, in the
first GNI iteration for the FoamDielInt target at ,
it took about 691 sec for the TE case and 114 sec for the TM

case to find the inhomogeneous Green’s function without using
the marching-on-in-source-position technique. However, the
update procedure took just 295 sec for the TE case and 53 sec
for the TM case when this technique was used.

It is important to note that for experimental tomographic sys-
tems where the receiver positions are the same as transmitter po-
sitions, which is the case for most practical microwave imaging
systems currently in existence, computational savings can be
made in updating the Green’s function of the inhomogeneous
background using the already updated total field corresponding
to each transmitter.

VII. THE GAUSS-NEWTON INVERSION WITH A KRYLOV

SUBSPACE REGULARIZATION METHOD

To verify that the above results are not due to the specific
use of the additive-multiplicative regularization, we also use a
Krylov subspace regularization method. Specifically, we use the
conjugate gradient least squares (CGLS) regularization tech-
nique [7], [38], [47], as a Krylov regularization method, in con-
junction with the GNI method. We will refer to this inversion al-
gorithm as GNI-CGLS in this paper. We have three main reasons
to use this specific regularization method. First, the CGLS reg-
ularization method provides a basic and simple regularization
method. It can be shown that this regularization provides sim-
ilar results to truncated singular value decomposition (TSVD)
and standard-form Tikhonov regularization [42, pg. 50], [48, p.
146], [38], [49]; mainly due to the similarity between the Krylov
subspace basis and the SVD basis. Second, the CGLS regular-
ization provides computationally more efficient regularization
compared to the TSVD and Tikhonov regularization. Third, an
adaptive regularization parameter choice method for the CGLS
regularization technique has been presented in [7] and success-
fully used for the inversion of experimental biomedical data
such as the ones collected from human breast and forearm [7],
[47].

The GNI-CGLS method was applied to the the first scenario
of the synthetic data set and the inversion result is shown in
Fig. 13. Similar to the inversion result using the GNI method
with the additive-multiplicative regularizer shown in Fig. 3, the
TE GNI-CGLS inversion outperforms the TM GNI-CGLS in-
version. The TE GNI-CGLS inversion converged after 7 itera-
tions whereas the TM GNI-CGLS inversion converged after 12
iterations. The image cost-functional is 0.08 for the TE
GNI-CGLS inversion and 0.11 for the TM GNI-CGLS inver-
sion. For the second and third scenarios of the synthetic data set
as well as the Fresnel experimental data set, the inversion results
from the GNI-CGLS method (not shown here) were very similar
to those from the GNI method with the additive-multiplicative
regularizer. Similar to the GNI method with the additive-multi-
plicative regularizer, the TE GNI-CGLS method requires equal
or less iterations than the TM GNI-CGLS method. For example,
for the single-frequency FoamTwinDiel case , the
TE GNI-CGLS method converged after 15 iterations whereas
the TM GNI-CGLS method converged after 27 iterations. The
data misfit for different iterations of the GNI-CGLS method for
both TE and TM polarizations is shown in Fig. 14. Similar to
the GNI with the additive-multiplicative regularizer shown in
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Fig. 13. Inversion of the synthetic data set (the first scenario: � � �� and
� � � � ��) using the GNI-CGLS method (a)–(b) TE case (c)–(d) TM case
(e)–(f) cross-section at � � � (g)–(h) cross-section at � � �. (a) �������.
(b) 	
�����. (c) �������. (d) 	
�����. (e) �������. (f) 	
�����. (g)
�������. (h) 	
�����.

Fig. 11, the TE inversion converged faster than the TM inver-
sion.

To check the sensitivity of the convergence rate to the line
search algorithm described in Section III, we have also used
another line search technique. This line search algorithm uses
the Matlab function fminsearch which is based on the simplex
method [50]. As opposed to the line search algorithm presented
in Section III, this method does not require the derivative of the
cost-functional. Applying this line search algorithm at each iter-
ation of the GNI method, the TE inversion required equal or less
iterations than the TM inversion to converge. For example, the
convergence of the GNI-CGLS method applied to the single-fre-
quency FoamTwinDiel case for both TE and TM
polarizations using this line search algorithm is shown in Fig. 15

Fig. 14. The data misfit � for the single-frequency inversion of the
FoamTwinDiel target at � � ���	 using the GNI-CGLS method.

Fig. 15. The data misfit � for the single-frequency inversion of the
FoamTwinDiel target at � � � ��	 using the GNI-CGLS method with the
derivative-free line search algorithm.

where the TE and TM inversions converged in 14 and 28 itera-
tions respectively. It can easily be seen that this convergence is
very similar to the convergence of the GNI-CGLS method using
the derivative-based line search algorithm shown in Fig. 14.

VIII. DISCUSSION AND CONCLUSION

We have shown how the recently developed regularized cost
functional [5] can be optimized using the Gauss-Newton method
in conjunction with a CG-FFT forward solver accelerated by
a marching-on-in-source-position technique and applied to the
experimental and synthetic data sets in both TE and TM polar-
izations. For testing this approach, the experimental Fresnel data
set was used to provide far-field scattering data and a synthetic
data set was used to provide near-field and far-field scattering
data. The TE inversions in all cases were compared with the TM
inversions in terms of the reconstruction accuracy, convergence
rate and theoretical computational complexity.

For all Fresnel targets, the TE and TM inversions are very
similar. This is probably due to the fact that the measured data is
collected in the far-field where only one scalar field component
is required to represent the electric field vector: in the TE
case and in the TM case. Thus, in the far-field, splitting

into and does not provide more informa-
tion than the TM case. In the first scenario of the synthetic test
case, where and and the collected data
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is in the near-field, the TE inversion provides more accurate re-
construction compared to the TM inversion. This is likely due to
the fact that and provide non-redundant informa-
tion for the TE inversion whereas the TM inversion only utilizes
the field. However, when the number of transmitters and
receivers increases to 30 for the same test case, the TE and TM
inversions provide similar results which verifies the fact that the
TM inversion lacked enough information compared to the TE
case when . Keeping the number of trans-
mitters and receivers as in the first scenario but placing them in
the far-field (the third scenario), the TE and TM inversions re-
sult in a similar reconstruction. This is consistent with the sim-
ilar performance of TE and TM inversions of Fresnel data set.

In all cases considered in this paper, the TE inversion requires
the same or fewer number of iterations than the TM inversion
to converge (of course, for the same convergence criteria listed
in Section III). The same observation has been reported in [32]
where the TE Iterative Multi-Scaling Approach (IMSA) con-
verged faster than the TM IMSA when the signal to noise ratio
of the collected data was low. Also, in [51], it has been theo-
retically speculated that the TE inversion has a lower degree of
nonlinearity compared to the TM case which may result in a
faster convergence in the TE case. In addition, the actual com-
putational cost of the TE and TM inversions were very close to
the approximate theoretical ones presented in Section V.

To verify these results using another regularization technique,
we have also inverted these data sets using the CGLS regular-
ization scheme. The conclusion from inversion results obtained
from the GNI-CGLS method is consistent with that obtained
from the GNI method with the additive-multiplicative regular-
izer. We have also used another line search algorithm which is a
derivative-free method which resulted in a similar convergence
compared to the derivative-based line search method.

Considering all this numerical data, we speculate that the ul-
timate performance and convergence of the GNI algorithm ap-
plied to these data sets are highly dependent on the information
content of the field, irrespective of the regularization and line
search strategies. Thus, the TE inversion, which utilizes both
rectangular components of the electric vector at each receiver
position, may result in more accurate reconstruction than the
TM inversion when utilizing near-field scattering data collected
using only a few transmitters and receivers. This paper serves
as a preliminary study to compare the performance of the scalar
and vectorial inversions and may lead to a theoretical compar-
ison between the performance of these two inversions.
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