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Abstract—Prior information is used to improve imaging re-
sults obtained using the finite-element contrast source inversion
(FEM-CSI) of a microwave tomography (MWT) dataset collected
as part of a forearm imaging study. The data consist of field mea-
surements taken inside a prototype MWT system that uses simple
dipole antennas and a saltwater matching medium. Initial images
of the 2-D cross-sectional dielectric profile of the individuals’ arms
are reconstructed using FEM-CSI. These initial “blind” imaging
results show that the image quality is dependent on the thickness
of the arm’s peripheral adipose tissue layer: Thicker layers of adi-
pose tissue lead to poorer overall image quality. The poor image
quality for arms with high levels of adipose tissue is not improved
by changing the matching fluid’s complex dielectric constant.
Introducing prior information into the FEM-CSI algorithm in the
form of an inhomogeneous background consisting of an adipose
layer surrounding a muscle region provides substantial improve-
ment of the image quality: The internal anatomical features of
the arm are resolved for each of the five datasets. Two methods
are employed to estimate the arm periphery and adipose layer
thickness from the blind imaging results: manual estimation and a
novel image segmentation algorithm based on global optimization
using simulated annealing.

Index Terms—Contrast source inversion, inverse scattering,
microwave imaging, prior information, simulated annealing.

I. INTRODUCTION

M ICROWAVE tomography (MWT) is a modality that has
shown potential in various biomedical imaging appli-

cations such as breast cancer detection and monitoring [1], as
well as in extremity imaging [2]. Several challenges confront the
quantitative inverse scattering algorithms associated with the
fully nonlinear biomedical imaging problem. One of the biggest
challenges is that most biomedical objects of interest (OIs) are
highly inhomogeneous with respect to the complex relative per-
mittivity profile that is to be reconstructed. The range of permit-
tivity values corresponding to human tissues is large, and some-
times two tissues of interest differ by only a few percent [3]. Ad-
jacent tissues of widely differing permittivity may also shadow
each other with respect to the interrogating microwave energy.
This is the case, for example, when an adipose layer surrounds
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muscle tissue, each having a complex relative permittivity of
and , respectively, at 1 GHz. Add

to the possible shadowing effects the large amount of multiple
scattering inherent in such highly inhomogeneous regions, and
it becomes clear why the nonlinear inverse scattering problem
is so difficult to solve.
Here, we show that the inverse problem for a biomedical

target exhibiting a large amount of inhomogeneity, the human
forearm, is more effectively solved by the incorporation of prior
information about some of the tissues’ expected electrical prop-
erties as well as a minimal amount of information about the arms
anatomical features. The experimental scattering data used in
this letter was obtained as part of a pilot study that used MWT
to image the forearms of five volunteers. Although the use of
prior information to enhance the quality of MWT reconstruc-
tions has been investigated in the past, e.g., [4] and [5], here
we make novel use of the finite-element contrast source inver-
sion’s (FEM-CSI’s) ability to incorporate an inhomogeneous
background medium in its forward scattering operator [6]. This
procedure still allows the complex permittivity of the tissue,

, to be updated throughout the whole imaging domain, ex-
cept that now the update is performed via a contrast variable

, where the background com-
plex permittivity is also a function of position. The closer
the background prior information is to the true , the
smaller the magnitude of will be, thereby facilitating the nu-
merical convergence of the algorithm to the correct solution.
A novel automated technique is introduced to extract the re-

quired prior information from “blind” initial inversions where
no prior information is utilized. Imaging results are compared
against those obtained when the prior information is estimated
manually from the same blind initial inversions. In both cases,
the prior information consists of an adipose layer surrounding a
homogeneous muscle region.

II. PROBLEM CONFIGURATION

A prototype MWT system was used for a pilot study where
the forearms of five adult volunteers were imaged, using sev-
eral frequencies and various background mediums exhibiting
different amounts of loss. The imaging system consists of a cir-
cular cylinder metallic chamber of radius 22.4 cm filled to a
height of 44.4 cm with a saltwater background medium. The
system utilizes 24 dipole antennas with a quarter-wavelength
balun as transmitters and receivers. The antennas are polarized
along the axis of the cylinder, the -coordinate, and equally
distributed on a circle of radius 9.4 cm from the center of the
metallic chamber. They are positioned at the midpoint height
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Fig. 1. Volunteer 1: (a), (b) MWT reconstruction of forearm with no prior in-
formation; (c), (d) manually estimated prior information; (e), (f) reconstruction
when prior information is used as inhomogeneous background.

of the enclosure (22.2 cm). As the microwave source and re-
ceiver, the antennas are connected to an Agilent vector network
analyzer (VNA) via a 2 24 matrix switch. The full system de-
scription, as well as the data calibration procedure, are detailed
in [7].

A. Mathematical Formulation

The system is approximated by a 2-D time-harmonic problem
with longitudinal electric field polarized along the -axis and
angular frequency . The OI is immersed in an inhomoge-
neous lossy background medium within an imaging chamber
assumed to have a circular perfectly electric conducting (PEC)
boundary. The OI’s relative complex permittivity is given as

with , where
is the effective conductivity and is the permittivity of free
space.
The OI is successively illuminated within the chamber by

one of transmitters, , and the total field, , is mea-
sured at receiver locations on a circular periphery surrounding
the OI (also within the chamber). A numerical incident field

is defined as the field in the presence of a numerical
inhomogeneous background medium in the absence of the OI.
The numerical scattered field, due to the difference in elec-
trical properties between the OI and the background medium,
is defined as . This numerical

Fig. 2. Volunteer 5: (a), (b) MWT reconstruction of forearm with no prior in-
formation; (c), (d) manually estimated prior information; (e), (f) reconstruction
when prior information is used as inhomogeneous background.

scattered field is governed by the scalar Helmholtz equation
, where

is the inhomogeneous background wavenumber
and is the contrast source.
The data are inverted using the contrast source inver-

sion algorithm formulated using the finite element method
(FEM-CSI) and regularized using a balanced multiplicative
regularizer [5], [6], [8]. FEM-CSI offers the ability to in-
corporate the inhomogeneous background medium as prior
information about the OI. The variables in the prior information
region are still free variables that can be changed by the algo-
rithm. The weighted -norm total variation regularizer has
edge-preserving capabilities, as well as the ability to correct the
imbalance that may exist between the real and imaginary com-
ponents of the OI’s relative permittivity. In addition, FEM-CSI
provides the ability to perform the inversion on an unstructured
grid of triangular elements with varying mesh density without
compromising the reconstruction quality [9]. Thus, for all the
inversion examples presented herein, the discretization density
of the chamber’s interior is greater within the imaging domain.

III. FOREARM IMAGING RESULTS

The results included herein are for two of the volun-
teers whose forearms exhibited quite different adipose layer
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Fig. 3. Volunteer 1: (a) SA result using the blind inversion; (b) real component
of estimated prior information; (c), (d) reconstruction when prior information is
used as inhomogeneous background.

thicknesses (as confirmed by subsequent MRI imaging). At
a measurement frequency of 1 GHz, where the permittivity
of the saltwater was measured to be , the real
and imaginary components of the blind inversion results are
shown in Fig. 1(a) and (b) for Volunteer 1 and Fig. 2(a) and (b)
for Volunteer 5. While the anatomy of the first volunteer’s
forearm is well estimated by the inversion algorithm, the bones
for the fifth volunteer are indistinguishable from the adipose
layer. For both volunteers, the adipose layer thickness is not
reconstructed successfully. Furthermore, the adipose layer and
bones electrical permittivity values are more than the published
equivalents [10].

A. Prior Information Estimation and Inversion

While incorporating prior information into the inversion al-
gorithm is relatively straightforward, the challenge becomes de-
veloping a methodology of accurately estimating the nonuni-
form adipose layer. Although non-MWT-based techniques are
certainly possible, in this letter twomethods are used to estimate
each volunteer’s forearm adipose layer based solely on the blind
inversion images. The first method is an ad hoc manual tech-
nique, whereas the second is an automated technique based on
simulated annealing (SA) algorithm described below [11]. Both
techniques identify three different regions within the blind in-
version image: the outer background, a single adipose layer, and
an inner muscle region. The numerical inhomogeneous back-
groundmedium is then constructed for each volunteer’s forearm
assigning mesh nodes within the identified adipose layer a value
of (taken from [10]), nodes outside the adipose
layer the saltwater measured value, and nodes enclosed by the
adipose layer an estimated value for muscle of .
The inversion algorithm is then rerun using the estimated prior
information as a inhomogeneous background.

Fig. 4. Volunteer 5: (a) SA result using the blind inversion; (b) real component
of estimated prior information; (c), (d) reconstruction when prior information is
used as inhomogeneous background.

B. Simulated Annealing

Simulated annealing is a global optimization technique that
minimizes a user-defined “energy function” , where
is a vector of parameters for the problem. We segment the
forearm images into distinct dielectric regions, each
of which is assigned an integer value .
The algorithm begins by initializing the pixels of a seg-
mented image, , with a random value from the parameter set

. The “energy function”
is defined as the statistical correlation coefficient between the
vectorized image and the segmented [12]

(1)

where and are the standard deviations of and , and
is the covariance between and .

At each iteration , the algorithm randomly perturbs one
parameter to a different value , and a new energy, , is cal-
culated. Convergence is accelerated by choosing the value of
the randomly perturbed pixel using a distribution that is biased
to reflect the values of the pixel’s nearest neighbors. The proba-
bility of accepting is if , and

if . We initialize the cooling schedule at in-
finity. After every 100 iterations, is defined as the standard
deviation of the previous 99 energies. For all other iterations,

, where is the cooling speed param-
eter [13]. The algorithm converges when the cooling schedule
converges to some value; perturbing a single pixel no longer
changes the energy appreciably.
The converged SA segmented images for volunteers 1 and

5 are shown in Figs. 3(a) and 4(a) (the contours of the original
image are superimposed). The colorbars of Figs. 3(a) and
4(a) indicate the SA segmentation levels. To obtain the prior
information, regions corresponding the background are set to
zero. This includes the highest integer state ( , the true
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background) and the next highest state , which we
have found corresponds to an imaging artifact that represents
a transitional area between the arm and the background. Once
these levels are removed, the remaining levels are set to one,
and we are left with a binary image that represents the approxi-
mate shape and location of the arm. On this binary image, we
run the edge detection function edge from the MATLAB Image
Processing Toolbox, using the Sobel approximation to the
derivative. This function returns a binary image of the edges
at which the gradient of the original image is a maximum.
Only the longest edge is accepted as it is possible that there
are holes in the binary image after removing the highest two
energy values. This edge is dilated toward the center of the
arm using a “two pixel” dilation to avoid an overly thin or
an overestimation of the thickness of the layer. The known
dielectric value for the adipose tissue is then assigned to this
region. The interior muscle and exterior background values are
then assigned to the two remaining regions.

C. Refinement Using CSI

After determining the initial location of the adipose layer,
some refinement is required. Due to the nature of the CSI al-
gorithm, the blind inversion image appears extended, and as
a result the size of the our edge can be overestimated by the
SA algorithm. If the size of the forearm is incorrect, this ef-
fect presents itself in the image as a large deviation from the
known background value, which manifests itself as a saturation
of the maximum allowed background value. In order to deter-
mine a more accurate size, we adjust the size of the arm, adding
a row and column of background valued pixels to all sides of
the image and then interpolating back onto our original sized
grid; as a result, the percentage by which we reduce the arm
will depend on the resolution of the original image. The CSI
algorithm is run after each reduction of the forearm’s size, and
the percentage of pixels in the image that are saturation to the
background (i.e., highest) level is calculated. The forearm size
reduction is terminated when no appreciable change in this per-
centage occurs. The real component of the final prior informa-
tion estimates are shown for both volunteers in Figs. 3(b) and
4(b). This can be compared to the manual estimation of the prior
information given in Figs. 1(c) and 2(c).

IV. DISCUSSION AND CONCLUSION

For both volunteers, the use of the adipose layer as inhomo-
geneous background resulted in a substantially improved recon-
struction of the forearms where the two bones can be clearly
identified. Figs. 1 and 2, (c) and (d), show the manually iden-
tified prior information with corresponding inversion results in
(e) and (f). The SA derived prior information and corresponding
results are shown in Figs. 3 and 4. Although the two techniques
provide somewhat different prior information they both lead to
improved images. The algorithm qualitatively preserved the adi-
pose layer used as prior information. The mean value of the
bone’s complex relative permittivity was overestimated for both
volunteers in comparison to the values published in [10], nev-
ertheless it was better estimated in comparison to the blind in-
version reconstruction. The improvements were possible with
minimal increase in the computational resources.

With respect to the muscle tissue, the reconstructed dielectric
values are close to the ex vivo measurements provided in the
literature [10]. As for the variations within the muscle regions,
we speculate that they are due to the presence of other tissues
(e.g., nerves, blood vessels, tendons, connective tissues) in the
forearm.
The initial improvements in image quality demonstrated

herein lead us to conclude that using a global optimization
technique, such as SA, as a companion to a local optimization
algorithm such as FEM-CSI is a promising way of enhancing
MWT. Although the use of the SA-derived prior information as
an inhomogeneous background is a straightforward and pow-
erful enhancement, other techniques of using this information
are possible and are the subject of future research. It should also
be noted that the preliminary SA-based algorithm described
herein does not attempt to infer the actual thickness of the
adipose layer, but does a good job of determining the arm’s
periphery. Further improvements to the SA-based algorithm,
involving the dilation step, could potentially lead to a better
estimate of the thickness.
The technique described herein is applicable to other biomed-

ical MWT applications where some anatomical feature of the OI
is known—for example, the skull or skin layer.
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