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Abstract—A technique for efficiently simulating the scattering
from objects in multilayered media is presented. The efficiency of
the formulation comes from the fact that the sources for the scat-
tered fields (SFs) only occur at the inhomogeneities and, therefore,
the SFs impinging on the boundaries are more easily absorbed. To
demonstrate the technique, a 1-D-finite-difference time-domain
solution to the plane-wave propagation through a multilayered
medium is used as an incident-field source for an SF formulation
of the finite-volume time-domain method. Practical aspects of the
application are discussed and numerical examples for scattering
from canonical objects are presented to show the validity of the
proposed technique. The simulation scheme described herein can
be used for simulations of geophysical media with appropriate
specifications of the dielectric properties of the media and the
inhomogeneities.

Index Terms—Finite difference time domain (FDTD), finite
volume time domain (FVTD), numerical methods.

I. INTRODUCTION

T HE STUDY of electromagnetic wave scattering from ob-
jects in multilayered media is a widespread problem with

diverse applications including the remote sensing of earth envi-
ronments [1] and buried object detection [2], [3]. In contrast to
the problem where the target or object of interest lies in free
space, the formulation and subsequent analysis of the multi-
layered media are complicated due to the layer interfaces that
govern the propagation of the interrogating incident field. De-
termining a simple way to account for the layers is a nontrivial
task, which has led to a variety of techniques in the literature
for modeling subsurface problems [4] (and references therein)
[5]. As stated in [6], a variety of analytic methods has been de-
veloped and is capable of describing the propagation through
multilayered media; however, it is challenging to utilize these
methods in an existing numerical solver.

Differential-equation-based techniques are particularly well
suited for modeling wave interactions with inhomogeneities in
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a multilayered medium since the incorporation of an inhomo-
geneity does not increase the number of unknowns that must
be solved [6]. The ubiquitous finite-difference time-domain
(FDTD) method [7] has been used in this respect, and while
it is appropriate for many geometries, it is deficient in that it
requires a high level of discretization in order to resolve objects
with curved features. In many subsurface scattering problems,
the inhomogeneities exhibit curved features (e.g., brine inclu-
sions in sea ice, landmines, cancerous tumors) and so, a method
that takes the curved features into account would be useful. One
such method is the finite-volume time-domain (FVTD) method
[8], [9], which is particularly well suited to modeling curved
features due to its ability to use a conforming irregular grid.
With appropriate interpolation methods, the solutions for the
multilayered problem that have been developed for the FDTD
method can be used with the FVTD method.

When using a scattered-field (SF) technique to perform cal-
culations, knowledge of the incident field at the inhomogeneity
for the entire time history of the simulation is required. When
the medium is multilayered, the incident field at the inhomo-
geneity is the resultant of various reflections from and transmis-
sions across the layer interfaces. The SFs generated by the inho-
mogeneity then propagate in the multilayered medium and are
absorbed at the boundaries. In time-domain differential-equa-
tion-based methods, the boundary conditions are more efficient
at absorbing normally incident SFs, and so, the incorporation
of the incident field into the numerical method and solving for
only the SF allows the boundary condition to be more effective.

A method for generating a total-field/SF (TF/SF) source for
general layered media was presented in [10]. Continued interest
in developing the technique is evident in the variations that have
been presented in the literature (for example, [11] and [12]). Pre-
viously, [6] presented an FDTD method for modeling scatterers
in stratified media, but they limited their study to time-harmonic
plane waves. In this paper, we adapt the general TF/SF source
for use in an SF formulation of the FVTD method and show
how it can be used for scattering from objects within a multi-
layered medium. The focus of [10] is mostly on computational
aspects, such as stability, dispersion, and evanscent waves; their
examples are strictly multilayered media without any inhomo-
geneities. In contrast, our work focuses on the utilization of the
method for providing an incident field and calculating the scat-
tering from inhomogeneities lying within the medium. Further-
more, our work considers an interpolation scheme that permits
an irregular mesh, such as that utilized in the FVTD calcula-
tion. To validate our method, we compare with other published
data for canonical shapes lying within a half-space medium and
below a lossy layer. Incorporation of the SF formulation for

0018-926X/$26.00 © 2011 IEEE



ISLEIFSON et al.: EFFICIENT SCATTERED-FIELD FORMULATION 4163

multilayered media in the FVTD engine provides a new tool
for modeling complex layered media and has future potential
to be used for modeling electromagnetic interactions in remote
sensing studies.

The organization of this paper is as follows. In Section II.
we formulate the total-field/SF background theory. Details of
the practical application of this general concept in an FVTD
numerical solver are given in Section III. We present numerical
results for several canonical shapes for validation in Section IV.
We conclude with several remarks on the implementation and
applicability of the method, along with some suggestions for
our future work.

II. FORMULATION

Let us denote the time-domain electric-field intensity as
, the time-domain magnetic-field intensity as ,

the relative permittivity as , the relative permeability as
, and the impressed time-domain electric current as .

Using the standard incident-field-SF decomposition, we have

(1)

and

(2)

where the incident fields are defined to exist in a background
media, with and , and are produced by the impressed
current . That is

(3)

(4)

The SF is then produced by the difference between the true
media and , and the background. After some algebraic
manipulation

(5)

(6)

where the contrast magnetic and electric contrast sources are
defined as

(7)

(8)

For nonmagnetic media, . If we take the inci-
dent field to propagate in the layered background medium with
no inhomogeneities, then it is clear from (8) that the SF is gen-
erated by equivalent sources at the inhomogeneities. The fact
that the sources for the SF occur only at the inhomogeneities
means that the field impinging on the boundaries is more easily

absorbed by whatever absorbing boundary condition is being
used. The incident field still contains all of the information on
the interactions of the waves as they propagate from one layer
to another and scatter from the layer interfaces. One of the ben-
efits of using the SF formulation is that the incident-field can be
specified either analytically or numerically.

III. NUMERICAL IMPLEMENTATION

In order to demonstrate the utility of the SF formulation as a
general concept, we apply the method into the framework of an
existing FVTD numerical solver. This is similar to the approach
used in [6], where a time-harmonic plane-wave source was ap-
plied to a scatterer in a finely stratified layered medium. In our
work, we focus on the FVTD method for numerically solving
Maxwell’s equations and utilize a numerically defined (as op-
posed to an analytically defined) incident-field source term. A
technique similar to the one presented here can be used with any
time-domain field solver.

A. FVTD Computations

The FVTD method is a robust and flexible scheme for nu-
merically simulating 3-D electromagnetic problems [8], [9]. It
is an solver, which means that it scales linearly with the
number of elements in the mesh. One of the advantages FVTD
has over the FDTD algorithm is that structured and arbitrary un-
structured meshes are equally suitable discretizations for FVTD
simulations. This implies that the volumetric mesh can be cre-
ated to naturally follow oblique surfaces and no alteration to the
algorithm is required to compensate for an inaccurate physical
model.

The FVTD formulation used for the numerical simulations
produced in this work is a cell-centered, upwind, character-
istic-based numerical engine for meshes consisting of first-order
polyhedral elements [9]. It is second order accurate in time and
space. The engine is capable of solving Maxwell’s equations
in the time domain using either a total- or SF formulation, the
latter permitting arbitrary (i.e., nonhomogeneous) background
media [13]. The numerical implementation has been paral-
lelized for distributed parallel environments by decomposing
the computational domain into subdomains by using orthog-
onal-recursive bisection (ORB). Each subdomain is assigned
to a unique processor and the underlying system of partial
differential equations is solved locally on each processor by
introducing a halo/ghost duplication of elements lying on the
boundary of a processor’s domain [9].

The upwind formulation explicitly imposes the electromag-
netic boundary conditions at the facets of each mesh element.
Not only does this achieve accurate modeling of irregularly
shaped inhomogeneous objects, but also allows for very simple,
but effective absorbing boundary conditions (ABC) at the
edges of the computational domain without having to introduce
perfectly matched layers (PML). These ABCs are known as the
Silver–Müller conditions. PML absorbing boundary conditions
have also been implemented [14]. Due to its advantages, FVTD
is an excellent candidate for solving field problems with a large
number of small inhomogeneities.



4164 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 59, NO. 11, NOVEMBER 2011

Fig. 1. Hypothetical geometry illustrating the decomposition of the fields in the SF formulation. (a) Total-field geometry. (b) Incident-field geometry. (c) SF
geometry.

B. Plane-Wave Injector

When simulating multilayered media, truncating a plane
wave in a total-field formulation is very inefficient because
the incident-wave vector is impinging tangentially (or close to
tangentially) to the ABC. This is the worst possible case for
the ABC to absorb the wave. In addition, spurious reflections
occur where the layer interfaces meet the boundary conditions,
corrupting the desired SFs from objects within the layered
medium. In effect, it is impossible to distinguish between SFs
from the objects and erroneous SFs from the ABC.

One way to mitigate this problem is through the use of the SF
formulation. A total-field simulation can be performed to obtain
the total fields for a wave propagating in layered media. We then
use this total field as the incident field in an SF formulation. A
hypothetical SF decomposition is shown in Fig. 1 for the case
of multilayered media. Following [10], we utilize a 1-D-FDTD
solution for a wave propagating through layered media at an
arbitrary incidence angle, with appropriate modifications for the
FVTD method. For completeness, the derived expressions for
TE and TM wave propagation are summarized here.

The TE equations for plane-wave propagation through multi-
layered media are given as

(9)

(10)

(11)

where is the incidence angle measured between the direction
of propagation and the axis, is the intrinsic
admittance of free space, and is the dielectric constant of
the uppermost (or th) layer.

Similarly, the TM equations are given as

(12)

(13)

(14)

where is the intrinsic impedance of free space.
These equations resemble the familiar transmission-line

equations and with appropriate descriptions of the dielectric
profile in the z-direction, they describe the propagation of a
plane wave through layered media. In order to include lossy
material, a variation to the TM equations must be made (not
demonstrated in this paper, but described in [10]). To solve the
TE or TM equations, we discretize the equations, following
the approach of [15], where the electric- and magnetic-field
components are interleaved, and we use a central-difference
approximation. We set the temporal discretization to obey
the Courant stability criterion , where is the
velocity of propagation in the layer with the lowest dielectric
constant. We apply a basic PML boundary condition at the
upper and lower bounds of the 1-D solution grid, but also
pad the solution domain to minimize the error created by
the boundary (i.e., add more distance for the wave to travel
than is necessary for the FVTD solution). This has no impact
on the memory required to store the 1-D solution since we
only keep the portion which will correspond to the variation
required within the FVTD domain, but it does remove artificial
reflections created from the boundaries in the 1-D solution.

In practice, the 1-D solution is interpolated into the 3-D irreg-
ular mesh that is used in the FVTD computations. A principle
plane containing the time history of the plane-wave propagation
through layered media is made to coincide with the plane. To
find the field values along this principle plane, we need only a
time shift, since this is a property of plane-wave propagation.
This concept is illustrated in Fig. 2, where the principle plane is
shown to coincide with the plane, and (
is the speed of light in a vacuum). The solution for wave prop-
agation along the negative axis is calculated and the time-de-
layed result is utilized to find the field value at a location .
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Fig. 2. Calculation of field values on the principle plane using the time-delay
factor � . The fields calculated at � are the fields calculated along the � axis
with an appropriate time delay.

To obtain a 3-D representation, we utilize the invariance of the
solution along the other coordinate axis ( axis).

C. Interpolation of the 1-D FDTD Solution to the FVTD Grid

Many practical implementation issues exist, such as choosing
an appropriate interpolation method and ensuring that the spa-
tial discretization of the auxiliary 1D-FDTD simulation does not
cause dispersion in the main FVTD simulation. If the FVTD
grid were regular (as would be used in a 3-D-FDTD grid), we
could follow the method of [10] and increase the spatial sam-
pling by an odd factor and thereby ensure that the interfaces
were preserved. Moreover, since the auxiliary FDTD simulation
takes a small fraction of the time needed for the overall FVTD
scattering simulation, we choose the spatial discretization to be
much smaller than that of the overall FVTD mesh. Cubic spline
spatial interpolations and nearest-neighbor temporal interpola-
tions are performed to find the corresponding field values in the
centroids of the elements (tetrahedrons) that make up the
FVTD mesh.

The results of the incident-field propagation are calculated
and stored in arrays in memory. They are potentially accessed
only during the update scheme of the FVTD simulations, which
checks to see whether the contrast between the background
mesh (that which is seen by the incident field) and the scattered
field mesh are nonzero. When they are nonzero, this indicates
the presence of a contrast source (i.e., ) and a
scattered field is generated at that particular mesh element.
This means that results of the incident-field interpolations are
only used when needed and they are not calculated and stored
throughout the entire mesh, which would be inefficient.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we calculate the scattered near-field values
for a variety of objects located within a planarly layered
medium. Canonical examples are chosen so that comparisons
can be made with other published data in the literature. We
have found that there is a dearth of examples that compute
and provide graphical results for the near-field scattering from

Fig. 3. Geometry for a dielectric sphere in free space, with a radius of 0.1 �,
and centered at � � �0.25�.

objects within multilayered media, despite the fact that this
problem is conceptually well known. In particular, we provide
comparisons with the work in [5] (which provides a method
based on the Born approximation) and [16] (which introduced
a method based on the method of moments).

The computational geometry was created by using a free-
ware mesh-generating program GMSH [17], which was also
used to transform the physical description into a mesh for FVTD
computations. The time function of the input waveform was a
Gaussian derivative

(15)

where 1, 0.2 ns, and 70 ps. The constants in
(15) were chosen so that sufficient energy would propagate at
the frequency of interest (specifically 6 GHz).

A. Scattering From a Dielectric Sphere

For our first example, we consider a dielectric sphere in a
free-space background. In this case, we are able to compare
our results with the commercially available software program
FEKO. The permittivity value of the sphere is set to 4,
and the radius of the sphere is 0.1 . The geometry of the
problem (for FVTD) is given in Fig. 3, with the sphere centered
at 0.25 . The results of our computations using FVTD
and FEKO at 0.5 , 0 , and 0.01 are given in
Fig. 4. The excellent agreement between the results shows the
validity of the scheme.

B. Scattering From a Dielectric Cube

For our next example, we consider a dielectric cube buried
in a half-space medium. Both the half-space and the dielectric
cube are lossy, with permittivity values of and

. To calculate the conductivity that must be used
in the FVTD simulations, we used a frequency of 6 GHz, which
gives conductivities as 0.03338 [S/m] and 0.01669
[S/m]. Our results are normalized to the free-space wavelength,
as in [5]. The geometry of the problem is given in Fig. 5, and the
results of our computations at 0.1 are given in Fig. 6. In
comparison with [5], our results are slightly higher; however, in
comparison with [16], our results are very similar. For example,
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Fig. 4. Scattered electric fields for a dielectric sphere in free space, centered at
� � �0.25�. FVTD results are compared with FEKO.

Fig. 5. Geometry for a lossy dielectric cube buried in a lossy half-space.

Fig. 6. Scattered electric fields for a lossy dielectric cube buried in a lossy
half-space at � � 0.1�. FVTD results are compared with [16] (Cui, MoM) and
[5] (Hill, Born Approximation).

our peak value at 0.2 is 0.002, while [5] reports 0.0017 and
[16] reports 0.002. The difference is associated with the error
in using the Born approximation [16]. The decay of the curve
appears to be in agreement as well.

Fig. 7. Geometry for a lossy dielectric box buried in a lossy half-space. The
box dimensions are 0.6 �, 0.2 � and 0.066 � for the �, �, and � dimensions,
respectively.

Fig. 8. Scattered electric fields for various incidence angles for a lossy dielec-
tric box buried in a lossy half-space.

C. Scattering From a Dielectric Box

To show the variation of the scattered electric fields as a func-
tion of incidence angle, we consider another one of the examples
presented in [5]. In this case, the buried object is a rectangular
box, with a size given by 0.6 , 0.2 , and 0.066 for the , ,
and dimensions, respectively. The geometry of the problem is
given in Fig. 7, and the results of our computations are given in
Fig. 8. For , the peak of the scattered field has shifted
toward the specular direction, and the magnitude of the peak de-
creases as the incidence angle increases. This is similar to the
result observed in [5], although our magnitudes are slightly dif-
ferent because those in [5] are obtained by using an approximate
technique.

D. Scattering From a Dielectric Slab in a Half-Space

The previous examples considered were weak scatterers (i.e.,
the dielectric contrast is not very large). For this example, we
consider a stronger scatterer, following the examples in [16].
Both the half-space and the dielectric slab are lossy, with per-
mittivity values of and . At the
frequency of 6 GHz, the conductivities are 0.16689 [S/m]
and 1.6689 [S/m]. The geometry of the problem is given in
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Fig. 9. Geometry for a lossy dielectric slab buried in a lossy half-space.
Slab dimensions are 0.3 �, 0.3 �, and 0.05 � for the �, �, and � dimensions,
respectively.

Fig. 10. Scattered electric fields for a lossy dielectric slab buried in a lossy
half-space. FVTD results are compared with [16] (Cui, MoM).

Fig. 9, and the results of our computations are given in Fig. 10. In
comparison with [16], our results are similar, but slightly lower,
similar to the example of the dielectric cube. For example, our
peak value at 0.002 is 0.081, while [16] reports 0.092
at 0, yielding a relative error of about 12%. As another ex-
ample, our peak value at 0.01 is 0.0599, while [16] reports
0.066 at 0.01 , yielding a relative error of about 9%. We
consider this relative error to be acceptable considering the dif-
ferences in the computational methods. As an additional test, we
rescaled our simulation results to the peak value of the result at

0, and these results are presented in Fig. 11. It is clear that
our results match up extremely well with those of [16] as long
the as they are normalized.

E. Scattering From a Dielectric Slab in Multilayered Media

As a modification to the dielectric slab example, we consider
the same slab buried under a lossy dielectric layer. Again, the
half-space and the dielectric slab are lossy, with permittivity
values of and , with the lossy
layer of . The conductivity of the lossy layer is

0.66756 [S/m]. The geometry of the problem is given in
Fig. 12, and the results of our computations are given in Fig. 13.
In comparison with [16], our results are very similar. For ex-

Fig. 11. Scattered electric fields for a lossy dielectric slab buried in a lossy
half-space. FVTD results are normalized to [16] (Cui, MoM).

Fig. 12. Geometry for a lossy dielectric slab buried in a lossy half-space be-
neath another lossy layer. Slab dimensions are 0.3 �, 0.3 �, and 0.05 � for the
�, �, and � dimensions, respectively.

ample, our peak value at 0.002 is 0.0387, while the cor-
responding peak value reported in [16] is 0.042, yielding a rel-
ative error of about 8%. As another example, our peak value at

0.01 is 0.0283, while [16] reports 0.031 corresponding
to the same height above the surface, yielding a relative error of
about 9%. We consider this to be acceptable considering the dif-
ferences in the computational methods. Again, as an additional
test, we rescaled our simulation results to the peak value of the
result at 0, and these results are presented in Fig. 14. This
scale factor was the same value as in the previous example (slab
in a half-space). It is clear that our results match up extremely
well with those of [16] as long as they are normalized. Since the
slab buried in a half-space and the slab buried in a multilayered
medium had the same scale factor, we hypothesize that this is a
constant difference between the two methods. The exact nature
of the difference cannot be determined at this point; however,
we are confident that our methodology is sound due to our ac-
curate comparison with the sphere in free space using FEKO.

F. Scattering From Dielectric Spheres

In most of our previous examples, we used shapes with a
cubic geometry, yet in our introduction, we suggested that one of
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Fig. 13. Scattered electric fields for a lossy dielectric slab buried in a lossy
multilayered medium. FVTD results are compared with [16] (Cui, MoM).

Fig. 14. Scattered electric fields for a lossy dielectric slab buried in a lossy
multilayered medium. FVTD results are normalized to [16] (Cui, MoM).

the major benefits of using the FVTD method versus the FDTD
method was the ability to have a mesh conform to an irregular
surface. In this example, we present the scattering for multiple
spheres buried in a dielectric half-space. This type of problem
is very common in scattering simulations of geophysical media,
where the subsurface can be populated with regions of dielectric
discontinuity (for example, brine pockets in sea ice). The prox-
imity of spheres is also an issue in studies involving the homog-
enization of random media [18]. The geometry of the computa-
tional domain for the case of two spheres is shown in Fig. 15.
We simulated the scattering from both spheres simultaneously,
from sphere 1 only (the left-hand sphere in Fig. 15), and from
sphere 2 only (the right-hand sphere in Fig. 15). The simula-
tion results are presented in Fig. 16, where we have also plotted
the superposition of the scattering from sphere 1 and sphere 2.
It is clear from the plotted results that multiple spheres must
be simulated simultaneously since an attempt to approximate
the scattering by superposition does not apply when the spheres
are in close proximity. The importance of the proximity effect
was also discussed in [19], particularly with regards to discrete

Fig. 15. Geometry for dielectric spheres buried in a half-space. Sphere radii
are 0.1�, separation is 1.0 �, and sphere centers are � � �0.25�.

Fig. 16. Scattered electric fields for spheres buried in a half-space. Solid line:
simultaneous scattering from both spheres, dotted line: superposition of sphere
1 and sphere 2 scattered fields.

modeling in remote sensing studies. Since our future work in-
cludes modeling electromagnetic scattering for remote sensing,
it is important that we should examine and consider these effects
before embarking on such modeling studies.

V. CONCLUSION

Through incorporating the SF formulation for multilayered
media in an FVTD engine, an efficient method of modeling
complex layered media has been developed. In this paper, we
have presented details of the method used to calculate electro-
magnetic scattering from objects buried in multilayered media,
which has a wide range of potential applications. Our method is
capable of calculating the scattering from multiple objects with
a minimal increase in the number of unknowns in the compu-
tation. Comparisons with other published data in the literature
provided good agreement, giving us confidence in the FVTD
implementation that we have developed. In our future research,
we intend to use the proposed method for modeling electromag-
netic scattering from geophysical media, with an application to
remote sensing studies.
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