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The Finite-Element Method Contrast Source
Inversion Algorithm for 2D Transverse Electric
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Abstract—The contrast source inversion algorithm is formulated
using the finite-element method for two-dimensional transverse
electric microwave imaging problems. Edge-based triangular
elements with vector basis functions are utilized to solve the TE
electromagnetic problem. A single finite-element method (FEM)
mesh is used to model both the electric field as well as the con-
trast-source and contrast variables used in the inverse problem.
The electromagnetic field is modeled by taking the unknown values
to be the tangential components of the transverse electricfield along
the edges of each triangular element. The unknown contrast-source
and contrast variables are located at the centroids of every trian-
gular element of the same FEM mesh, but only inside the imaging
domain. The adaptation of the FEM-contrast source inversion
(FEM-CSI) algorithm to 2D-TE problems on such an arbitrary
mesh requires the implementation of special transformation oper-
ators which are presented herein. The algorithm’s capabilities are
demonstrated by inverting the Fresnel experimental TE datasets
as well as synthetically generated data.

Index Terms—Contrast source inversion (CSI), finite-element
method (FEM), microwave imaging, transverse-electric.

I. INTRODUCTION

M ICROWAVE imaging (MWI) is a modality where one is
interested in determining some unknown attributes of an

object-of-interest (OI) by utilizing electromagnetic fields mea-
sured outside the OI. These attributes are the location, shape,
and electrical properties (i.e., permittivity and/or conductivity)
of the OI. The object is located inside an imaging domain with
known “background” electrical properties and is interrogated by
sources of electromagnetic radiation emitting from a multitude
of locations. For each source the presence of the object, having
different electrical properties than the background, results in a
scattered field that is measured at various locations surrounding
the object. These measurements, once calibrated, constitute the
data that is inverted by the imaging algorithm to reconstruct an
image of the electrical properties. Tomographic imaging algo-
rithms, which image 2D cross-sections of the OI, have proven
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their usefulness in several microwave imaging configurations
where 3D systems can be well approximated as a 2D electro-
magnetic inverse problem [1]–[3].
Part of the design of an MWI system, which allows the

imaging process to be successfully approximated as a 2D
inverse problem, is deciding which polarization of electro-
magnetic radiation will be predominantly maintained. For
biomedical imaging purposes, MWI has mostly been im-
plemented using the transverse magnetic (TM) polarization
[1], [4]–[6]. Based on a numerical investigation, it has been
shown that using the transverse electric (TE) polarization in
the near-field can result in more accurate reconstructions than
interrogating the OI with the TM polarization [7]. Although
2D-TE imaging algorithms exist [7], [8], the new multiplicative
regularized contrast source inversion (MR-CSI) algorithm
presented herein, which is formulated using the finite element
method (FEM), has all of the novel features presented in the
MR-FEM-CSI algorithm which was recently presented for the
TM case [9], [10]. The extension to the TE case is non-trivial
because the problem changes from a scalar electromagnetic
field problem to a vector field problem.
Of course, scalar as well as full-vectorial 3D imaging algo-

rithms have been available for some time (see, e.g., [11]), and
there are groups working to build such systems [12], [13], but,
to the best of our knowledge, there are currently no 2D-TE
biomedical imaging systems. The imaging lab at the Univer-
sity of Manitoba is currently working on such a 2D-TE system
prior to embarking on a 3D full-vectorial system. The algorithm
presented herein can be easily extended to the 3D full-vectorial
case. The main differences between a 2D TE and a 3D full-vec-
torial inversion algorithm are minimal from a formulation point
of view, but, of course, the latter will require a substantially
greater amount of computing resources [14].
The inverse scattering problem associated with MWI can

be cast as an optimization problem over variables representing
the unknown properties which are to be reconstructed. The
nonlinearity and ill-posedness of this type of optimization
problem have been successfully treated using various optimiza-
tion and regularization techniques which together constitute
the inversion algorithm [1], [7], [11], [15]–[21]. Examples
of MWI inversion algorithms are the distorted Born iterative
method [15], the Gauss-Newton inversion (GNI) [22], and the
conjugate gradient technique applied to an FEM discretization
of the problem [23]. In the so-called modified-gradient method
(MGM) [24] one minimizes a cost functional in terms of both
the scattered fields outside the OI, which are compared to the
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measured values, and the total field inside the imaging domain,
which is expected to be consistent with the estimated dielectric
properties. An interesting aspect of the MGM is that no forward
solver is called during the iterations; the functional is formu-
lated solely in terms of matrix-vector products. In addition to
these local optimization techniques global techniques have also
been used [19].
A state-of-the-art modified-gradient type technique that has

had much success in solving inverse scattering problems is
the MR-CSI method. The matrix operators utilized in the CSI
methods that have been presented have been formulated in
various ways. The originally published algorithm makes use
of an integral-equation formulation of the electromagnetic
field operators based on infinite domain homogeneous medium
Green’s function integrals [25], [26]. Although initially having
been formulated only for two-dimensional (2D) transverse
magnetic (TM) problems, which result in the use of a scalar
Green’s function, these have been extended to 2D transverse
electric (TE) [8], [27] and full 3D vectorial problems via the
use of Dyadic Green’s functions [28]. In addition to these,
techniques based on finite-difference discretizations of the
Helmholtz operator [29], and even eigenfunction representa-
tions of the field operators [30] have been used. An important
advantage of working with discretizations of partial differential
equation (PDE) formulations of the associated field problem
is that an inhomogeneous background can be used for the
inverse problem, and arbitrarily-shaped conductive boundaries
of the MWI chamber can be modeled, without requiring one
to first obtain the Green’s function for such a background and
associated boundary conditions (which may not be possible in
closed-form).
The advantages of using PDE formulations in CSI have been

highlighted recently by formulating CSI and MR-CSI using the
finite-element method (FEM) for 2D-TM problems [9], [10].
The FEM formulation of the inverse problem allows one to dis-
tribute the unknown electrical properties along an unstructured
triangular mesh, and allows one to easily handle problems with
arbitrary boundary types and shapes. The extension of this work
to 2D TE problems, including multiplicative regularization of
the inverse problem, is the subject of this paper. There are two
standard approaches to formulate the electromagnetic problem
for this extension. The first is to formulate the TE problem as a
scalar problem using a singlemagnetic field component. As con-
cluded in [14], such a formulation results in a less stable algo-
rithm with degraded performance as compared to the second ap-
proachwhich formulates the problem in terms of the two electric
field components in the transverse plane. Further, as discussed
in [31], the numerical modeling of dielectric discontinuities is
more difficult for TE problems formulated in terms of the longi-
tudinal magnetic field component due to the difficulty of mod-
eling polarization charges. Thus, the second standard approach
which uses the vector electric field in the transverse plane has
been chosen and is described herein.
For solving vectorial problems using FEM, the use of

nodal-based elements exhibits shortcomings that can be
overcome with the use of edge-based elements [32]–[34].
Edge-based elements were first introduced by Whitney [35],
and later discussed by Nédélec for their use in applications

that solve Maxwell’s equations [36]. Edge-based elements
(associated with vector basis functions) eliminate spurious
modes that can introduce errors in field calculations for
near-field problems; these erroneous modes were observed by
Csendes and Silvester when a vectorial problem was solved
using nodal-basis functions [37]. In addition, with edge-based
elements the tangential field continuity along the element
boundaries is guaranteed which is important at the interface be-
tween dielectric discontinuities. Edge-based elements are thus
standardly used for 2D, as well as for 3D, vectorial problems.
In this paper, the CSI algorithm is formulated using edge-

based elements in FEM for the 2D TE inverse problem. This
formulation retains all of the advantages of its 2D TM counter-
part, nevertheless there are several important differences which
make the implementation not straight forward. The electric field
values are calculated along the edges of each element in the tri-
angular mesh with vector edge basis functions used to expand
the field; this is different from the 2D TM case where the dis-
cretized field variables are located at the mesh nodes with the
field being expanded using scalar nodal basis functions. The
methods also differ on the way the unknown reconstruction vari-
ables used in CSI are represented. The contrast is related to the
electrical properties of the OI, while the contrast source is the
product of the contrast and the total electric field. Thus, for the
2D TE case, the contrast source variable is a spatial vector with
two components in the transverse plane, whereas the contrast
variable remains a scalar quantity. For the 2D TE case presented
herein the unknown contrast and contrast-source variables are
located at the centroids of the triangular elements while for the
2D TM case these variables are located at the nodes.
Thus, the FEM-CSI algorithm for 2D TE configurations re-

quires the implementation of several specialized operators. For
example, one operator takes the contrast-source at the centroids
of elements inside the imaging domain to the scattered electric
field along the edges of mesh elements. A second operator is im-
plemented which calculates the scattered field vector anywhere
inside the imaging domain, or on the measurement surface, from
the scattered field values along element edges. The CSI algo-
rithm, which updates the contrast and contrast-source variables,
can bemore simply implemented and described in terms of these
operators.
The paper is arranged as follows. The mathematical problem

and its discretization using edge-based FEM are outlined in
Sections II and III. The description of the inversion algorithm
is given in Section IV. The inversion results using experimental
and synthetic datasets are shown and discussed in Section V. Fi-
nally, the paper is closed with a brief conclusion in Section VI.

II. PROBLEM STATEMENT

In the 2D TE configuration considered here we assume
the electric field is polarized in the transverse plane of
the problem with no longitudinal component. All fields are
considered time-harmonic with an time-dependency,
where is the radial frequency, is the time variable and

. The OI is located within an imaging domain, , with
a background permittivity . The imaging domain is located
within the problem domain, , that is confined by a bounding
surface . The surface can be either a radiating surface or a
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conducting enclosure; in the later case, the boundary can take
any shape. The OI has a complex relative permittivity
where is the 2D position vector. The electrical
contrast of the OI is defined as ;
outside , .
The imaging domain is illuminated by one of a total of

transmitters, producing a TE incident field
, defined as the field when there is no OI in . In the

presence of the OI, the total field vector
for the same transmitter is measured at points located on a
measurement surface . The scattered electric field, defined by

, satisfies the vector wave equation

(1)

where is the background wave-number,
and is the contrast source.
Solving the partial differential equation (PDE) for the scat-

tered field vector, , requires the boundary conditions (BCs)
on be defined. For a conductive-enclosure system a perfect
electrical conductor (PEC) boundary condition is used resulting
in a homogeneous Dirichlet BC:

(2)

where denotes the outward-normal unit vector on the
boundary .
For unbounded-region problems, the field at the boundary of

the problem is required to satisfy the 2D Sommerfeld boundary
condition:

(3)

where the radial coordinate and the radial unit
vector .

III. THE FINITE-ELEMENT METHOD

The boundary-value problem (BVP) defined by the second
order PDE, (1), and the boundary conditions is solved using
FEM with the Rayleigh-Ritz variational method [38]. The
problem domain, , is divided into a mesh of triangular
elements characterized by nodes that are interconnected by
a total number of edges. Each edge is associated with linear
vector basis functions (also known as Whitney elements [32])
whose parameters are dependent on the geometry of the mesh.
Utilizing the Rayleigh-Ritz method to solve (1) produces the
FEM matrix equation

(4)

Here is the FEM discretization matrix which de-
pends on the BCs and the background medium properties, and

is a “mass” matrix which depends on the back-
ground medium properties. Each entry of is a vector with -
and -components, thus . The data vector

contains the scattered field values along the edges
of the mesh, while is a column vector that holds
the contrast source spatial-vector fields located at the centroids

of the triangles in . For triangles outside the imaging domain,
, their corresponding values in are equal to zero.
Regardless of the BC type, the entry at the row and

column of the matrix is given by

(5)

where and are the linear vector basis functions defined
at the and edge respectively.
For unbounded problems the Sommerfeld BC is modeled

using a first-order absorbing BC [38]. This leads to a boundary
integral term that contributes to the element of as

(6)

where is the global index of a triangle edge along the problem
boundary. For problems with conductive enclosures, the homo-
geneous Dirichlet boundary conditions are enforced as the ma-
trix is built.
The entry at the row and column of the matrix is

calculated as

(7)

where is a Whitney element defined at edge belonging to
the triangle, while and are, respectively, the domain
covered by and the wave-number assigned to the triangle.
The inversion algorithm can be more effectively imple-

mented and described by defining several matrix operators.
The first operator, , is a matrix that transforms
field values along edges of the problem domain to the
receiver locations on the measurement surface . The result of
the transformation are field vectors with and components.
The second operator, , is a matrix that trans-

forms field values along edges of the problem domain to
the contrast source variables located in the imaging domain
. Each element of the resulting transformation is located at a

triangle centroid and it consists of a field vector with and
components.
Both of these matrices are interpolatory operators that calcu-

late the spatial-vector field values at either the location on the
measurement surface or the imaging domain using the FEM
vector basis functions.
The inverse FEM matrix operator, denoted as ,

returns the scattered field values along the mesh edges
given a column vector of the contrast source spatial-vector
values, , at the triangle centroids inside the imaging
domain. It is written as

(8)

where is a selection matrix that returns centroid
values for only the triangles located in the imaging domain, ,
given centroid values for all the elements in .
The matrices obtained using FEM are sparse and symmetric,

thus for 2D problems can be computed efficiently using
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LU-decomposition for sparse matrices. Moreover, these ma-
trices are independent of the OI and the location of the trans-
mitter , so they can be assembled once, stored, and recalled
when necessary.

IV. INVERSION ALGORITHM

The overall objective of the CSI algorithm is to update the
contrast source, , and the contrast, , variables sequentially
so as to minimize the functional

(9)

where the data-error equation and the domain-error
equation are given by

(10)

For a transmitter , is a vector of the measured scat-
tered field at receiver locations per transmitter, corre-
sponds to a vector of the contrast values located at the triangle

centroids of and holds the incident field vector
values at the triangle centroids in .
For points equally distributed on a measurement surface ,

the inner product in is defined as

(11)

where and are the and components of an arbitrary
vector , and the superscript denotes the Hermitian
operator (complex-conjugate transpose). Similarly, for points
located at the triangle centroids of the imaging domain , the
inner product in is calculated as

(12)

where and are the and components of an arbitrary
vector and is a diagonal matrix whose
entities are the areas of the triangles inside .
The first step in CSI is to update the contrast source variables
by a conjugate-gradient (CG) method with Polak-Ribière

search directions; here the contrast variables, , are held con-
stant. The next step is updating the contrast variables, , analyt-
ically by minimizing the domain-error functional, ,
with respect to ; the contrast source variables, , are assumed
constant in this step. The details of the algorithm formulation for
2D TE problems within the framework of FEM are detailed in
the appendix.

A. Multiplicatively Regularized CSI

The weighted -norm total variation multiplicative regular-
ization (MR) has been incorporated into various inversion algo-
rithms including CSI [39], [40]. The addition of the multiplica-
tive regularization term enhances the outcome of the inversion
algorithm and improves the algorithm performance with noisy
measurement data.
With the MR term, the CSI functional becomes

(13)

where the regularization term is given by

(14)

Here

(15)

where is the total area of domain and is the mean area
of the triangles in the imaging domain .
Since , the update procedure for the contrast

source variables, , remains unchanged. For the contrast vari-
ables, , they are first evaluated using (25), then the results are
updated by a CG method with Polak-Ribère search directions
as outlined in [39], [41]. The details for incorporating the multi-
plicative regularization term to FEM-CSI can be found in [10].

V. INVERSION RESULTS

In this section, the MR-FEM-CSI algorithm for 2D TE prob-
lems is tested using the Fresnel experimental datasets as well
as synthetically generated data. An inverse crime is avoided
when using the synthetically generated datasets by adding
white noise to the scattered field data [42]. In addition, different
meshes are used to generate the synthetic data than the ones used
to perform the inversion. During the inversion process, the es-
timates at each iteration are constrained to lie within physical
bounds, that is and . For each ex-
ample, the inversion algorithm is run for 2048 iterations to en-
sure convergence.
A summary of each example is provided in Table I where

the frequencies , the number of transmitters per frequency
, the number of triangles in the problem domain ,

the number of triangles in the imaging domain , the av-
erage time per iteration and the logarithm of the data-error
function after the last iteration are specified. For synthetic
datasets, the relative -norm of the difference between the ac-
tual profile and the reconstruction is specified [9]. The memory
requirement (in megabytes, MB) as well as the computational
time for LU-decomposition are also given in the table;
LU-decomposition is performed once for each run of the inver-
sion algorithm, then saved and recalled when necessary. The
inversion algorithm is implemented in MATLAB and was run
on a PC workstation with two Intel Xeon quad-core 2.8 GHz
processors.
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TABLE I
SUMMARY OF INVERSION EXAMPLES

Fig. 1. The targets of the Fresnel data set (a) FoamDielExt. (b) FoamDielInt.
(c) FoamTwinDiel. (d) FoamMetExt..

A. Fresnel Institute Datasets

The first examples focus on inverting multi-frequency experi-
mental datasets collected by the Fresnel Institute in 2005 for dif-
ferent inhomogeneous targets depicted in Fig. 1: FoamDieExt.,
FoamDielInt., FoamTwinDiel. and FoamMetExt.[43]. In these
datasets, the transmitting and receiving antennas are both wide-
band horn antennas located on a circle having a 1.67 m ra-
dius. The targets are all circular cylinders with no variation in
the longitudinal -direction. For all the targets, the background
medium is free-space with . For the TE illumination, the
-component of the scattered field is measured and calibrated,
then converted to the and components to be used by the
inversion algorithm.
The FoamDielExt. and FoamDielInt. targets are interrogated

by 8 transmitters and the measured data is collected at 9 dif-
ferent frequencies from 2 GHz to 10 GHz with a step of 1 GHz
at 241 receiver points per transmitter. TheFoamTwinDiel. target
is illuminated by 18 transmitters and the number of frequencies
and receivers is the same as the previous two targets. As for the

Fig. 2. The reconstruction of (a)-(b) FoamDielExt. and (c)–(d) FoamDielInt.
datasets. The real part of the reconstructions are presented in the left-
column, while the imaginary parts are shown in the right-column.

FoamMetExt. target, while the number of transmitters and re-
ceivers is the same as in the FoamTwinDiel. datasets, the object
is irradiated at 17 different frequencies in the range from 2 GHz
to 18 GHz with 1 GHz step.
The data for the different frequencies are inverted simulta-

neously using the MR-FEM-CSI algorithm presented herein.
The extension to the algorithm allowing it to deal simultane-
ously with multi-frequency datasets, for a lossless background,
is trivial. Some of the details of this extension can be found in
[8], [27]. The inversion domain is a square region centered
in the problem domain with the side length equal to 15 cm.
The unknown variables are located at the centroids of 17,887
triangles.
The reconstruction results for the different datasets are shown

in Figs. 2 and 3. The foam cylinder with diameter 8 cm is recon-
structed well for all the datasets with an average relative permit-
tivity of . For the FoamDielExt., FoamDielInt.
and FoamTwinDiel. datasets, the location and the shape of the
plastic cylinders with diameter 3.1 cm are estimated correctly.
The average relative permittivity for the plastic cylinder recon-
structions is , although the object is
lossless. The artifacts in the imaginary part are consistent with
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Fig. 3. The reconstruction of (a)–(b) FoamTwinDiel. and (c)–(d) FoamMetExt.
datasets. The real part of the reconstructions are presented in the left-
column, while the imaginary parts are shown in the right-column.

the results obtained using the Gauss-Newton inversion algo-
rithm [7]. For the FoamMetExt. dataset reconstruction, theo-
retically the inversion should only obtain the boundary of the
metallic cylinder; the contrast sources inside the cylinder are
invisible. The inversion algorithm constructed the real part of
the metallic cylinder to a value close to 1, whereas the recon-
structed value of the imaginary part is indicating an
object with loss. As for the location of the metallic cylinder it is
estimated correctly relative to the foam cylinder position. The
results achieved using simultaneous frequency inversion of the
TE data using our MR-FEM-CSI algorithm are quite similar to
those obtained using IE-MR-CSI [8].

B. Imaging Inside a Conductive Enclosure

As previously discussed, one advantage of using an FEM-
based inversion algorithm is the ability to perform imaging in
different conductive enclosure shapes without any modifica-
tions to the algorithm itself [9], [44]. In this section, microwave
imaging for the TE case is done in a triangular conductive en-
closure.
The object-of-interest consists of three circular regions with

electrical properties that resemble biological tissues. One of the
circular regions has a radius of 6 cm with a relative permittivity
of . In this region, the other two circular regions are
embedded. The two regions have the same radius of 1.5 cm with
complex relative permittivities of and

at a frequency of . The target configuration
is shown in Fig. 4.
The OI is centered within a conductive enclosure shaped as

an equilateral triangle of side length equal to 42 cm, and it is
surrounded by a background medium of relative permittivity

at a frequency . The OI is interro-
gated by 32 transmitters and the scattered data are collected at
32 receivers per transmitter. The transmitters are magnetic line
sources. The scattered field data collected is along both the
and directions in the TE case. The transmitting and receiving

Fig. 4. (a) Triangular conductive enclosure configuration, along with (b) the
real and (c) the imaginary exact profile of the OI with a low-
loss background at a frequency .

Fig. 5. The MR-FEMCSI reconstructions at a frequency (a)-(b)
for an unbounded domain problem and (c)-(d) for a domain enclosed by tri-
angular conductive boundary. The real part of the reconstructions are
presented in the left-column, while the imaginary parts are shown in
the right-column.

points are evenly spaced on a circle of radius 10 cm. For compar-
ison purposes, imaging is performed also with the OI immersed
in an unbounded homogeneous region.
The inversion domain is a square centered in the middle

of the problem domain with side length equal to 15 cm. The in-
version domain consists of approximately 12,000 unstructured
arbitrarily oriented triangles. The unknown contrast, , and con-
trast source, , variables in the inversion algorithm are located
at the centroids of these triangles.
The reconstructions after 2048 iterations are shown in Fig. 5.

For both configurations, the unbounded and the triangular con-
ductive enclosure, the features of the OI are reconstructed suc-
cessfully. The complex relative permittivity of the left inner cir-
cular region is estimated more accurately for imaging inside
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the conductive enclosure than its unbounded domain counter-
part; inside the conductive enclosure the average reconstructed
permittivity is , whereas in the unbounded
problem . As for the right circular region,
the reconstructed complex permittivity is underestimated for
imaging in both configurations; the average reconstructed per-
mittivity is for imaging inside the conductive
chamber and for the unbounded problem.
The average relative permittivity for the circle with radius 6 cm
is approximately 13 for both imaging setups.

VI. CONCLUSION

Amultiplicatively regularized finite-element method contrast
source inversion (MR-FEM-CSI) algorithm has been presented
and validated for 2D microwave imaging under the TE approx-
imation of the fields. The algorithm retains the advantages of
FEM-CSI, such as the ability to invert on an unstructured trian-
gular mesh, as well as the ease of modeling different boundary
types and shapes. Unlike the TM case, for TE electromagnetic
problems edge-based elements with linear vector basis func-
tions are used as they are superior to node-based elements when
solving vectorial problems. The use of an edge-based FEMwith
the inversion algorithm requires the implementation of several
non-trivial operators to transform between field values along
mesh edges and the unknown variables located at the triangle
centroids.
The performance of the algorithm is demonstrated by in-

verting the Fresnel Institute TE experimental datasets, as well
as synthetic datasets.

APPENDIX

With the contrast variables, , held constant, the first step in
CSI is to update the contrast source variables by a conjugate-
gradient (CG) method with Polak-Ribière search directions
as follows:

(16)

where subscript is the iteration number and is the update
step-size. A closed-form expression for can be determined
by solving the minimization

(17)

for analytically. The search directions are evaluated as

(18)

where is the gradient of the objective functional

with respect to the contrast source variables
and is given by

(19)

Here

(20)

where each term is given by

(21)

and

(22)

Here is an identity matrix and
is a diagonal matrix. The normalization terms and
are given by

(23)

while the error terms and in (19) are calculated as

(24)

The matrices and contain the -components of
matrices and entries; likewise, matrices and

hold the -components. As for matrices and , they
can be written as

The next step in CSI is updating the contrast variables,
, while the contrast source variables, , are assumed con-
stant. This requires minimizing the domain-error functional,

, with respect to while assuming the normalization
term constant. The minimizer at the iteration is the
solution for the following sparse matrix equation for :

(25)

Here is the total field diagonal matrix where the

diagonal entries are the elements of the vector
.
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The initial guess for the FEM-CSI algorithm, , is not set
to zero, but rather is taken to be the minimizer of the data-error
functional after one line-minimization in the method of
steepest descent. This initial guess is calculated as

(26)

After evaluating , the initial guess for the contrast, , is

calculated using (25). The initial search directions are set
equal to zero.
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